Citation: Hendra Suherman, Yovial Mahyoedin, Edi Septe, Roni Rizade. Properties of graphite/epoxy composites: the in-plane conductivity, tensile strength and Shore hardness[J]. AIMS Materials Science, 2019, 6(2): 165-173. doi: 10.3934/matersci.2019.2.165
[1] | Ma PC, Liu MY, Zhang H, et al. (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Inter 1: 1090–1096. doi: 10.1021/am9000503 |
[2] | Suherman H, Sulung AB, Sahari J (2013) Effect of the compression molding parameters on the in-plane and through-plane conductivity of carbon nanotubes/graphite/epoxy nanocomposites as bipolar plate material for a polymer electrolyte membrane fuel cell. Ceram Int 39: 1277–1284. doi: 10.1016/j.ceramint.2012.07.059 |
[3] | Bairan A, Selamat MZ, Sahadan SN, et al. (2016) Effect of carbon nanotubes loading in multifiller polymer composite as bipolar plate for PEM fuel cell. Procedia Chem 19: 91–97. doi: 10.1016/j.proche.2016.03.120 |
[4] | Mathur RB, Dhakate SR, Gupta DK, et al. (2008) Effect of different carbon fillers on the properties of graphite composite bipolar plate. J Mater Process Technol 203: 184–192. doi: 10.1016/j.jmatprotec.2007.10.044 |
[5] | Li Y, Jing T, Xu G, et al. (2018) 3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme. Polymer 149: 13–22. doi: 10.1016/j.polymer.2018.06.046 |
[6] | Zhang Y, Rhee KY, Park SJ (2017) Nanodiamond nanocluster-decorated graphene oxide/epoxy nanocomposites with enhanced mechanical behavior and thermal stability. Compos Part B-Eng 114: 111–120. doi: 10.1016/j.compositesb.2017.01.051 |
[7] | Zhao ZY, Misra RDK, Bai PK, et al. (2018) Novel process of coating Al on graphene involving organic aluminum accompanying microstructure evolution. Mater Lett 232: 202–205. doi: 10.1016/j.matlet.2018.08.036 |
[8] | Zhang Y, Qian L, Zhao W, et al. (2018) Highly efficient Fe-N-C nanoparticles modified porous graphene composites for oxygen reduction reaction. J Electrochem Soc 165: H510–H516. doi: 10.1149/2.0991809jes |
[9] | Wang Z, Wei R, Gu J, et al. (2018) Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption. Carbon 139: 1126–1135. doi: 10.1016/j.carbon.2018.08.014 |
[10] | Zhang Y, Choi JR, Park SJ (2018) Interlayer polymerization in amine-terminated macromolecular chain-grafted expanded graphite for fabricating highly thermal conductive and physically strong thermoset composites for thermal management applications. Compos Part A-Appl S 109: 498–506. doi: 10.1016/j.compositesa.2018.04.001 |
[11] | Zhang Y, Rhee KY, Hui D, et al. (2018) A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. Compos Part B-Eng 143: 19–27. doi: 10.1016/j.compositesb.2018.01.028 |
[12] | Hui C, Hong-Bo L, Li Y, et al. (2010) Study on the preperation properties of novolac epoxy/graphite composite bipolar plate for PEMFC. Int J Hydrogen Energ 35: 3105–3109. doi: 10.1016/j.ijhydene.2009.08.030 |
[13] | Jing X, Zhao W, Lan L (2000) The effect of particle size on the electric conducting percolation threshold in polymer/conducting particle composites. J Mater Sci Lett 19: 377–379. doi: 10.1023/A:1006774318019 |
[14] | Chunhui S, Mu P, Runzhang Y (2008) The effect of particle size gradation of conductive fillers on the conductivity and the flexural strength of composite bipolar plate. Int J Hydrogen Energ 33: 1035–1039. doi: 10.1016/j.ijhydene.2007.11.013 |
[15] | Dhakate SR, Mathur RB, Kakati BK, et al. (2007) Properties of graphite composite bipolar plate prepared by compression molding technique for PEM fuel cell. Int J Hydrogen Energ 32: 4537–4543. doi: 10.1016/j.ijhydene.2007.02.017 |
[16] | Dweiri R, Sahari J (2007) Electricalproperties of carbon-based polypropylene composites for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). J Power Sources 171: 424–432. doi: 10.1016/j.jpowsour.2007.05.106 |
[17] | Hu N, Masuda Z, Yamamoto G, et al. (2008) Effect of fabrication process on electrical properties of polymer/multi-wall carbon nanotube nanocomposite. Compos Part A-Appl S 39: 893–903. doi: 10.1016/j.compositesa.2008.01.002 |
[18] | Suherman H, Sulong AB, Sahari J (2010) Effect of filler loading concentration, curing temperature and molding pressure on the electrical conductivity of CNTs/graphite/epoxy nanocomposites at high loading of conductive fillers. IJMME 5: 74–79. |
[19] | Suherman H, Sahari J, Sulong AB (2013) Electrical conductivity and hardness property of CNTs/epoxy nanocomposites. Adv Mater Res 701: 197–201. doi: 10.4028/www.scientific.net/AMR.701.197 |
[20] | Du L, Jana SC (2007) Highly conductive epoxy/graphite composites for bipolar plates in proton exchange membrane fuel cells. J Power Sources 172: 734–741. doi: 10.1016/j.jpowsour.2007.05.088 |
[21] | Suherman H, Sahari J, Sulong AB (2014) Properties of epoxy/carbon black/graphite composites for bipolar plate in polymer electrolyte membrane fuel cell. Adv Mater Res 911: 8–12. doi: 10.4028/www.scientific.net/AMR.911.8 |
[22] | Zakaria MY, Sulong AB, Sahari J, et al. (2015) Effect of the addition of milled carbon fiber as a secondary filler on the electrical conductivity of graphite/epoxy composites for electrical conductive material. Compos Part B-Eng 83: 75–80. doi: 10.1016/j.compositesb.2015.08.034 |