Citation: Nily Dan. Lipid-Nucleic Acid Supramolecular Complexes: Lipoplex Structure and the Kinetics of Formation[J]. AIMS Biophysics, 2015, 2(2): 163-183. doi: 10.3934/biophy.2015.2.163
[1] | Friedmann T, Roblin R (1972) Gene therapy for human genetic disease? Science (New York, NY) 175: 949-955. doi: 10.1126/science.175.4025.949 |
[2] | Forsythe JA, Jiang BH, Iyer NV, et al. (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16: 4604-4613. |
[3] | Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8: 129-138. doi: 10.1038/nrd2742 |
[4] | Caplen NJ, Alton E, Middleton PG, et al. (1995) Liposome-mediated CFTR gene-transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1: 39-46. doi: 10.1038/nm0195-39 |
[5] | Fujiwara T, Grimm EA, Mukhopadhyay T, et al. (1994) Induction of chemosensitivity in human lung cancer cells in-vivo by adenovirus-mediated transfer of the wild type P53 gene. Cancer Res 54: 2287-2291. |
[6] | Merdan T, Kopecek J, Kissel T (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Delivery Rev 54: 715-758. doi: 10.1016/S0169-409X(02)00046-7 |
[7] | Abou-El-Enein M, Bauer G, Reinke P, et al. (2014) A roadmap toward clinical translation of genetically-modified stem cells for treatment of HIV. Trends Mol Med 20: 632-642. doi: 10.1016/j.molmed.2014.08.004 |
[8] | Carnio S, Novello S, Bironzo P, et al. (2014) Moving from histological subtyping to molecular characterization: new treatment opportunities in advanced non-small-cell lung cancer. Expert Review Anticancer Therapy 14: 1495-1513. doi: 10.1586/14737140.2014.949245 |
[9] | Pensado A, Seijo B, Sanchez A (2014) Current strategies for DNA therapy based on lipid nanocarriers. Expert Opinion Drug Delivery 11: 1721-1731. doi: 10.1517/17425247.2014.935337 |
[10] | Qasim W, Thrasher AJ (2014) Progress and prospects for engineered T cell therapies. Brit J Haematol 166: 818-829. doi: 10.1111/bjh.12981 |
[11] | Sahay G, Querbes W, Alabi C, et al. (2013) Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol 31: 653-U119. doi: 10.1038/nbt.2614 |
[12] | Schroeder A, Levins CG, Cortez C, et al. (2010) Lipid-based nanotherapeutics for siRNA delivery. J Intern Med 267: 9-21. doi: 10.1111/j.1365-2796.2009.02189.x |
[13] | Xue W, Dahlman JE, Tammela T, et al. (2014) Small RNA combination therapy for lung cancer. P Natl Acad Sci U S A 111: E3553-E3561. doi: 10.1073/pnas.1412686111 |
[14] | Dahlman JE, Barnes C, Khan OF, et al. (2014) In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nanotechnol 9: 648-655. doi: 10.1038/nnano.2014.84 |
[15] | Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy- an overview. J Clinical Diagnostic Res JCDR 9: GE01-06. |
[16] | Yang J, Liu H, Zhang X (2014) Design, preparation and application of nucleic acid delivery carriers. Biotechnology Advances 32: 804-817. doi: 10.1016/j.biotechadv.2013.11.004 |
[17] | Choi YS, Lee MY, David AE, et al. (2014) Nanoparticles for gene delivery: therapeutic and toxic effects. Molecular Cellular Toxicology 10: 1-8. doi: 10.1007/s13273-014-0001-3 |
[18] | Dan N, Danino D (2014) Structure and kinetics of lipid-nucleic acid complexes. Adv Colloid Interface 205: 230-239. doi: 10.1016/j.cis.2014.01.013 |
[19] | Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7: 31-34. doi: 10.1038/sj.gt.3301110 |
[20] | Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109: 259-302. doi: 10.1021/cr800409e |
[21] | Schaffer DV, Fidelman NA, Dan N, et al. (2000) Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol Bioeng 67: 598-606. |
[22] | Radler JO, Koltover I, Salditt T, et al. (1997) Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275: 810-814. doi: 10.1126/science.275.5301.810 |
[23] | Koltover I, Salditt T, Radler JO, et al. (1998) An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281: 78-81. |
[24] | Simberg D, Danino D, Talmon Y, et al. (2001) Phase behavior, DNA ordering, and size instability of cationic lipoplexes—Relevance to optimal transfection activity. J Biol Chem 276: 47453-47459. doi: 10.1074/jbc.M105588200 |
[25] | Evans HM, Ahmad A, Ewert K, et al. (2003) Structural polymorphism of DNA-dendrimer complexes. Phys Rev Lett 91: 075501. doi: 10.1103/PhysRevLett.91.075501 |
[26] | Merkel OM, Mintzer MA, Sitterberg J, et al. (2009) Triazine dendrimers as nonviral gene delivery systems: effects of molecular structure on biological activity. Bioconjug Chem 20: 1799-1806. doi: 10.1021/bc900243r |
[27] | Juliano R, Alam MR, Dixit V, et al. (2008) Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 36: 4158-4171. doi: 10.1093/nar/gkn342 |
[28] | de Fougerolles A, Vornlocher HP, Maraganore J, et al. (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6: 443-453. doi: 10.1038/nrd2310 |
[29] | Akinc A, Goldberg M, Qin J, et al. (2009) Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther 17: 872-879. doi: 10.1038/mt.2009.36 |
[30] | Desigaux L, Sainlos M, Lambert O, et al. (2007) Self-assembled lamellar complexes of siRNA with lipidic aminoglycoside derivatives promote efficient siRNA delivery and interference. Proc Natl Acad Sci U S A 104: 16534-16539. doi: 10.1073/pnas.0707431104 |
[31] | Tros de Ilarduya C, Sun Y, Duzgunes N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40: 159-170. doi: 10.1016/j.ejps.2010.03.019 |
[32] | Ma BC, Zhang SB, Jiang HM, et al. (2007) Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Controlled Release 123: 184-194. doi: 10.1016/j.jconrel.2007.08.022 |
[33] | Kapoor M, Burgess DJ, Patil SD (2012) Physicochemical characterization techniques for lipid based delivery systems for siRNA. Int J Pharm 427: 35-57. doi: 10.1016/j.ijpharm.2011.09.032 |
[34] | Wasungu L, Hoekstra D (2006) Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 116: 255-264. doi: 10.1016/j.jconrel.2006.06.024 |
[35] | Safinya CR, Ewert KK, Leal C (2011) Cationic liposome-nucleic acid complexes: liquid crystal phases with applications in gene therapy. Liq Cryst 38: 1715-1723. doi: 10.1080/02678292.2011.624364 |
[36] | May S, Ben-Shaul A (1997) DNA-lipid complexes: stability of honeycomb-like and spaghetti-like structures. Biophys J 73: 2427-2440. doi: 10.1016/S0006-3495(97)78271-7 |
[37] | Harries D, May S, Gelbart WM, et al. (1998) Structure, stability, and thermodynamics of lamellar DNA-lipid complexes. Biophys J 75: 159-173. doi: 10.1016/S0006-3495(98)77503-4 |
[38] | Bruinsma R (1998) Electrostatics of DNA cationic lipid complexes: isoelectric instability. Eur Phys J B 4: 75-88. |
[39] | Dan N (1996) Formation of ordered domains in membrane-bound DNA. Biophys J 71: 1267-1272. doi: 10.1016/S0006-3495(96)79326-8 |
[40] | Dan NL (1997) Multilamellar structures of DNA complexes with cationic liposomes. Biophys J 73: 1842-1846. doi: 10.1016/S0006-3495(97)78214-6 |
[41] | Dan N (1998) The structure of DNA complexes with cationic liposomes—cylindrical or flat bilayers? BBA-Biomembranes 1369: 34-38. doi: 10.1016/S0005-2736(97)00171-5 |
[42] | Simberg D, Danino D, Talmon Y, et al. (2001) Phase behavior, DNA ordering, and size instability of cationic lipoplexes—Relevance to optimal transfection activity. J Biol Chem 276: 47453-47459. doi: 10.1074/jbc.M105588200 |
[43] | Simberg D, Danino D, Talmon Y, et al. (2003) Phase behavior, DNA ordering and size instability of cationic lipoplexes: Relevance to optimal transfection activity. J Liposome Res 13: 86-87. |
[44] | Kastner E, Kaur R, Lowry D, et al. (2014) High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. Int J Pharm 477: 361-368. doi: 10.1016/j.ijpharm.2014.10.030 |
[45] | Balbino TA, Azzoni AR, de la Torre LG (2013) Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy. Colloid Surface B 111: 203-210. doi: 10.1016/j.colsurfb.2013.04.003 |
[46] | Chen D, Love KT, Chen Y, et al. (2012) Rapid Discovery of Potent siRNA-Containing Lipid Nanoparticles Enabled by Controlled Microfluidic Formulation. J Am Chem Soc 134: 6948-6951. doi: 10.1021/ja301621z |
[47] | Kennedy MT, Pozharski EV, Rakhmanova VA, et al. (2000) Factors governing the assembly of cationic phospholipid-DNA complexes. Biophys J 78: 1620-1633. doi: 10.1016/S0006-3495(00)76714-2 |
[48] | Pozharski EV, MacDonald RC (2007) Single lipoplex study of cationic lipoid-DNA, self-assembled complexes. Mol Pharm 4: 962-974. doi: 10.1021/mp700080m |
[49] | Barreleiro PCA, Lindman B (2003) The kinetics of DNA-cationic vesicle complex formation. JPhys Chem B 107: 6208-6213. doi: 10.1021/jp0277107 |
[50] | Junquera E, Aicart E (2014) Cationic Lipids as Transfecting Agents of DNA in Gene Therapy. Current Topics Medicinal Chem 14: 649-663. doi: 10.2174/1568026614666140118203128 |
[51] | Ma B, Zhang S, Jiang H, et al. (2007) Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release 123: 184-194. doi: 10.1016/j.jconrel.2007.08.022 |
[52] | Xiong F, Mi Z, Gu N (2011) Cationic liposomes as gene delivery system: transfection efficiency and new application. Pharmazie 66: 158-164. |
[53] | Zhdanov RI, Podobed OV, Vlassov VV (2002) Cationic lipid-DNA complexes-lipoplexes-for gene transfer and therapy. Bioelectrochemistry 58: 53-64. doi: 10.1016/S1567-5394(02)00132-9 |
[54] | Cullis PR, de Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559: 399-420. doi: 10.1016/0304-4157(79)90012-1 |
[55] | Epand RM (1998) Lipid polymorphism and protein-lipid interactions. Biochim Biophys Acta 1376: 353-368. doi: 10.1016/S0304-4157(98)00015-X |
[56] | Seddon JM (1990) STRUCTURE OF THE INVERTED HEXAGONAL (HII) PHASE, AND NON-LAMELLAR PHASE-TRANSITIONS OF LIPIDS. Biochim Biophys Acta 1031: 1-69. doi: 10.1016/0304-4157(90)90002-T |
[57] | Netz RR, Andelman D (2003) Neutral and charged polymers at interfaces. Phys Rep 380: 1-95. doi: 10.1016/S0370-1573(03)00118-2 |
[58] | Nelson P (2013) Biological Physics: Freeman. |
[59] | Gregory J, Barany S (2011) Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface 169: 1-12. doi: 10.1016/j.cis.2011.06.004 |
[60] | G. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, et al. (1993) Polymers at Interfaces Springer;. |
[61] | Sukhishvili SA, Granick S (1998) Polyelectrolyte adsorption onto an initially-bare solid surface of opposite electrical charge. J Chem Phys 109: 6861-6868. doi: 10.1063/1.477253 |
[62] | Pozharski E, MacDonald RC (2002) Thermodynamics of cationic lipid-DNA complex formation as studied by isothermal titration calorimetry. Biophys J 83: 556-565. doi: 10.1016/S0006-3495(02)75191-6 |
[63] | Pozharski E, MacDonald RC (2003) Lipoplex thermodynamics: Determination of DNA-cationic lipoid interaction energies. Biophys J 85: 3969-3978. doi: 10.1016/S0006-3495(03)74811-5 |
[64] | Koltover I, Salditt T, Safinya CR (1999) Phase diagram, stability, and overcharging of lamellar cationic lipid-DNA self-assembled complexes. Biophys J 77: 915-924. doi: 10.1016/S0006-3495(99)76942-0 |
[65] | Ahsan A, Rudnick J, Bruinsma R (1998) Elasticity theory of the B-DNA to S-DNA transition. Biophys J 74: 132-137. doi: 10.1016/S0006-3495(98)77774-4 |
[66] | Hirsch-Lerner D, Barenholz Y (1999) Hydration of lipoplexes commonly used in gene delivery: follow-up by laurdan fluorescence changes and quantification by differential scanning calorimetry. Biochimica Et Biophysica Acta-Biomembranes 1461: 47-57. doi: 10.1016/S0005-2736(99)00145-5 |
[67] | Tilcock CP, Bally MB, Farren SB, et al. (1982) Influence of cholesterol on the structural preferences of dioleoylphosphatidylethanolamine-dioleoylphosphatidylcholine systems: a phosphorus-31 and deuterium nuclear magnetic resonance study. Biochemistry 21: 4596-4601. doi: 10.1021/bi00262a013 |
[68] | Danino D, Kesselman E, Saper G, et al. (2009) Osmotically induced reversible transitions in lipid-DNA mesophases. Biophys J 96: L43-45. doi: 10.1016/j.bpj.2008.12.3887 |
[69] | Scarzello M, Chupin V, Wagenaar A, et al. (2005) Polymorphism of pyridinium amphiphiles for gene delivery: influence of ionic strength, helper lipid content, and plasmid DNA complexation. Biophys J 88: 2104-2113. doi: 10.1529/biophysj.104.053983 |
[70] | Ewert KK, Evans HM, Zidovska A, et al. (2006) A columnar phase of dendritic lipid-based cationic liposome-DNA complexes for gene delivery: hexagonally ordered cylindrical micelles embedded in a DNA honeycomb lattice. J Am Chem Soc 128: 3998-4006. doi: 10.1021/ja055907h |
[71] | Zidovska A, Evans HM, Ewert KK, et al. (2009) Liquid crystalline phases of dendritic lipid-DNA self-assemblies: lamellar, hexagonal, and DNA bundles. J Phys Chem B 113: 3694-3703. doi: 10.1021/jp806863z |
[72] | Wasungu L, Stuart MC, Scarzello M, et al. (2006) Lipoplexes formed from sugar-based gemini surfactants undergo a lamellar-to-micellar phase transition at acidic pH. Evidence for a non-inverted membrane-destabilizing hexagonal phase of lipoplexes. Biochim Biophys Acta 1758: 1677-1684. |
[73] | Bilalov A, Olsson U, Lindman B (2009) A cubic DNA-lipid complex. Soft Matter 5: 3827-3830. doi: 10.1039/b908939j |
[74] | Larsson K (1983) Two cubic phases in monoolein-water system. Nature. |
[75] | Leal C, Ewert KK, Bouxsein NF, et al. (2013) Stacking of Short DNA Induces the Gyroid Cubic-to-Inverted Hexagonal Phase Transition in Lipid-DNA Complexes. Soft Matter 9: 795-804. doi: 10.1039/C2SM27018H |
[76] | Farago O, Ewert K, Ahmad A, et al. (2008) Transitions between distinct compaction regimes in complexes of multivalent cationic lipids and DNA. Biophys J 95: 836-846. doi: 10.1529/biophysj.107.124669 |
[77] | Fire A, Xu S, Montgomery MK, et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811. doi: 10.1038/35888 |
[78] | Davidson BL, Paulson HL (2004) Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol 3: 145-149. doi: 10.1016/S1474-4422(04)00678-7 |
[79] | Ponnappa BC (2009) siRNA for inflammatory diseases. Curr Opin Investig Drugs 10: 418-424. |
[80] | Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8: 129-138. doi: 10.1038/nrd2742 |
[81] | Takeshita F, Ochiya T (2006) Therapeutic potential of RNA interference against cancer. Cancer Sci 97: 689-696. doi: 10.1111/j.1349-7006.2006.00234.x |
[82] | Leal C, Bouxsein NF, Ewert KK, et al. (2010) Highly efficient gene silencing activity of siRNA embedded in a nanostructured gyroid cubic lipid matrix. J Am Chem Soc 132: 16841-16847. doi: 10.1021/ja1059763 |
[83] | Leal C, Ewert KK, Shirazi RS, et al. (2011) Nanogyroids incorporating multivalent lipids: enhanced membrane charge density and pore forming ability for gene silencing. Langmuir 27: 7691-7697. doi: 10.1021/la200679x |
[84] | Aytar BS, Muller JP, Kondo Y, et al. (2013) Redox-based control of the transformation and activation of siRNA complexes in extracellular environments using ferrocenyl lipids. J Am Chem Soc 135: 9111-9120. doi: 10.1021/ja403546b |
[85] | Schroeder A, Levins CG, Cortez C, et al. (2010) Lipid-based nanotherapeutics for siRNA delivery. J Intern Med 267: 9-21. doi: 10.1111/j.1365-2796.2009.02189.x |
[86] | Kim DH, Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Revs Genet 8: 173-184. doi: 10.1038/nrg2006 |
[87] | De Paula D, Bentley MV, Mahato RI (2007) Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA 13: 431-456. doi: 10.1261/rna.459807 |
[88] | A.S. Edelstein, Cammarata RC (1996) Nanomaterials: Synthesis, Properties and Applications: Inst. of Physics Publishing. |
[89] | Filippova NL (1998) Adsorption and desorption kinetics of polyelectrolytes on planar surfaces. Langmuir 14: 1162-1176. doi: 10.1021/la970544n |
[90] | Iruthayaraj J, Poptoshev E, Vareikis AV, et al. (2005) Adsorption of low charge density polyelectrolyte containing poly(ethylene oxide) side chains on silica: Effects of ionic strength and pH. Macromolecules 38: 6152-6160. doi: 10.1021/ma050851x |
[91] | Sedeva IG, Fornasiero D, Ralston J, et al. (2009) The Influence of Surface Hydrophobicity on Polyacrylamide Adsorption. Langmuir 25: 4514-4521. doi: 10.1021/la803838k |
[92] | McFarlane A, Yeap KY, Bremmell K, et al. (2008) The influence of flocculant adsorption kinetics on the dewaterability of kaolinite and smectite clay mineral dispersions. Colloid Surface A 317: 39-48. doi: 10.1016/j.colsurfa.2007.09.045 |
[93] | Enarsson L-E, Wagberg L (2008) Adsorption kinetics of cationic polyelectrolytes studied with stagnation point adsorption reflectometry and quartz crystal microgravimetry. Langmuir 24: 7329-7337. doi: 10.1021/la800198e |
[94] | van Heiningen JA, Hill RJ (2011) Polymer adsorption onto a micro-sphere from optical tweezers electrophoresis. Lab Chip 11: 152-162. doi: 10.1039/C005217P |
[95] | Dickinson E, Eriksson L (1991) Particle flocculation by adsorbing polymers. Adv Colloid Interfac 34: 1-29. doi: 10.1016/0001-8686(91)80045-L |
[96] | Barany S, Szepesszentgyorgyi A (2004) Flocculation of cellular suspensions by polyelectrolytes. Adv Colloid Interfac 111: 117-129. doi: 10.1016/j.cis.2004.07.003 |
[97] | Popa I, Gillies G, Papastavrou G, et al. (2009) Attractive Electrostatic Forces between Identical Colloidal Particles Induced by Adsorbed Polyelectrolytes. J Phys Chem B 113: 8458-8461. doi: 10.1021/jp904041k |
[98] | Popa I, Gillies G, Papastavrou G, et al. (2010) Attractive and Repulsive Electrostatic Forces between Positively Charged Latex Particles in the Presence of Anionic Linear Polyelectrolytes. J Phys Chem B 114: 3170-3177. doi: 10.1021/jp911482a |
[99] | Lin MY, Lindsay HM, Weitz DA, et al. (1989) Universality in colloid aggregation. Nature 339: 360-362. doi: 10.1038/339360a0 |
[100] | S. Edelstein, Cammarata RC (1996) Nanomaterials: Synthesis, Properties and Applications: Inst. of Physics Publishing, London, UK. |
[101] | Lai E, van Zanten JH (2002) Real time monitoring of lipoplex molar mass, size and density. J Control Release 82: 149-158. doi: 10.1016/S0168-3659(02)00104-9 |
[102] | Lai E, van Zanten JH (2001) Monitoring DNA/poly-L-lysine polyplex formation with time-resolved multiangle laser light scattering. Biophys J 80: 864-873. doi: 10.1016/S0006-3495(01)76065-1 |
[103] | Gershon H, Ghirlando R, Guttman SB, et al. (1993) Mode of formation and structural features of DNA-cationic liposome complexes used for transfection. Biochemistry 32: 7143-7151. doi: 10.1021/bi00079a011 |
[104] | Zhang Y, Garzon-Rodriguez W, Manning MC, et al. (2003) The use of fluorescence resonance energy transfer to monitor dynamic changes of lipid-DNA interactions during lipoplex formation. Biochim Biophys Acta 1614: 182-192. doi: 10.1016/S0005-2736(03)00177-9 |
[105] | Braun CS, Fisher MT, Tomalia DA, et al. (2005) A stopped-flow kinetic study of the assembly of nonviral gene delivery complexes. Biophys J 88: 4146-4158. doi: 10.1529/biophysj.104.055202 |
[106] | Barreleiro PC, May RP, Lindman B (2003) Mechanism of formation of DNA-cationic vesicle complexes. Faraday Discuss 122: 191-201; discussion 269-182. doi: 10.1039/b200796g |
[107] | Leal C, Sandstrom D, Nevsten P, et al. (2008) Local and translational dynamics in DNA-lipid assemblies monitored by solid-state and diffusion NMR. BBA-Biomembranes 1778: 214-228. doi: 10.1016/j.bbamem.2007.09.035 |
[108] | Zuidam NJ, Barenholz Y (1997) Electrostatic parameters of cationic liposomes commonly used for gene delivery as determined by 4-heptadecyl-7-hydroxycoumarin. Biochim Biophys Acta 1329: 211-222. doi: 10.1016/S0005-2736(97)00110-7 |
[109] | Zuidam NJ, Barenholz Y (1998) Electrostatic and structural properties of complexes involving plasmid DNA and cationic lipids commonly used for gene delivery. Biochim Biophys Acta 1368: 115-128. doi: 10.1016/S0005-2736(97)00187-9 |
[110] | Szilagyi I, Trefalt G, Tiraferri A, et al. (2014) Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation. Soft Matter 10: 2479-2502. doi: 10.1039/c3sm52132j |
[111] | Maier B, Radler JO (1999) Conformation and self-diffusion of single DNA molecules confined to two dimensions. Phys Rev Lett 82: 1911-1914. doi: 10.1103/PhysRevLett.82.1911 |
[112] | Epand RF, Sarig H, Ohana D, et al. (2011) Physical properties affecting cochleate formation and morphology using antimicrobial oligo-acyl-lysyl peptide mimetics and mixtures mimicking the composition of bacterial membranes in the absence of divalent cations. J Phys Chem B 115: 2287-2293. doi: 10.1021/jp111242q |
[113] | Epand RF, Mor A, Epand RM (2011) Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents. Cell Mol Life Sci 68: 2177-2188. doi: 10.1007/s00018-011-0711-9 |
[114] | Sarig H, Ohana D, Epand RF, et al. (2011) Functional studies of cochleate assemblies of an oligo-acyl-lysyl with lipid mixtures for combating bacterial multidrug resistance. FASEB J 25: 3336-3343. doi: 10.1096/fj.11-183764 |
[115] | Chen DL, Love KT, Chen Y, et al. (2012) Rapid Discovery of Potent siRNA-Containing Lipid Nanoparticles Enabled by Controlled Microfluidic Formulation. J Am Chem Soc 134: 6948-6951. doi: 10.1021/ja301621z |
[116] | Leung AKK, Hafez IM, Baoukina S, et al. (2012) Lipid Nanoparticles Containing siRNA Synthesized by Microfluidic Mixing Exhibit an Electron-Dense Nanostructured Core (vol 116, pg 18440, 2012). J Phys Chem C 116: 22104-22104. doi: 10.1021/jp3088786 |