Citation: Gideon Simpson, Daniel Watkins. Relative entropy minimization over Hilbert spaces via Robbins-Monro[J]. AIMS Mathematics, 2019, 4(3): 359-383. doi: 10.3934/math.2019.3.359
[1] | A. E. Albert and L. A. Gardner Jr., Stochastic approximation and nonlinear regression The MIT Press, 1967. |
[2] | C. Andrieu and É. Moulines, On the ergodicity properties of some adaptive MCMC algorithms Ann. Appl. Probab. 16 (2006), 1462-1505. doi: 10.1214/105051606000000286 |
[3] | C. Andrieu and J. Thoms, A tutorial on adaptive MCMC Stat. Comput. 18 (2008), 343-373. doi: 10.1007/s11222-008-9110-y |
[4] | D. M. Blei, A. Kucukelbir and J. D. McAuliffe, Variational Inference: A Review for Statisticians J. Am. Stat. Assoc. 112 (2017), 859-877. doi: 10.1080/01621459.2017.1285773 |
[5] | J. R. Blum, Approximation methods which converge with probability one Annals of Mathematical Statistics 25 (1954), 382-386. doi: 10.1214/aoms/1177728794 |
[6] | J. R. Blum, Multidimensional stochastic approximation methods Annals of Mathematical Statistics 25 (1954), 737-744. doi: 10.1214/aoms/1177728659 |
[7] | S. D. Chatterji, Martingale convergence and the Radon-Nikodym theorem in Banach spaces Math. Scand. 22 (1968), 21-41. doi: 10.7146/math.scand.a-10868 |
[8] | H.-F. Chen, Stochastic approximation and its applications 2002. |
[9] | G. Da Prato, An Introduction to Infinite-Dimensional Analsysis Springer, 2006. |
[10] | H. Haario, E. Saksman and J. Tamminen, An adaptive Metropolis algorithm Bernoulli 7 (2001), 223-242. doi: 10.2307/3318737 |
[11] | H. J. Kushner and G. Yin, Stochastic Approximation and Recursive Algorithms and Applications Springer, 2003. |
[12] | J. Lelong, Almost sure convergence of randomly truncated stochastic algorithms under verifiable conditions Stat. Probabil. Lett. 78 (2008), 2632-2636. doi: 10.1016/j.spl.2008.02.034 |
[13] | Y. Lu, A. Stuart and H. Weber, Gaussian approximations for probability measures on r^d SIAM/ASA Journal on Uncertainty Quantification 5 (2017), 1136-1165. doi: 10.1137/16m1105384 |
[14] | Y. Lu, A. Stuart and H. Weber, Gaussian approximations for transition paths in brownian dynamics SIAM J. Math. Anal. 49 (2017), 3005-3047. doi: 10.1137/16m1071845 |
[15] | F. J. Pinski, G Simpson, A. M. Stuart, et al. Algorithms for Kullback-Leibler Approximation of Probability Measures in Infinite Dimensions SIAM J. Sci. Comput. 37 (2015), A2733-A2757. doi: 10.1137/14098171x |
[16] | F. J. Pinski, G Simpson, A. M. Stuart, et al. Kullback-Leibler Approximation for Probability Measures on Infinite Dimensional Spaces SIAM J. Math. Anal. 47 (2015), 4091-4122. doi: 10.1137/140962802 |
[17] | H. Robbins and S. Monro, A stochastic approximation method The Annals of Mathematical Statistics (1950), 400-407. |
[18] | G. O. Roberts and J. S. Rosenthal, Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms J. Appl. Probab. 44 (2007), 458-475. doi: 10.1017/s0021900200003090 |
[19] | D. Sanz-Alonso and A. M. Stuart, Gaussian approximations of small noise diffusions in kullback-leibler divergence Commun. Math. Sci. 15 (2017), 2087-2097. doi: 10.4310/cms.2017.v15.n7.a13 |
[20] | G. Yin and Y. M. Zhu, On H-valued Robbins-Monro processes J. Multivariate Anal. 34 (1990), 116-140. doi: 10.1016/0047-259x(90)90064-o |