Citation: Jie Sun, Tzvetanka Boiadjieva-Scherzer, Hermann Kronberger, Kevin Staats, Johannes Holinka, Reinhard Windhager. Surface modification of Ti6Al4V alloy for implants by anodization and electrodeposition[J]. AIMS Materials Science, 2019, 6(5): 713-729. doi: 10.3934/matersci.2019.5.713
[1] | Technavio Research, Biomedical metal market-global forecasts and opportunity, 2018 Available from: https://www.businesswire.com/news/home/20170620006368/en/Biomedical-Metal-Market---Global-Forecasts-Opportunity. |
[2] | Actis L, Gaviria L, Guda T, et al. (2013) Antimicrobial surfaces for craniofacial implants: state of the art. J Korean Assoc Oral Maxillofac Surg 39: 43–54. doi: 10.5125/jkaoms.2013.39.2.43 |
[3] | Chatzopoulos GS, Wolff LF (2017) Implant failure and history of failed endodontic treatment: a retrospective case-control study. J Clin Exp Dent 9: e1322–e1328. |
[4] | Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350: 1422–1429. doi: 10.1056/NEJMra035415 |
[5] | Naghizadeh M, Ghannadi S, Abdizadeh H, et al. (2014) Effect of fluoride concentration and water content on morphology of titania nanotubes in ethylene glycol solution. Adv Mater Res 829: 907–911. |
[6] | Xu Z, Lai Y, Wu D, et al. (2015) Increased mesenchymal stem cell response and decreased staphylococcus aureus adhesion on titania nanotubes without pharmaceuticals. Biomed Res Int 2015: 9. |
[7] | Jagminas A, Kovger J, Selskis A, et al. (2015) Effect of hydrogen doping on the loading of titania nanotube films with copper selenide species via alternating current deposition. J Appl Electrochem 45: 1141–1151. doi: 10.1007/s10800-015-0883-3 |
[8] | Cao C, Yan J, Zhang Y, et al. (2016) Stability of titania nanotube arrays in aqueous environment and the related factors. Sci Rep 6: 23065. doi: 10.1038/srep23065 |
[9] | Lim YC, Siti AS, Amiera PN, et al. (2017) Electrochemical deposition of copper decorated titania nanotubes and its visible light photocatalytic performance. AIP Conf Proc 1877: 070002. |
[10] | Ercan B, Taylor E, Alpaslan E, et al. (2011) Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology 22: 295102. doi: 10.1088/0957-4484/22/29/295102 |
[11] | Su EP, Justin DF, Pratt CR, et al. (2018) Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J 100-B: 9–16. |
[12] | Piszczek P, Lewandowska Ż, Radtke A, et al. (2017) Biocompatibility of titania nanotube coatings enriched with silver nanograins by chemical vapor deposition. Nanomaterials 7: 274. doi: 10.3390/nano7090274 |
[13] | Holinka J, Pilz M, Kubista B, et al. (2013) Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. Bone Joint J 95-B: 678–682. |
[14] | Liu W, Golshan NH, Deng X, et al. (2016) Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation. Nanoscale 8: 15783–15794. doi: 10.1039/C6NR04461A |
[15] | Mir IA, Alam H, Priyadarshini E, et al. (2018) Antimicrobial and biocompatibility of highly fluorescent znse core and znse@zns core-shell quantum dots. J Nanopart Res 20: 174. doi: 10.1007/s11051-018-4281-8 |
[16] | Capanema N, Mansur A, Carvalho S, et al. (2015) Niobium-doped hydroxyapatite bioceramics: synthesis, characterization and in vitro cytocompatibility. Materials 8: 4191–4209. doi: 10.3390/ma8074191 |
[17] | Bang LT, Long BD, Othman R (2014) Carbonate hydroxyapatite and silicon-substituted carbonate hydroxyapatite: synthesis, mechanical properties, and solubility evaluations. Sci World J 2014: 969876. |
[18] | Xue W, Liu X, Zheng X, et al. (2005) Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. J Biomed Mater Res A 74: 553–561. |
[19] | Bauer S, Kleber S, Schmuki P (2006) TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes. Electrochem Commun 8: 1321–1325. doi: 10.1016/j.elecom.2006.05.030 |
[20] | Rogers KL, Fey PD, Rupp ME (2009) Coagulase-negative staphylococcal infections. Infect Dis Clin N Am 23: 73–98. doi: 10.1016/j.idc.2008.10.001 |
[21] | Schoenfelder SMK, Lange C, Eckart M, et al. (2010) Success through diversity-how staphylococcus epidermidis establishes as a nosocomial pathogen. Int J Med Microbiol 300: 380–386. doi: 10.1016/j.ijmm.2010.04.011 |
[22] | Tammelin A, Domicel P, Hambraeus A, et al. (2000) Dispersal of methicillin-resistant staphylococcus epidermidis by staff in an operating suite for thoracic and cardiovascular surgery: relation to skin carriage and clothing. J Hosp Infect 44: 119–126. doi: 10.1053/jhin.1999.0665 |
[23] | Issam R, Amin A, Kenneth R (1998) Staphylococcus epidermidis: emerging resistance and need for alternative agents. Clin Infect Dis 26: 1182–1187. doi: 10.1086/520285 |
[24] | Beranek R, Hildebrand H, Schmuki P (2003) Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes. Electrochem Solid St 6: B12–B14. doi: 10.1149/1.1545192 |
[25] | Schmidt J, Vogelsberger W (2006) Dissolution kinetics of titanium dioxide nanoparticles: The observation of an unusual kinetic size effect. J Phys Chem 110: 3955–3963. doi: 10.1021/jp055361l |
[26] | Berger S, Kunze J, Schmuki P, et al. (2010) Influence of water content on the growth of anodic TiO2 nanotubes in fluoride-containing ethylene glycol electrolytes. J Electrochem Soc 157: C18–C23. doi: 10.1149/1.3251338 |
[27] | Ghicov A, Tsuchiya H, Macak JM, et al. (2005) Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun 7: 505–509. doi: 10.1016/j.elecom.2005.03.007 |
[28] | Albu, SP, Ghicov A, Aldabergenova S, et al. (2008) Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv Mater 20: 4135–4139. |
[29] | Svetina M, Ciacchi LC, Sbaizero O, et al. (2001) Deposition of calcium ions on rutile (110): a first-principles investigation. Acta Mater 49: 2169–2177. doi: 10.1016/S1359-6454(01)00136-7 |
[30] | Su Z, Zhang L, Jiang F, et al. (2013) Formation of crystalline TiO2 by anodic oxidation of titanium. Prog Nat Sci 23: 294–301. doi: 10.1016/j.pnsc.2013.04.004 |
[31] | Kunze J, Seyeux A, Schmuki P (2008) Anodic TiO2 layer conversion: fluoride-induced rutile formation at room temperature. Electrochem Solid State 11: K11–K13. doi: 10.1149/1.2811722 |
[32] | Lafuente B, Downs RT, Yang H, et al. (2015) The power of databases: the rruff project, In: Armbruster T, Danisi RM, Highlights in Mineralogical Crystallography, Germany: Walter de Gruyter GmbH, 1–29. |
[33] | Haynes WM (2011) CRC Handbook of Chemistry and Physics, 92th edition, CRC Press: Boca Raton 5–84. |
[34] | Khalil MW, Abdel Rahim MA (1991) Hydrogen evolution reaction on titanium and oxide-covered titanium electrodes. Materialwiss Werkst 22: 390–395. doi: 10.1002/mawe.19910221007 |
[35] | Saji VS, Lee CW (2013) Selenium electrochemistry. RSC Adv 3: 10058–10077. doi: 10.1039/c3ra40678d |
[36] | David M, Modolo R, Traore M, et al. (1986) Cheminform abstract: Electrodeposition and electrodissolution of semiconductor-metal mixed compounds. Part 1. Silver selenide. Chem Inform 17. |
[37] | Moysiadou A, Koutsikou R, Bouroushian M (2015) Pulse electrodeposition of copper selenides from acidic aqueous baths. Mater Lett 139: 112–115. doi: 10.1016/j.matlet.2014.10.036 |
[38] | Parcharoen Y, Termsuksawad P, Sirivisoot S (2016) Improved bonding strength of hydroxyapatite on titanium dioxide nanotube arrays following alkaline pretreatment for orthopedic implants. J Nanomater 2016: 9143969. |
[39] | Lippkow D, Strehblow HH (1998) Structural investigations of thin films of copper-selenide electrodeposited at elevated temperatures. Electrochim Acta 43: 2131–2140. doi: 10.1016/S0013-4686(97)10148-7 |
[40] | Riha SC, Johnson DC, Prieto AL (2011) Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction. J Am Chem Soc 133: 1383–1390. doi: 10.1021/ja106254h |
[41] | Rezakhani A, Kashani Motlagh MM (2012) Synthesis and characterization of hydroxyapatite nanocrystal and gelatin doped with Zn2+ and cross linked by glutaraldehyde. Int J Phys Sci 7: 2768–2774. |
[42] | Rezvani Amin Z, Khashyarmanesh Z, Fazly Bazzaz BS (2016) Different behavior of staphylococcus epidermidis in intracellular biosynthesis of silver and cadmium sulfide nanoparticles: more stability and lower toxicity of extracted nanoparticles. World J Microb Biot 32: 140. doi: 10.1007/s11274-016-2110-8 |