Citation: Adel M Bash, Sulaiman E. Mnawe, Salim A. Salah. Numerical buckling analysis of carbon fibre-epoxy composite plates with different cutouts number by finite element method[J]. AIMS Materials Science, 2020, 7(1): 46-59. doi: 10.3934/matersci.2020.1.46
[1] |
Zhang YX, Yang CY (2009) Recent developments in finite element analysis for laminated composite plates. Compos Struct 88: 147-157. doi: 10.1016/j.compstruct.2008.02.014
![]() |
[2] |
Kremer T, Schürmann H (2008) Buckling of tension-loaded thin-walled composite plates with cut-outs. Compos Sci Technol 68: 90-97. doi: 10.1016/j.compscitech.2007.05.035
![]() |
[3] | Forster E, Clay S, Holzwarth R, et al. (2008) Flight vehicle composite structures. The 26th Congress of International Council of the Aeronautical Sciences (ICAS) 2008: 8976. |
[4] |
Prusty BG, Satsangi SK (2001) Analysis of stiffened shell for ships and ocean structures by finite element method. Ocean Eng 28: 621-638. doi: 10.1016/S0029-8018(00)00021-4
![]() |
[5] |
Sarangan S, Singh BN (2017) Evaluation of free vibration and bending analysis of laminated composite and sandwich plates using non-polynomial zigzag mod-els: C0 finite element formulation. Aerosp Sci Technol 68: 496-508. doi: 10.1016/j.ast.2017.06.001
![]() |
[6] | Nemeth MP (1995) Buckling and postbuckling behaviour of laminated composite plates with a cut-out, In: Turvey GJ, Marshall IH, Buckling and Postbuckling of Composite Plates, Dordrecht: Springer, 260-298. |
[7] |
Larsson PL (1989) On buckling of orthotropic stretched plates with circular holes. Compos Struct 11: 121-134. doi: 10.1016/0263-8223(89)90064-0
![]() |
[8] |
Shirkavand A, Taheri-Behrooz F, Omidi M (2019) Orientation and size effect of a rectangle cutout on the buckling of composite cylinders. Aerosp Sci Technol 87: 488-497. doi: 10.1016/j.ast.2019.02.042
![]() |
[9] |
Ovesy HR, Taghizadeh M, Kharazi M (2012) Post-buckling analysis of composite plates containing embedded delaminations with arbitrary shape by using higher order shear deformation theory. Compos Struct 94: 1243-1249. doi: 10.1016/j.compstruct.2011.11.011
![]() |
[10] |
Hao P, Liu C, Liu X, et al. (2018) Isogeometric analysis and design of variable-stiffness aircraft panels with multiple cutouts by level set method. Compos Struct 206: 888-902. doi: 10.1016/j.compstruct.2018.08.086
![]() |
[11] |
Hao P, Wang Y, Liu C, et al. (2018) Hierarchical nondeterministic optimization of curvilinearly stiffened panel with multicutouts. AIAA J 56: 4180-4194. doi: 10.2514/1.J056856
![]() |
[12] |
Hao P, Wang B, Tian K, et al. (2016) Efficient optimization of cylindrical stiffened shells with reinforced cutouts by curvilinear stiffeners. AIAA J 54: 1350-1363. doi: 10.2514/1.J054445
![]() |
[13] |
Dey S, Mukhopadhyay T, Sahu SK, et al. (2016) Effect of cutout on stochastic natural frequency of composite curved panels. Compos Part B-Eng 105: 188-202. doi: 10.1016/j.compositesb.2016.08.028
![]() |
[14] |
Narayanan R, Der Avanessian NGV (1984) Elastic buckling of perforated plates under shear. Thin Wall Struct 2: 51-73. doi: 10.1016/0263-8231(84)90015-6
![]() |
[15] |
Naskar S, Mukhopadhyay T, Sriramula S (2018) Probabilistic micromechanical spatial variability quantification in laminated composites. Compos Part B-Eng 151: 291-325. doi: 10.1016/j.compositesb.2018.06.002
![]() |
[16] |
Dey S, Mukhopadhyay T, Naskar s, et al. (2019) Probabilistic characterisation for dynamics and stability of laminated soft core sandwich plates. J Sandw Struct Mater 21: 366-397. doi: 10.1177/1099636217694229
![]() |
[17] |
Erdem S, Kaman MO, Gur M (2019) Post-buckling behavior of carbon fiber epoxy composite plates. J Mech Sci Technol 33: 1723-1730. doi: 10.1007/s12206-019-0324-z
![]() |
[18] |
Baba BO, Baltaci A (2007) Buckling characteristics of symmetrically and antisymmetrically laminated composite plates with central cutout. Appl Compos Mater 14: 265-276. doi: 10.1007/s10443-007-9045-z
![]() |
[19] | Yidris N, Hassan M (2019) The effects of cut-out on thin-walled plates, In: Jawaid M, Thariq M, Saba N, Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, United Kingdom: Woodhead Publishing, 19-26. |
[20] | Rezae R, Shaterzadeh AR, Abolghasemi S (2015) Buckling analysis of rectangular functionally graded plates with an elliptic hole under thermal loads. J Solid Mech 7: 41-57. |
[21] |
Pekbey Y, Sayman O (2006) A numerical and experimental investigation of critical buckling load of rectangular laminated composite plates with strip delamination. J Reinf Plast Comp 25: 685-697. doi: 10.1177/0731684406060566
![]() |
[22] |
Ghannadpour SAM, Najafi A, Mohammadi B (2006) On the buckling behavior of crossply laminated composite plates due to circular/elliptical cutouts. Compos Struct 75: 3-6. doi: 10.1016/j.compstruct.2006.04.071
![]() |
[23] |
Kumar D, Singh SB (2010) Effects of boundary conditions on buckling and postbuckling responses of composite laminate with various shaped cutouts. Compos Struct 92: 769-779. doi: 10.1016/j.compstruct.2009.08.049
![]() |
[24] |
Komur MA, Sen F, Atas A, et al. (2010) Buckling analysis of laminated composite plates with an elliptical/circular cutout using FEM. Adv Eng Softw 41: 161-164. doi: 10.1016/j.advengsoft.2009.09.005
![]() |
[25] |
Falkowicz K, Ferdynus M, Dębski H (2015) Numerical analysis of compressed plates with a cut-out operating in the geometrically nonlinear range. Eksploat Niezawodn 17: 222-227. doi: 10.17531/ein.2015.2.8
![]() |
[26] |
Falkowicz K, Dębski H, Wysmulski P, et al. (2019) The behaviour of compressed plate with a central cut-out, made of composite in an asymmetrical arrangement of layers. Compos Struct 214: 406-413. doi: 10.1016/j.compstruct.2019.02.001
![]() |
[27] | ANSYS, ANSYS Fluent Theory Guide 15, 2015. Available from: http://www.pmt.usp.br/ACADEMIC/martoran/NotasModelosGrad/ANSYS%20Fluent%20Theory%20Guide%2015.pdf. |
[28] |
York CB (2015) On tapered warp-free laminates with single-ply terminations. Compos Part A Appl S 72: 127-38. doi: 10.1016/j.compositesa.2015.01.022
![]() |
[29] |
Samborski S (2016) Numerical analysis of the DCB test configuration applicability to mechanically coupled fiber reinforced laminated composite beams. Compos Struct 152: 477-487. doi: 10.1016/j.compstruct.2016.05.060
![]() |
[30] |
Haynes R, Cline J, Shonkwiler B, et al. (2016) On plane stress and plane strain in classical lamination theory. Compos Sci Technol 127: 20-27. doi: 10.1016/j.compscitech.2016.02.010
![]() |
[31] |
Reid RG, Paskaramoorthy R (2011) An extension to classical lamination theory for use with functionally graded plates. Compos Struct 93: 639-648. doi: 10.1016/j.compstruct.2010.08.015
![]() |
[32] |
Shao D, Hu S, Wang Q, et al. (2016) A unified analysis for the transient response of composite laminated curved beam with arbitrary lamination schemes and general boundary restraints. Compos Struct 154: 507-526. doi: 10.1016/j.compstruct.2016.07.070
![]() |
[33] |
Deng J, Zhou G, Bordas SPA, et al. (2017) Numerical evaluation of buckling behaviour induced by compression on patch-repaired composites. Compos Struct 168: 582-596. doi: 10.1016/j.compstruct.2016.12.071
![]() |
[34] | Debski H, Koszalka G, Ferdynus M (2012) Application of FEM in the analysis of the structure of a trailer supporting frame with variable operation parameters. Eksploat Niezawodn 2012: 107-113. |
[35] |
Debski H, Kubiak T, Teter A (2013) Buckling and postbuckling behaviour of thin-walled composite channel section column. Compos Struct 100: 195-204. doi: 10.1016/j.compstruct.2012.12.033
![]() |
[36] | Kopecki T, Mazurek P (2014) Numerical representation of post-critical deformations in the processes of determining stress distributions in closed multi-segment thin-walled aircraft load-bearing structures. Eksploat Niezawodn 16: 163-169. |
[37] |
Falkowicz K (2017) Experimental and numerical analysis of compression thin-walled composite plates weakened by cut-outs. Arch Civil Eng 63: 161-172. doi: 10.1515/ace-2017-0047
![]() |