Citation: R. Destiani, M.R. Templeton. Chlorination and ultraviolet disinfection of antibiotic-resistant bacteria and antibiotic resistance genes in drinking water[J]. AIMS Environmental Science, 2019, 6(3): 222-241. doi: 10.3934/environsci.2019.3.222
[1] | Jia S, Shi P, Hu Q, et al. (2015) Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination. Environ Sci Technol 49: 12271–12279. doi: 10.1021/acs.est.5b03521 |
[2] | Destiani R, Templeton MR (2019) The antibiotic resistance of heterotrophic bacteria in tap waters in london. Water Sci Technol: Water Supply 19: 179–190. |
[3] | Su HC, Liu YS, Pan CG, et al. (2018) Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water. Sci. Total Environ 616: 453–461. |
[4] | Guo MT, Yuan QB, Yang J (2015) Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater. Environ Sci Technol 49: 5771–5778. doi: 10.1021/acs.est.5b00644 |
[5] | Lin W, Li S, Zhang S, et al. (2016) Reduction in horizontal transfer of conjugative plasmid by UV irradiation and low-level chlorination. Water Res 91: 331–338. doi: 10.1016/j.watres.2016.01.020 |
[6] | Stokes HW, Gillings MR (2011) Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 35: 790–819. doi: 10.1111/j.1574-6976.2011.00273.x |
[7] | Leungtongkam U, Thummeepak R, Tasanapak K, et al. (2018) Acquisition and transfer of antibiotic resistance genes in association with conjugative plasmid or class 1 integrons of Acinetobacter baumannii. PLoS One 13: e0208468. doi: 10.1371/journal.pone.0208468 |
[8] | Virto R, Mañas P, Alvarez I, et al. (2005) Membrane damage and microbial inactivation by chlorine in the absence and presence of a chlorine-demanding substrate. Appl Environ Microbiol 71: 5022–5028. doi: 10.1128/AEM.71.9.5022-5028.2005 |
[9] | Zhang Y, Zhuang Y, Geng J, et al. (2015) Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Sci Total Environ 512: 125–132. |
[10] | Zhuang Y, Ren H, Geng J, et al. (2015) Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. Environ Sci Pollu Res 22: 7037–7044. doi: 10.1007/s11356-014-3919-z |
[11] | Huang JJ, Hu HY, Tang F, et al. (2011) Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant. Water Res 45: 2775–2781. doi: 10.1016/j.watres.2011.02.026 |
[12] | Templeton MR, Oddy F, Leung W, et al. (2009) Chlorine and UV disinfection of ampicillin and trimethoprim-resistant Escherichia coli Can Ci Eng 36: 889–894. |
[13] | Guo MT, Yuan QB, Yang J (2013) Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater. Chemosphere 93: 2864–2868. doi: 10.1016/j.chemosphere.2013.08.068 |
[14] | Jia S, Shi P, Hu Q, et al. (2015) Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination. Environ Sci Technol 49: 12271–12279. doi: 10.1021/acs.est.5b03521 |
[15] | Guo MT, Yuan QB, Yang J (2013) Microbial selectivity of UV treatment on antibiotic-resistant heterotrophic bacteria in secondary effluents of a municipal wastewater treatment plant. Water Res 47: 6388–6394. doi: 10.1016/j.watres.2013.08.012 |
[16] | Kowalski W (2010) Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection. Springer science & business media. |
[17] | Vankerckhoven E, Verbessem B, Crauwels S, et al. (2011) Exploring the potential synergistic effects of chemical disinfectants and UV on the inactivation of free-living bacteria and treatment of biofilms in a pilot-scale system. Water Sci Technol 64: 1247–1253. doi: 10.2166/wst.2011.718 |
[18] | Koivunen J, Heinonen-Tanski H (2005) Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Res 39: 1519–1526. doi: 10.1016/j.watres.2005.01.021 |
[19] | Armstrong JL, Calomiris JJ, Seidler RJ (1982) Selection of antibiotic-resistant standard plate count bacteria during water treatment. Appl Environ Microbiol 44: 308–316. |
[20] | Shang C, Blatchley ER (2001) Chlorination of pure bacterial cultures in aqueous solution. Water Res 35: 244–254. doi: 10.1016/S0043-1354(00)00248-7 |
[21] | Cherchi C, Gu AZ (2011) Effect of bacterial growth stage on resistance to chlorine disinfection Water Sci Technol 64: 7–13. |
[22] | Delcour AH (2009) Outer membrane permeability and antibiotic resistance. BBA-Proteins Proteom 1974: 808–816. |
[23] | Nikaido H (2003) Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol Mol Bio Rev 67: 593–656. doi: 10.1128/MMBR.67.4.593-656.2003 |
[24] | Shi P, Jia S, Zhang XX, et al. (2013) Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Res 47: 111–120. doi: 10.1016/j.watres.2012.09.046 |
[25] | Khan S, Beattie TK, Knapp CW (2016) Relationship between antibiotic- and disinfectant- resistance profiles in bacteria harvested from tap water. Chemosphere 152: 132–141. doi: 10.1016/j.chemosphere.2016.02.086 |
[26] | Huang JJ, Hu HY, Wu YH, et al. (2013) Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli. Chemosphere 90: 2247–2253. doi: 10.1016/j.chemosphere.2012.10.008 |
[27] | McKinney CW, Pruden A (2012) Ultraviolet Disinfection of Antibiotic Resistant Bacteria and Their Antibiotic Resistance Genes in Water and Wastewater. Environ Sci Technol 46: 13393−13400. |
[28] | Rizzo L, Fiorentino A, Anselmo A (2013) Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains. Chemosphere 92: 171–176. |
[29] | Chang JCH, Ossoff SF, Lobe DC, et al. (1985) UV inactivation of pathogenic and indicator microorganisms. Appl Environ Microbiol 49: 1361–1365. |
[30] | Destiani R, Templeton MR, Kowalski W (2017) Relative Ultraviolet Sensitivity of Selected Antibiotic Resistance Genes in Waterborne Bacteria. Environ Eng Sci 35: 770–774. |
[31] | Douki T, Cadet J (2001) Individual determination of the yield of the main UV-induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions. Biochemistry 40: 2495–2501. doi: 10.1021/bi0022543 |
[32] | Yoon Y, Chung HJ, Yoong D, et al. (2017) Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine. UV, and UV/H2O2, Water Res 123: 783–793. doi: 10.1016/j.watres.2017.06.056 |
[33] | Dodd MC (2012) Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. J Environ Monit 14: 1754–1771. doi: 10.1039/c2em00006g |
[34] | Cho M, Kim JH, Yoon J (2006) Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants. Water Res 40: 2011–2920. |
[35] | Higgins MJ, Chen YC, Murthy SN, et al. (2007) Reactivation and growth of non-culturable indicator bacteria in anaerobically digested biosolids after centrifuge dewatering. Water Res 41: 665–673. doi: 10.1016/j.watres.2006.09.017 |
[36] | Quek PH, Hu J (2008) Indicators for photoreactivation and dark repair studies following ultraviolet disinfection. J Ind Microbiol Biot 35: 533–541. doi: 10.1007/s10295-008-0314-0 |
[37] | Zimmer JL, Slawson RM (2002) Potential Repair of Escherichia coli DNA following Exposure to UV Radiation from Both Medium- and Low-Pressure UV Sources Used in Drinking Water Treatment Potential Repair of Escherichia coli DNA following Exposure to UV Radiation from Both Medium- and Lo. Appl Environ Microbiol 68: 3293–3299. doi: 10.1128/AEM.68.7.3293-3299.2002 |
[38] | Zimmer-Thomas JL, Slawson RM, Huck PM (2007) A comparison of DNA repair and survival of Escherichia coli O157:H7 following exposure to both low- and medium-pressure UV irradiation. J Water Heal 5: 407–415. doi: 10.2166/wh.2007.036 |
[39] | Xi C, Zhang Y, Marrs CF, et al. (2009) Prevalence of antibiotic resistance in drinking water treatment and distribution systems. Appl Environ Microbiol 75: 5714–5718. doi: 10.1128/AEM.00382-09 |