Citation: A. Sydney Gladman, Manuel Garcia-Leiner, Alexis F. Sauer-Budge. Emerging polymeric materials in additive manufacturing for use in biomedical applications[J]. AIMS Bioengineering, 2019, 6(1): 1-20. doi: 10.3934/bioeng.2019.1.1
[1] | Gottlieb S (2017) Ushering in new era of 3D printing of medical products; provides guidance to manufacturers of medical devices. United States Food and Drug Administration (FDA). Available from : https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm587547.htm. |
[2] | Frenkel SR, Jaffe WL, Dimaano F, et al. (2004) Bone response to a novel highly porous surface in a canine implantable chamber. J Biomed Mater Res B Appl Biomater 71: 387–391. |
[3] | United States Food and Drug Administration (FDA) (2013) K123486 triathalon tritanium tibial baseplate. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K123486. |
[4] | Stryker Tritanium. In-growth technology built to fuse. Available from: http://www.stryker.com/builttofuse/#. |
[5] | Alhnan MA, Okwuosa TC, Sadia M, et al. (2016) Emergence of 3D printed dosage forms: Opportunities and challenges. Pharm Res 33: 1817–1832. doi: 10.1007/s11095-016-1933-1 |
[6] | Aprecia Pharmaceuticals. What is ZipDose technology? Available from: https://www.spritam.com/#/hcp/zipdose-technology/what-is-zipdose-technology. |
[7] | De Jesus C (2016) New Tritanium spinal implant fully integrates with the human body, Available from : https://futurism.com/3d-printed-tritanium-spinal-implant-simulates-actual-bone. |
[8] | Tack P, Victor J, Gemmel P, et al. (2016) 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online 15: 115. doi: 10.1186/s12938-016-0236-4 |
[9] | Haglin JM, Eltorai AE, Gil JA, et al. (2016) Patient-specific orthopaedic implants. Orthop Surg 8: 417–424. doi: 10.1111/os.12282 |
[10] | Hendel MD, Bryan JA, Barsoum WK, et al. (2012) Comparison of patient-specific instruments with standard surgical instruments in determining glenoid component position: A randomized prospective clinical trial. J Bone Joint Surg Am 94: 2167–2175. doi: 10.2106/JBJS.K.01209 |
[11] | Bauermeister AJ, Zuriarrain A, Newman MI (2016) Three-dimensional printing in plastic and reconstructive surgery: A systematic review. Ann Plast Surg 77: 569–576. doi: 10.1097/SAP.0000000000000671 |
[12] | Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16: 2193–2204. doi: 10.1002/adfm.200600434 |
[13] | Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012: 10. |
[14] | Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: A critical review. Int J Adv Manuf Technol 83: 389–405. doi: 10.1007/s00170-015-7576-2 |
[15] | Ngo TD, Kashani A, Imbalzano G, et al. (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B: Eng 143: 172–196. doi: 10.1016/j.compositesb.2018.02.012 |
[16] | Stratasys Ltd. our materials. Available from: https://www.stratasys.com/materials/search. |
[17] | Lyu S, Untereker D (2009) Degradability of polymers for implantable biomedical devices. Int J Mol Sci 10: 4033–4065. doi: 10.3390/ijms10094033 |
[18] | Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Adv Drug Deliv Rev 107: 367–392. doi: 10.1016/j.addr.2016.06.012 |
[19] | Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: An overview. Prog Poly Sci 32: 455–482. doi: 10.1016/j.progpolymsci.2007.01.005 |
[20] | Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21: 2529–2543. doi: 10.1016/S0142-9612(00)00121-6 |
[21] | Rasal RM, Janorkar AV, Hirt DE (2010) Poly (lactic acid) modifications. Prog Poly Sci 35: 338–356. doi: 10.1016/j.progpolymsci.2009.12.003 |
[22] | Natta FJv, Hill JW, Carothers WH (1934) Studies of polymerization and ring formation. XXIII.1 ε-Caprolactone and its polymers. J Am Chem Soc 56: 455–457. |
[23] | Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-Polycaprolactone in the 21st century. Prog Poly Sci 35: 1217–1256. doi: 10.1016/j.progpolymsci.2010.04.002 |
[24] | Athanasiou KA, Agrawal CM, Barber FA, et al. (1998) Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy 14: 726–737. doi: 10.1016/S0749-8063(98)70099-4 |
[25] | Ethicon Monocryl (poliglecaprone 25) suture. (2018) Available from: https://www.ethicon.com/emea/products/wound-closure/absorbable-sutures/monocryl-poliglecaprone-25-suture. |
[26] | Lowe CE (1954) Preparation of high molecular weight polyhydroxyacetic ester. USA Patent Office. US2668162A. |
[27] | Goonoo N, Jeetah R, Bhaw-Luximon A, et al. (2015) Polydioxanone-based bio-materials for tissue engineering and drug/gene delivery applications. Eur J Pharm Biopharm 97: 371–391. doi: 10.1016/j.ejpb.2015.05.024 |
[28] | Bartholomew RS (1981) PDS (polydioxanone suture): A new synthetic absorbable suture in cataract surgery. A preliminary study. Ophthalmologica 183: 81–85. |
[29] | Boland ED, Coleman BD, Barnes CP, et al. (2005) Electrospinning polydioxanone for biomedical applications. Acta Biomater 1: 115–123. doi: 10.1016/j.actbio.2004.09.003 |
[30] | Bard Ventrio Hernia Patch. (2018) Available from: https://www.crbard.com/Davol/en-US/products/Ventrio-Hernia-Patch. |
[31] | Gierek M, Kusnierz K, Lampe P, et al. (2018) Absorbable sutures in general surgery - review, available materials, and optimum choices. Pol Przegl Chir 90: 34–37. |
[32] | ConMed SmartNail Implant. Available from: http://www.conmed.com/en/products/orthopedics/knee/cartilage/cartilage-repair/smartnail-implant. |
[33] | Spineology Rampart O Interbody Fusion. Available from: https://www.spineology.com/united-states/our-products/rampart-o. |
[34] | FDA (2017) K163673 510K Summary Fortilink-C with TETRAfuse 3D Technology, available from: https://www.accessdata.fda.gov/cdrh_docs/pdf16/K163673.pdf. |
[35] | Herold F, Schneller A (1992) High-performance polymers. Adv Mater 4: 143–152. doi: 10.1002/adma.19920040304 |
[36] | Nguyen HX, Ishida H (1987) Poly(aryl-ether-ether-ketone) and its advanced composites - a review. Polym Composite 8: 57–73. doi: 10.1002/pc.750080202 |
[37] | Fink JK (2008) High performance polymers. Norwich, NY: William Andrew, Inc. |
[38] | Kemmish D (2010) Update on the technology and applications of polyaryletherketones. Shawbury, UK: Smithers Rapra Publishing. |
[39] | Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28: 4845–4869. doi: 10.1016/j.biomaterials.2007.07.013 |
[40] | Kurtz SM (2012) PEEK Biomaterials Handbook. Amsterdam: Elsevier, Inc. |
[41] | Garcia-Leiner M, Clay B, Ricou P (2014) High performance polymers in Selective Laser Sintering processes: Understanding structure and property; San Francisco, CA. ACS Fall 2014 National Meeting. |
[42] | Bertelo CA, Garcia-Leiner MA, DeCarmine A, et al. (2017) Heat treated polymer powders, USA, US 9587107. |
[43] | Cheng SZD, Ho RM, Hsiao BS, et al. (1996) Polymorphism and crystal structure identification in poly(aryl ether ketone ketone)s. Macromol Chem Phys 197: 185–213. doi: 10.1002/macp.1996.021970115 |
[44] | Gardner KH, Hsiao BS, Matheson RR, et al. (1992) Structure, crystallization and morphology of poly (aryl ether ketone ketone). Polymer 33: 2483–2495. doi: 10.1016/0032-3861(92)91128-O |
[45] | Klop EA, Lommerts BJ, Veurink J, et al. (1995) Polymorphism in alternating polyketones studied by X-ray-diffraction and calorimetry. J Polym Sci Pol Phys 33: 315–326. doi: 10.1002/polb.1995.090330217 |
[46] | OPM OsteoFab implantable medical devices (2018) Available from: http://oxfordpm.com/cmf-orthopedics. |
[47] | Berretta S (2015) Poly ether ether ketone (PEEK) polymers for high temperature laser sintering (HT-LS): University of Exeter. |
[48] | Berretta S, Ghita O, Evans KE (2014) Morphology of polymeric powders in laser sintering (LS): From polyamide to new PEEK powders. EurPolym J 59: 218–229. |
[49] | Carbon dental materials (2018) Available from: https://www.carbon3d.com/industry/dental-materials/. |
[50] | Formlabs (2018) High-accuracy 3D printing materials for dental labs and practices. Available from: https://formlabs.com/materials/dental/. |
[51] | envisionTEC: Digital dentistry in action (2018) Available from: https://envisiontec.com/wp-content/uploads/2017/08/2017-Dental-Materials-Final-08212017.pdf. |
[52] | Zopf DA, Hollister SJ, Nelson ME, et al. (2013) Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 368: 2043–2045. doi: 10.1056/NEJMc1206319 |
[53] | Form 2 dentistry resin (FormLabs) (2018) Available from: https://formlabs.com/industries/dental/ https://formlabs.com/materials/dental/. |
[54] | Valverde I, Gomez-Ciriza G, Hussain T, et al. (2017) Three-dimensional printed models for surgical planning of complex congenital heart defects: An international multicentre study. Eur J Cardiothorac Surg 52: 1139–1148. doi: 10.1093/ejcts/ezx208 |
[55] | e-NABLE 3D-printable prosethetic devices. Available from: https://3dprint.nih.gov/collections/prosthetics. |
[56] | Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21: 2529–2543. doi: 10.1016/S0142-9612(00)00121-6 |
[57] | Park SH, Yun BG, Won JY, et al. (2017) New application of three-dimensional printing biomaterial in nasal reconstruction. Laryngoscope 127: 1036–1043. doi: 10.1002/lary.26400 |
[58] | Shim JH, Kim JY, Park M, et al. (2011) Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology. Biofabrication 3: 034102. doi: 10.1088/1758-5082/3/3/034102 |
[59] | Giordano RA, Wu BM, Borland SW, et al. (1996) Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing J Biomater Sci, 8: 63–75. |
[60] | Berretta S, Evans KE, Ghita O (2015) Processability of PEEK, a new polymer for high temperature laser sintering (HT-LS). Eur Polym J 68: 243–266. doi: 10.1016/j.eurpolymj.2015.04.003 |
[61] | Berretta S, Evans K, Ghita O (2018) Additive manufacture of PEEK cranial implants: Manufacturing considerations versus accuracy and mechanical performance. Mater Design 139: 141–152. doi: 10.1016/j.matdes.2017.10.078 |
[62] | Rengier F, Mehndiratta A, von Tengg-Kobligk H, et al. (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5: 335–341. doi: 10.1007/s11548-010-0476-x |
[63] | Sher D (2015) Materialise partners with University of Michigan for 3D printed tracheal splints, Available from: https://3dprintingindustry.com/news/materialise-partners-with-university-of-michigan-for-3d-printed-tracheal-splints-63111/. |
[64] | Morrison RJ, Kashlan KN, Flanangan CL, et al. (2015) Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices. Clin Transl Sci 8: 594–600. doi: 10.1111/cts.12315 |
[65] | Mohseni M, Hutmacher D, Castro N (2018) Independent evaluation of medical-grade bioresorbable filaments for fused deposition modelling/fused filament fabrication of tissue engineered constructs. Polymers 10: 40. doi: 10.3390/polym10010040 |
[66] | Dawood A, Marti Marti B, Sauret-Jackson V, et al. (2015) 3D printing in dentistry. Br Dent J 219: 521–529. doi: 10.1038/sj.bdj.2015.914 |
[67] | Oberoi G, Nitsch S, Edelmayer M, et al. (2018) 3D printing-encompassing the facets of dentistry. Front Bioeng Biotechnol 6. |
[68] | Rosen JE, Size A, Yang Y, et al. (2015) Artificial hand for minimally invasive surgery: design and testing of initial prototype. Surg Endosc 29: 61–67. doi: 10.1007/s00464-014-3657-9 |
[69] | Salmi M, Paloheimo KS, Tuomi J, et al. (2013) Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Craniomaxillofac Surg 41: 603–609. doi: 10.1016/j.jcms.2012.11.041 |
[70] | Lichtenberger JP, Tatum PS, Gada S, et al. (2018) Using 3D printing (additive manufacturing) to produce low-cost simulation models for medical training. Mil Med 183: 73–77. |
[71] | Zhao L, Zhou S, Fan T, et al. (2018) Three-dimensional printing enhances preparation for repair of double outlet right ventricular surgery. J Card Surg 33: 24–27. doi: 10.1111/jocs.13523 |
[72] | Meess KM, Izzo RL, Dryjski ML, et al. (2017) 3D printed abdominal aortic aneurysm phantom for image guided surgical planning with a patient specific fenestrated endovascular graft system. Proc SPIE Int Soc Opt Eng 10138. |
[73] | Torres IO, De Luccia N (2017) A simulator for training in endovascular aneurysm repair: The use of three dimensional printers. Eur J Vasc Endovasc Surg 54: 247–253. doi: 10.1016/j.ejvs.2017.05.011 |
[74] | Raos P, Klapan I, Galeta T (2015) Additive manufacturing of medical models--Applications in rhinology. Coll Antropol 39: 667–673. |
[75] | Rose AS, Webster CE, Harrysson OL, et al. (2015) Pre-operative simulation of pediatric mastoid surgery with 3D-printed temporal bone models. Int J Pediatr Otorhinolaryngol 79: 740–744. doi: 10.1016/j.ijporl.2015.03.004 |
[76] | Vujaklija I, Farina D (2018) 3D printed upper limb prosthetics. Expert Rev Med Dev 15: 505–512. doi: 10.1080/17434440.2018.1494568 |
[77] | Cuellar JS, Smit G, Zadpoor AA, et al. (2018) Ten guidelines for the design of non-assembly mechanisms: The case of 3D-printed prosthetic hands. P I Mech Eng H 232: 962–971. |
[78] | Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22: 11. doi: 10.1186/s40824-018-0122-1 |
[79] | Jang T-S, Jung H-D, Pan HM, et al. (2018) 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering. Int J Bioprint 4: 126–127. |
[80] | Derakhshanfar S, Mbeleck R, Xu K, et al. (2018) 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater 3: 144–156. doi: 10.1016/j.bioactmat.2017.11.008 |
[81] | OIS J&J's plans for smart & 3D printable contact lenses Available from: https://ois.net/jjs-plans-for-smart-3d-printable-contact-lenses/. |
[82] | Homan KA, Kolesky DB, Skylar-Scott MA, et al. (2016) Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep 6: 34845. doi: 10.1038/srep34845 |
[83] | Kolesky DB, Homan KA, Skylar-Scott MA, et al. (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Nati Acad Sci USA 113: 3179–3184. doi: 10.1073/pnas.1521342113 |
[84] | Kolesky DB, Truby RL, Gladman AS, et al. (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26: 3124–3130. doi: 10.1002/adma.201305506 |
[85] | He Y, Yang F, Zhao H, et al. (2016) Research on the printability of hydrogels in 3D bioprinting. Sci rep 6: 29977. doi: 10.1038/srep29977 |
[86] | Bode F, da Silva MA, Smith P, et al. (2013) Hybrid gelation processes in enzymatically gelled gelatin: impact on nanostructure, macroscopic properties and cellular response. Soft Matter 9: 6986–6999. doi: 10.1039/C3SM00125C |
[87] | Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23: H41–H56. doi: 10.1002/adma.201003963 |
[88] | Yue K, Trujillo-de Santiago G, Alvarez MM, et al. (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73: 254–271. doi: 10.1016/j.biomaterials.2015.08.045 |
[89] | Ondeck MG, Engler AJ (2016) Mechanical characterization of a dynamic and tunable methacrylated hyaluronic acid hydrogel. J Biomech Eng 138: 0210031–0210036. |
[90] | Poldervaart MT, Goversen B, de Ruijter M, et al. (2017) 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS One 12: e0177628. doi: 10.1371/journal.pone.0177628 |
[91] | McBeth C, Lauer J, Ottersbach M, et al. (2017) 3D bioprinting of GelMA scaffolds triggers mineral deposition by primary human osteoblasts. Biofabrication 9: 015009. doi: 10.1088/1758-5090/aa53bd |
[92] | Huettner N, Dargaville TR, Forget A (2018) Discovering cell-adhesion peptides in tissue engineering: Beyond RGD. Trends Biotechnol 36: 372–383. doi: 10.1016/j.tibtech.2018.01.008 |
[93] | Estomba CMC, Fernández IG, Otero MAI (2017) 3D printing for biomedical applications: Where are we now? EMJ 2: 16–22. |
[94] | Li J, Chen M, Fan X, et al. (2016) Recent advances in bioprinting techniques: Approaches, applications and future prospects. J Transl Med 14: 271. doi: 10.1186/s12967-016-1028-0 |
[95] | Iwanaga S, Arai K, Nakamura M, (2015) Inkjet bioprinting. In: Atala A, Yoo JJ, Essentials of 3D Biofabrication and Translation, 4 Eds., Boston: Academic Press, 61–79. |
[96] | Liang H, He J, Chang J, et al. (2017) Coaxial nozzle-assisted electrohydrodynamic printing for microscale 3D cell-laden constructs. Int J Bioprint 4: 127. |
[97] | Campbell J, McGuinness I, Wirz H, et al. (2015) Multimaterial and multiscale three-dimensional bioprinter. J Nanotechno Eng Medicine 6: 021005–021020. doi: 10.1115/1.4031230 |
[98] | Hu N, Zhang YS, (2018) 3D bioprinting blood vessels. In: Thomas DJ, Jessop ZM, Whitaker IS, 3D Bioprinting for Reconstructive Surgery, 18 Eds Woodhead Publishing, 377–391. |
[99] | Lepowsky E, Tasoglu S (2018) 3D printing for drug manufacturing: A perspective on the future of pharmaceuticals. Int J Bioprint 4 |
[100] | FDA (2018) SPRITAM (levetiracetam) tablets, Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/207958Orig1s000TOC.cfm. |
[101] | Spritam What is SPRITAM? Available from: https://www.spritam.com/#/patient/about-spritam/what-is-spritam. |
[102] | Horst DJ (2018) 3D printing of pharmaceutical drug delivery systems. Arc Org Inorg Chem Sci 1: 65–69. |
[103] | Larush L, Kaner I, Fluksman A, et al. (2017) 3D printing of responsive hydrogels for drug-delivery systems. J 3D Print Medicine 1: 219–229. doi: 10.2217/3dp-2017-0009 |
[104] | Gupta MK, Meng F, Johnson BN, et al. (2015) 3D printed programmable release capsules. Nano lett 15: 5321–5329. doi: 10.1021/acs.nanolett.5b01688 |
[105] | Buwalda SJ, Vermonden T, Hennink WE (2017) Hydrogels for therapeutic delivery: Current developments and future directions. Biomacromolecules 18: 316–330. doi: 10.1021/acs.biomac.6b01604 |
[106] | Lim SH, Kathuria H, Tan JJY, et al. (2018) 3D printed drug delivery and testing systems - a passing fad or the future? Adv Drug Deliver Rev 132: 139–168. doi: 10.1016/j.addr.2018.05.006 |
[107] | Cloonan AJ, Shahmirzadi D, Li RX, et al. (2014) 3D-printed tissue-mimicking phantoms for medical imaging and computational validation applications. 3D print addi manuf 1: 14–23. doi: 10.1089/3dp.2013.0010 |
[108] | Wang K, Ho C-C, Zhang C, et al. (2017) A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications. Engineering 3: 653–662. doi: 10.1016/J.ENG.2017.05.013 |
[109] | Tappa K, Jammalamadaka U (2018) Novel biomaterials used in medical 3D printing techniques. J Funct Biomater 9: 17–33. doi: 10.3390/jfb9010017 |
[110] | Hosny A, Keating SJ, Dilley JD, et al. (2018) From improved diagnostics to presurgical planning: high-resolution functionally graded multimaterial 3D printing of biomedical tomographic data sets. 3D print addi manuf 5: 103–113. doi: 10.1089/3dp.2017.0140 |
[111] | Shusteff M, Browar AEM, Kelly BE, et al. (2017) One-step volumetric additive manufacturing of complex polymer structures. Sci Adv 3: eaao5496. doi: 10.1126/sciadv.aao5496 |
[112] | Gladman AS, Matsumoto EA, Nuzzo RG, et al. (2016) Biomimetic 4D printing. Nat Mater 15: 413–418. doi: 10.1038/nmat4544 |