Citation: Masatoshi Sakairi, Hirotaka Mizukami, Shuji Hashizume. Effects of solution composition on corrosion behavior of 13 mass% Cr martensitic stainless steel in simulated oil and gas environments[J]. AIMS Materials Science, 2019, 6(2): 288-300. doi: 10.3934/matersci.2019.2.288
[1] | Masamura K, Hashizume S, Sakai J, et al. (1987) Polarization behavior of high-alloy OCTG in CO2 environment as affected by chlorides and sulfides. Corrosion 43: 359–365. doi: 10.5006/1.3583871 |
[2] | Kimura M, Miyata Y, Yamane Y, et al. (1999) Corrosion resistance of high-strength modified 13% Cr steel. Corrosion 55: 756–761. doi: 10.5006/1.3284030 |
[3] | Guo XP, Tomoe Y (1998) Electrochemical behavior of carbon steel in carbon dioxide-saturated diglycolamine solutions. Corrosion 54: 931–939. doi: 10.5006/1.3284812 |
[4] | Kimura M, Miyata Y, Toyooka T, et al. (2001) Effect of retained austenite on corrosion performance for modified 13% Cr steel pipe. Corrosion 57: 433–439. doi: 10.5006/1.3290367 |
[5] | Turnbull A, Griffiths A (2003) Review: Corrosion and cracking of weldable 13 wt-%Cr martensitic stainless steels for application in the oil and gas industry. Corros Eng Sci Techn 38: 21–50. doi: 10.1179/147842203225001432 |
[6] | Anselmo N, May JE, Mariano NA, et al. (2006) Corrosion behavior of supermartensitic stainless steel in aerated and CO2-saturated synthetic seawater. Mat Sci Eng A-Struct 428: 73–79. doi: 10.1016/j.msea.2006.04.107 |
[7] | Sunaba T, Meng H, Tomoe Y, et al. (2009) Corrosion experience of 13%Cr steel tubing and laboratory evaluation of super 13Cr steel in sweet environments containing acetic acid and trace amounts of H2S. Corrosion 2009, NACE International, NACE-09568. |
[8] | Sunaba T, Ito T, Miyata Y, et al. (2014) Influence of chloride ions on corrosion of modified martensitic stainless steels at high temperatures under a CO2 environment. Corrosion 70: 988–999. doi: 10.5006/1141 |
[9] | Liu D, Qiu YB, Tomoe Y, et al. (2011) Interaction of inhibitors with corrosion scale formed on N80 steel in CO2‐saturated NaCl solution. Mater Corros 62: 1153–1158. doi: 10.1002/maco.201106075 |
[10] | Zhang Y, Pang X, Qu S, et al. (2012) Discussion of the CO2 corrosion mechanism between low partial pressure and supercritical condition. Corros Sci 59: 186–197. doi: 10.1016/j.corsci.2012.03.006 |
[11] | Liu QY, Mao LJ, Zhou SW (2014) Effects of chloride content on CO2 corrosion of carbon steel in simulated oil and gas well environments. Corros Sci 84: 165–171. doi: 10.1016/j.corsci.2014.03.025 |
[12] | Islam MA, Farhat ZN (2013) The synergistic effect between erosion and corrosion of API pipeline in CO2 and saline medium. Tribol Int 68: 26–34. doi: 10.1016/j.triboint.2012.10.026 |
[13] | Hashizume S, Minami Y, Ishizawa Y (1998) Corrosion resistance of martensitic stainless steels in environments simulating carbon dioxide gas wells. Corrosion 54: 1003–1011. doi: 10.5006/1.3284813 |
[14] | Hashizume S, Nakayama T, Sakairi M, et al. (2008) Electrochemical behavior of low C-13%Cr weld joints by using solution flow type micro-droplet cell. Corrosion 2018, NACE International, NACE-08102. |
[15] | Hashizume S, Nakayama T, Sakairi M, et al. (2009) Effect of PWHT on electrochemical behavior of low C-13%Cr welded joints with the use of a solution flow type micro-droplet cell. Corrosion 2009, NACE International, NACE-09089. |
[16] | Sakairi M, Nakayama T, Kikuchi T, et al. (2009) Electrochemical noise analysis of 13 mass% Cr stainless steel HAZ by solution flow type micro-droplet cell-Effect of solution concentration-. ECS Trans 16: 281–290. |
[17] | Hashizume S, Nakayama T, Sakairi M, et al. (2011) SCC mechanism near fusion line of low C-13%Cr welded joints. Zairyo-to-Kankyo 60: 196–201. doi: 10.3323/jcorr.60.196 |
[18] | Sakairi M, Kikawa A, Hashizume S, et al. (2013) Effect of sodium acetate in model oil and gas environments on oxide film structure and corrosion behavior of 13%Cr stainless steel. Proceedings of NACE International East Asia and Pacific Rim Area Conference and Expo 2013, Kyoto, EPA13-4605. |
[19] | Fierro G, Ingo GM, Mancia F (1989) XPS investigation on the corrosion behavior of 13Cr-martensitic stainless steel in CO2-H2S-Cl− environments. Corrosion 45: 814–823. doi: 10.5006/1.3584988 |
[20] | Fierro G, Ingo GM, Mancia F, et al. (1990) XPS investigation on AISI 420 stainless steel corrosion in oil and gas well environments. J Mater Sci 25: 1407–1415. doi: 10.1007/BF00585458 |
[21] | Islam MA, Farhat ZN (2015) Characterization of the corrosion layer on pipeline steel in sweet environment. J Mater Eng Perform 24: 3142–3158. doi: 10.1007/s11665-015-1564-4 |
[22] | Nicic I, Macdonald DD (2008) The passivity of Type 316L stainless steel in borate buffer solution. J Nucl Mater 379: 54–58. doi: 10.1016/j.jnucmat.2008.06.014 |
[23] | Ikeo N, Iijima Y, Niimura N, et al. (1991) Handbook of X-Ray photoelectron spectroscopy, Tokyo, Japan: JEOL Ltd. |
[24] | Descostes M, Mercier F, Thromat N, et al. (2000) Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium. Appl Surf Sci 165: 288–302. doi: 10.1016/S0169-4332(00)00443-8 |
[25] | Jung RH, Tsuchiya H, Fujimoto S (2012) XPS characterization of passive films formed on Type 304 stainless steel in humid atmosphere. Corros Sci 58: 62–68. doi: 10.1016/j.corsci.2012.01.006 |
[26] | Yin ZF, Wang XZ, Liu L, et al. (2011) Characterization of corrosion product layers from CO2 corrosion of 13Cr stainless steel in simulated oilfield solution. J Mater Eng Perform 20: 1330–1335. doi: 10.1007/s11665-010-9769-z |
[27] | Zhang J, Wang ZL, Wang ZM, et al. (2012) Chemical analysis of the initial corrosion layer on pipeline steels in simulated CO2-enhanced oil recovery brines. Corros Sci 65: 397–404. doi: 10.1016/j.corsci.2012.08.045 |
[28] | Ramis G, Busca G, Lorenzelli V (1991) Low-temperature CO2 adsorption on metal oxides: spectroscopic characterization of some weakly adsorbed species. Mater Chem Phys 29: 425–435. doi: 10.1016/0254-0584(91)90037-U |
[29] | Hiyoshi N, Yoga K, Yashima T (2005) Adsorption of carbon dioxide on aminosilane-modified mesoporous silica. J Jpn Petrol Inst 48: 20–36. |
[30] | Yoshida H, Adachi Y, Kamegawa K (1982) Fourier transform infrared spectra of activated carbons. Tanso 111: 149–153. |
[31] | Geng W, Nakajima T, Takanashi H, et al. (2009) Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry. Fuel 88: 139–144. doi: 10.1016/j.fuel.2008.07.027 |
[32] | Maurice V, Yang WP, Marcus P (1998) X-ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe–18Cr–13Ni single-crystal surfaces. J Electrochem Soc 145: 909–920. doi: 10.1149/1.1838366 |
[33] | Tardio S, Abel ML, Carr RH, et al. (2015) Comparative study of the native oxide on 316L stainless steel by XPS and ToF-SIMS. J Vac Sci Technol A 33: 05E122. |