Citation: Feng Qi, Da-Wei Niu, Bai-Ni Guo. Simplifying coefficients in differential equations associated with higher order Bernoulli numbers of the second kind[J]. AIMS Mathematics, 2019, 4(2): 170-175. doi: 10.3934/math.2019.2.170
[1] | L. Comtet, Advanced Combinatorics: The art of finite and infinite Expansions, Revised and Enlarged Edition, Dordrecht and Boston: D. Reidel Publishing Co., 1974. |
[2] | D. V. Dolgy, L. C. Jang, D. S. Kim, et al. Differential equations associated with higher-order Bernoulli numbers of the second kind revisited, J. Anal. Appl. 14 (2016), 107-121. |
[3] | B. N. Guo, F. Qi, Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind, J. Comput. Appl. Math., 272 (2014), 251-257. doi: 10.1016/j.cam.2014.05.018 |
[4] | B. N. Guo, F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math., 255 (2014), 568-579. doi: 10.1016/j.cam.2013.06.020 |
[5] | F. Qi, A new formula for the Bernoulli numbers of the second kind in terms of the Stirling numbers of the first kind, Publ. I. Math., 100 (2016), 243-249. doi: 10.2298/PIM150501028Q |
[6] | F. Qi, A simple form for coefficients in a family of nonlinear ordinary differential equations, Adv. Appl. Math. Sci., 17 (2018), 555-561. |
[7] | F. Qi, A simple form for coefficients in a family of ordinary differential equations related to the generating function of the Legendre polynomials, Adv. Appl. Math. Sci., 17 (2018), 693-700. |
[8] | F. Qi, Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind, Filomat, 28 (2014), 319-327. doi: 10.2298/FIL1402319O |
[9] | F. Qi, Notes on several families of differential equations related to the generating function for the Bernoulli numbers of the second kind, Turkish J. Anal. Number Theory, 6 (2018), 40-42. doi: 10.12691/tjant-6-2-1 |
[10] | F. Qi, Simple forms for coefficients in two families of ordinary differential equations, Glob. J. Math. Anal., 6 (2018), 7-9. |
[11] | F. Qi, B. N. Guo, Simplification of coefficients in two families of nonlinear ordinary differential equations, Turkish J. Anal. Number Theory, 6 (2018), 116-119. doi: 10.12691/tjant-6-4-2 |
[12] | F. Qi, Simplifying coefficients in a family of nonlinear ordinary differential equations, Acta Commentat. Univ. Tartuensis Math., 22 (2018), 293-297. |
[13] | F. Qi, Simplifying coefficients in a family of ordinary differential equations related to the generating function of the Laguerre polynomials, Appl. Appl. Math., 13 (2018), 750-755. |
[14] | F. Qi, Simplifying coefficients in differential equations related to generating functions of reverse Bessel and partially degenerate Bell polynomials, Bol. Soc. Parana. Mat., 39 (2021), in press. |
[15] | F. Qi, B. N. Guo, A diagonal recurrence relation for the Stirling numbers of the first kind, Appl. Anal. Discrete Math., 12 (2018), 153-165. doi: 10.2298/AADM170405004Q |
[16] | F. Qi, B. N. Guo, Explicit formulas and recurrence relations for higher order Eulerian polynomials, Indagat. Math., 28 (2017), 884-891. doi: 10.1016/j.indag.2017.06.010 |
[17] | F. Qi, D. Lim, B. N. Guo, Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations, RACSAM, 113 (2019), 1-9. doi: 10.1007/s13398-017-0427-2 |
[18] | F. Qi, D. Lim, B. N. Guo, Some identities related to Eulerian polynomials and involving the Stirling numbers, Appl. Anal. Discrete Math., 12 (2018), 467-480. doi: 10.2298/AADM171008014Q |
[19] | F. Qi, D. W. Niu, B. N. Guo, Simplifying coefficients in differential equations associated with higher order Bernoulli numbers of the second kind, Preprints, 2017. Available from: http://dx.doi.org/10.20944/preprints201708.0026.v1. |
[20] | F. Qi, D. W. Niu, B. N. Guo, Some identities for a sequence of unnamed polynomials connected with the Bell polynomials, RACSAM, 112 (2018), in press. Available from: https://doi.org/10.1007/s13398-018-0494-z. |
[21] | F. Qi, J. L. Wang, B. N. Guo, Notes on a family of inhomogeneous linear ordinary differential equations, Adv. Appl. Math. Sci., 17 (2018), 361-368. |
[22] | F. Qi, J. L. Wang, B. N. Guo, Simplifying and finding ordinary differential equations in terms of the Stirling numbers, Korean J. Math., 26 (2018), 675-681. |
[23] | F. Qi, J. L.Wang, B. N. Guo, Simplifying differential equations concerning degenerate Bernoulli and Euler numbers, Trans. A. Razmadze Math. Inst., 172 (2018), 90-94. doi: 10.1016/j.trmi.2017.08.001 |
[24] | F. Qi, X. J. Zhang, An integral representation, some inequalities, and complete monotonicity of the Bernoulli numbers of the second kind, B. Korean Math. Soc., 52 (2015), 987-998. doi: 10.4134/BKMS.2015.52.3.987 |
[25] | F. Qi, J. L. Zhao, Some properties of the Bernoulli numbers of the second kind and their generating function, B. Korean Math. Soc., 55 (2018), 1909-1920. |
[26] | J. Quaintance, H. W. Gould, Combinatorial Identities for Stirling Numbers: The Unpublished Notes of H. W. Gould, Singapore: World Scientific Publishing Co. Pte. Ltd., 2016. |
[27] | J. L. Zhao, J. L. Wang, F. Qi, Derivative polynomials of a function related to the Apostol-Euler and Frobenius-Euler numbers, J. Nonlinear Sci. Appl., 10 (2017), 1345-1349. doi: 10.22436/jnsa.010.04.06 |