Research article

Photosynthetic pigments and photochemical efficiency of precocious dwarf cashew (Anacardium occidentale L.) under salt stress and potassium fertilization

  • Received: 04 September 2019 Accepted: 01 November 2019 Published: 15 November 2019
  • Cashew cultivation is an activity of great socioeconomic relevance, especially for agriculture in the semi-arid region of Northeast Brazil, standing out as an option to generate jobs and income. Thus, the present study aimed to evaluate the photosynthetic pigments and photochemical efficiency of precocious dwarf cashew under salt stress and potassium fertilization. The study was conducted using a Regolithic Neosol with sandy loam texture, adopting a randomized block design in 5×2 factorial arrangement, which corresponded to five levels of electrical conductivity of irrigation water—ECw (0.4; 1.2; 2.0; 2.8 and 3.6 dS m-1) associated with two doses of potassium fertilization—KD (100 and 150% of recommendation), with three replicates and two plants per plot. Increasing water salinity inhibited chlorophyll synthesis and decreased electron transport rate and quantum yield of non-regulated energy dissipation in precocious dwarf cashew, at 50 days after sowing. There was significant interaction for chlorophyll a and b contents and the effects of salt stress were intensified by potassium doses on the chlorophyll b content of precocious dwarf cashew. Potassium doses of 100 and 150% of recommendation (150 and 225 mg K2O kg-1 of soil) do not mitigate the effect of salt stress on photosynthetic pigment synthesis and photochemical efficiency of cashew plants in the rootstock formation phase.

    Citation: Geovani S. de Lima, Vicente Elias da S. Neto, Hans R. Gheyi, Reginaldo G. Nobre, Genilson L. Diniz, Lauriane A. dos Anjos Soares, Pedro D. Fernandes, Fernandes A. de Almeida, Francisco Wesley A. Pinheiro. Photosynthetic pigments and photochemical efficiency of precocious dwarf cashew (Anacardium occidentale L.) under salt stress and potassium fertilization[J]. AIMS Agriculture and Food, 2019, 4(4): 1007-1019. doi: 10.3934/agrfood.2019.4.1007

    Related Papers:

  • Cashew cultivation is an activity of great socioeconomic relevance, especially for agriculture in the semi-arid region of Northeast Brazil, standing out as an option to generate jobs and income. Thus, the present study aimed to evaluate the photosynthetic pigments and photochemical efficiency of precocious dwarf cashew under salt stress and potassium fertilization. The study was conducted using a Regolithic Neosol with sandy loam texture, adopting a randomized block design in 5×2 factorial arrangement, which corresponded to five levels of electrical conductivity of irrigation water—ECw (0.4; 1.2; 2.0; 2.8 and 3.6 dS m-1) associated with two doses of potassium fertilization—KD (100 and 150% of recommendation), with three replicates and two plants per plot. Increasing water salinity inhibited chlorophyll synthesis and decreased electron transport rate and quantum yield of non-regulated energy dissipation in precocious dwarf cashew, at 50 days after sowing. There was significant interaction for chlorophyll a and b contents and the effects of salt stress were intensified by potassium doses on the chlorophyll b content of precocious dwarf cashew. Potassium doses of 100 and 150% of recommendation (150 and 225 mg K2O kg-1 of soil) do not mitigate the effect of salt stress on photosynthetic pigment synthesis and photochemical efficiency of cashew plants in the rootstock formation phase.


    加载中


    [1] Bezerra MA, Lacerda CF de, Gomes Filho E, et al. (2007) Physiology of cashew plants grown under adverse conditions. Braz J Plant Physiol 19: 449-461. doi: 10.1590/S1677-04202007000400012
    [2] Carneiro PT, Fernandes PD, Gheyi HR, et al. (2012) Evapotranspiração do cajueiro anão precoce sob estresse salino em diferentes fases fenológicas. Irriga Edição Especial: 351-367.
    [3] Lima ES, Silva EG da, Moita Neto JM, et al. (2007) Redução de vitamina C em suco de caju (Anacardium occidentale L.) industrializado e cajuína. Quím Nova 30: 1143-1146. Available from: http://dx.doi.org/10.1590/S0100-40422007000500017.
    [4] Santos DB dos, Ferreira PA, Oliveira FG de, et al. (2012) Produção e parâmetros fisiológicos do amendoim em função do estresse salino. Idesia 30: 669-74. Available from: http://dx.doi.org/10.4067/S0718-34292012000200009.
    [5] Al-Karaki G, AL-Ajmi A, Othman Y (2009) Response of soilless grown bell pepper cultivars to salinity. Acta Hortic 807: 227-232.
    [6] Freitas MAC, Amorim AV, Bezerra AME, et al. (2014) Crescimento e tolerância à salinidade em três espécies medicinais do gênero Plectranthus expostas a diferentes níveis de radiação. Rev Bras Plantas Med 16: 839-849. Available from: http://dx.doi.org/10.1590/1983-084X/12_152. doi: 10.1590/1983-084X/12_152
    [7] Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiol Biochem 115: 449-460.
    [8] Freire JL de O, Dias TJ, Cavalcante LF, et al. (2014) Rendimento quântico e trocas gasosas em maracujazeiro amarelo sob salinidade hídrica, biofertilização e cobertura morta. Rev Ciênc Agron 45: 82-91. Available from: http://dx.doi.org/10.1590/S1806-66902014000100011.
    [9] Tester M, Bacic A (2005) Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiol 137: 791-793.
    [10] Oliosi G, Rodrigues J de O, Falqueto AR, et al. (2017) Fluorescência transiente da clorofila a e crescimento vegetativo em cafeeiro Conilon sob diferentes fontes nitrogenadas. Coffee Science 12: 248-259. Available from: http://dx.doi.org/10.25186/cs.v12i2.1268. doi: 10.25186/cs.v12i2.1268
    [11] Gurgel MT, Uyeda CA, Gheyi HR, et al. (2010) Crescimento de meloeiro sob estresse salino e doses de potássio. Rev Bras Eng Agríc Ambient 14: 3-10. Available from: http://dx.doi.org/10.1590/S1415-43662010000100001.
    [12] Ahanger MA, Tomar NS, Tittal M, et al. (2017) Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants 23: 731-744. doi: 10.1007/s12298-017-0462-7
    [13] Lima GS de, Dias AS, Souza L de P, et al. (2018) Effects of saline water and potassium fertilization on photosynthetic pigments, growth and production of West Indian cherry. Rev Ambient Água 13: e2164.
    [14] Prazeres S da S, Lacerda CF de, Barbosa FEL, et al. (2015) Crescimento e trocas gasosas de plantas de feijão-caupi sob irrigação salina e doses de potássio. Rev Agro@mbiente On-line 9: 111-118. Available from: http://dx.doi.org/10.18227/1982-8470ragro.v9i2.2161. doi: 10.18227/1982-8470ragro.v9i2.2161
    [15] Novais RF, Neves JCL, Barros NF (1991) Ensaio em ambiente controlado. In: Oliveira AJ, Métodos de pesquisa em fertilidade do solo. Brasília: Embrapa-SEA, 189-253.
    [16] Donagema GK, Campos DVB de, Calderano SB, et al. (2011) Manual de métodos de análise de solo. 2Eds., Rio de Janeiro: Embrapa Solos, 230.
    [17] Richards LA (1954) Diagnosis and improvement of saline and alkali soils. Washington: USDA Department of Agriculture, 160 (Agriculture Handbook, 60).
    [18] Arnon DI (1949) Copper enzymes in isolated cloroplasts: Polyphenoloxidases in Beta vulgaris. Plant Physiol 24: 1-15. Available from: http://dx.doi.org/10.1104/pp.24.1.1. doi: 10.1104/pp.24.1.1
    [19] Ferreira DF (2011) Sisvar: A computer statistical analysis system. Ciênc Agrotec 35: 1039-1042. Available from: http://dx.doi.org/10.1590/S1413-70542011000600001.
    [20] Freire JL de O, Cavalcante LF, Nascimento R do, et al. (2013) Teores de clorofila e composição mineral foliar do maracujazeiro irrigado com águas salinas e biofertilizante. Rev de Ciências Agrárias 36: 57-70.
    [21] Furtado G de F, Sousa Junior JR de, Xavier da, et al. (2014) Photosynthetic pigments and yeld of cowpea Vigna ungüiculada L. Walp under salinity and nitrogen fertilization. Rev Verde Agroec Desenv Sustent 9: 291-299.
    [22] Silveira JAG, Silva SLF, Silva EN, et al. (2010) Biomolecular mechanisms envolved with resistance to salt stress in plants. In: Gheyi HR, Dias NS, Lacerda CF, Salinity management in agriculture: Basic and applied studies, Fortaleza: Instituto Nacional de Ciência e Tecnologia em Salinidade, 161-180.
    [23] Sousa JRM de, Gheyi HR, Brito MEB, et al. (2017) Dano na membrana celular e pigmentos clorofilianos de citros sob águas salinas e adubação nitrogenada. Irriga 22: 353-368. doi: 10.15809/irriga.2017v22n2p353-368
    [24] Cavalcante LF, Dias TJ, Nascimento R, et al. (2011) Clorofila e carotenoides em maracujazeiro-amarelo irrigado com águas salinas no solo com biofertilizante bovino. Rev Bras Frutic volume especial: 699-705. Available from: http://dx.doi.org/10.1590/S0100-29452011000500098.
    [25] Azevedo Neto AD de, Pereira PPA, Costa DP, et al. (2011) Fluorescência da clorofila como uma ferramenta possível para seleção de tolerância à salinidade em girassol. Rev Ciênc Agron 42: 893-897. Available from: http://dx.doi.org/10.1590/S1806-66902011000400010.
    [26] Baker N (2008) Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu Rev Plant Biol 59: 89-113. Available from: http://dx.doi.org/10.1146/annurev.arplant.59.032607.092759. doi: 10.1146/annurev.arplant.59.032607.092759
    [27] Dias AS, Lima GS de, Sá FV da S, et al. (2018) Gas exchanges and photochemical efficiency of West Indian cherry cultivated with saline water and potassium fertilization. Rev Bras Eng Agríc Ambient 22: 628-633. Available from: http://dx.doi.org/10.1590/1807-1929/agriambi.v22n9p628-633.
    [28] Tatagiba SD, Moraes GABK, Nascimento KJT, et al. (2014) Limitações fotossintéticas em folhas de plantas de tomateiro submetidas a crescentes concentrações salinas. Eng Agricult 22: 138-149.
    [29] Silva MMP da, Vasquez HM, Bressansmith R, et al. (2006) Eficiência fotoquímica de gramíneas forrageiras tropicais submetidas à deficiência hídrica. R Bras Zootec 35: 67-74. Available from: http://dx.doi.org/10.1590/S1516-35982006000100008. doi: 10.1590/S1516-35982006000100008
    [30] Silva L de A, Brito MEB, Sá FV da S, et al. (2014) Mecanismos fisiológicos em híbridos de citros sob estresse salino em cultivo hidropônico. Rev Bras Eng Agríc Ambient 18: 1-7. Available from: http://dx.doi.org/10.1590/1807-1929/agriambi.v18nsupps1-s7.
    [31] Hach LB, Shapcott A, Schmidt S, et al. (2007) The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses. Photosynth Res 94: 423-436. Available from: http://dx.doi.org/10.1007/s11120-007-9207-8. doi: 10.1007/s11120-007-9207-8
    [32] Gonçalves JF de C, Silva CE, Guimarães DG, et al. (2010) Análise dos transientes da fluorescência da clorofila a de plantas jovens de Carapa guianensis e de Dipteryx odorata submetidas a dois ambientes de luz. Acta Amaz 40: 89-98. Available from: http://dx.doi.org/10.1590/S0044-59672010000100012. doi: 10.1590/S0044-59672010000100012
    [33] Schreiber U, Bilger W, Hormann H, et al. (1998) Chlorophyll fluorescence as a diagnostic tool: Basics and some aspects of practical relevance. In: Raghavendra AS, Photosynthesis: A comprehensive treatise, Cambridge: Cambridge University Press, 320-336.
    [34] Allakhverdiev SI, Nishiyama Y, Suzuki I, et al. (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96: 5862-5867. Available from: http://dx.doi.org/10.1073/pnas.96.10.5862. doi: 10.1073/pnas.96.10.5862
    [35] Allakhverdiev SI, Sakamoto A, Nishiyama Y, et al. (2000) Inactivation of photosystems I and II in response to osmotic stress in Synechococcus: Contribution of water channels. Plant Physiol 122: 1201-1208. Available from: https://doi.org/10.1104/pp.122.4.1201. doi: 10.1104/pp.122.4.1201
    [36] Ghannoum O, Conroy JP, Driscoll SP, et al. (2003) Non-stomatal limitations are responsible for drought-induced photosynthetic inhibition in four C4 grasses. New Phytol 159: 835-844. Available from: https://doi.org/10.1046/j.1469-8137.2003.00835.x.
    [37] Anjos dos L, Oliva MA, Kuki KN (2012) Fluorescence imaging of light acclimation of Brazilian Atlantic forest tree species. Photosynthetica 50: 95-108. Available from: http://dx.doi.org/10.1007/s11099-012-0018-6. doi: 10.1007/s11099-012-0018-6
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3572) PDF downloads(465) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog