Research article

Applications and theorem on common fixed point in complex valued b-metric space

  • Received: 06 February 2019 Accepted: 18 July 2019 Published: 31 July 2019
  • MSC : 47H10

  • In this paper, a common fixed point theorem for four self-mappings satisfying rational contraction has been proved in complex valued b-metric space. Then, examples are provided to verify the effectiveness and usability of our main results. Finally, we validate our results by proving both the existence and the uniqueness of a common solution of the system of Urysohn integral equations and the existence of a unique solution for linear equations system.

    Citation: Khaled Berrah, Abdelkrim Aliouche, Taki eddine Oussaeif. Applications and theorem on common fixed point in complex valued b-metric space[J]. AIMS Mathematics, 2019, 4(3): 1019-1033. doi: 10.3934/math.2019.3.1019

    Related Papers:

  • In this paper, a common fixed point theorem for four self-mappings satisfying rational contraction has been proved in complex valued b-metric space. Then, examples are provided to verify the effectiveness and usability of our main results. Finally, we validate our results by proving both the existence and the uniqueness of a common solution of the system of Urysohn integral equations and the existence of a unique solution for linear equations system.


    加载中


    [1] S. Aleksic, Z. Kadelburg, Z. D. Mitrovic, et al. A new survey: Cone metric spaces, ArXiv Preprint, ArXiv: 1805.04795.
    [2] A. Akbar, B. Fisher and M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Func. Anal. Opt., 32 (2011), 243-253. doi: 10.1080/01630563.2011.533046
    [3] I. Bakhtin, The contraction mapping principle in quasimetric spaces, Func. An., Gos. Ped. Inst. Unianowsk., 30 (1989), 26-37.
    [4] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181
    [5] K. Berrah, A. Aliouche and T. Oussaeif, Common fixed point theorems under Pata's contraction in complex valued metric spaces and an application to integral equations, Bol. Soc. Mat. Mex., (2019), 2296-4495.
    [6] S. Bhatt, S. Chaukiyal and R. C. Dimri, Common fixed point of mappings satisfying rational inequality in complex valued metric space, Int. J. Pure. Appl. Maths., 73 (2011), 159-164.
    [7] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mat. Inf. Uni. Ostraviensis, 1 (1993), 5-11.
    [8] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 263-276.
    [9] A. K. Dubey and M. Tripathi, Common Fixed Point Theorem in Complex Valued b -Metric Space for Rational Contractions, J. Inf. Math. Sci., 7 (2015), 149-161.
    [10] R. George, H. A. Nabwey, R. Rajagopalan, et al. Rectangular cone b-metric spaces over Banach algebra and contraction principle, Fixed Point Theory Appl., 2017 (2017), 14.
    [11] H. Huang, G. Deng and S. Radenović, Some topological properties and fixed point results in cone metric spaces over Banach algebras, Positivity,23 (2019), 21-34. doi: 10.1007/s11117-018-0590-5
    [12] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces,4 (1996), 199-215.
    [13] K. P. R. Rao, P. R. Swamy and J. R. Prasad, A common fixed point theorem in complex valued b-metric spaces, Bull. Maths. Stat. res.,1 (2013), 1-8.
    [14] F. Rouzkard and M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl.,64 (2012), 1866-1874. doi: 10.1016/j.camwa.2012.02.063
    [15] R. K. Verma and H. K. Pathak, Common fixed point theorems for a pair of mappings in complex-Valued metric spaces, J. Maths. Comput. Sci.,6 (2013), 18-26. doi: 10.22436/jmcs.06.01.03
    [16] F. Vetro and S. Radenović, Some results of Perov type in rectangular cone metric spaces, J. Fix. Point Theory A.,20 (2018), 41.
    [17] W. Sintunavarat and P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl.,2012 (2012), 84.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4465) PDF downloads(982) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog