Citation: Mariska Margaret Pitoi, Miranti Ariyani, Tiny Agustini Koesmawati, Retno Yusiasih. Pyrethroids residues analysis in Indonesian commercial tea by GC-ECD[J]. AIMS Agriculture and Food, 2019, 4(2): 447-457. doi: 10.3934/agrfood.2019.2.447
[1] | Cabrera C, Artacho R, Giménez R (2006) Beneficial effects of green tea-a review. J Am Col Nutr 25: 79–99. doi: 10.1080/07315724.2006.10719518 |
[2] | Gaur S, Agnihotri R (2014) Green tea: A novel functional food for the oral health of older adults. Geriatr Gerontol Int 14: 238–250. doi: 10.1111/ggi.12194 |
[3] | Wu CD, Wei GX (2002) Tea as a functional food for oral health. Nutr 18: 443–444. doi: 10.1016/S0899-9007(02)00763-3 |
[4] | FAO (2015) World tea production and trade Current and future development. FAO. |
[5] | Li X, Zhang Z, Li P, et al. (2013) Determination for major chemical contaminants in tea (Camellia sinensis) matrices: A review. Food Res Int 53: 649–658. doi: 10.1016/j.foodres.2012.12.048 |
[6] | Abd AE-A, Choi J, Rahman M, et al. (2014) Residues and contaminants in tea and tea infusions: a review. Food Addit Contam Part A 31: 1794–1804. doi: 10.1080/19440049.2014.958575 |
[7] | Hladik ML, Kuivila KM (2009) Assessing the occurrence and distribution of pyrethroids in water and suspended sediments. J Agric Food Chem 57: 9079–9085. doi: 10.1021/jf9020448 |
[8] | Kim KB, Anand SS, Kim HJ, et al. (2010) Age, dose, and time-dependency of plasma and tissue distribution of deltamethrin in immature rats. Toxicol Sci 115: 354–368. doi: 10.1093/toxsci/kfq074 |
[9] | Abdel-Daim MM, Abuzead SM, Halawa SM (2013) Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. PLoS One 8: e72991. doi: 10.1371/journal.pone.0072991 |
[10] | Ogaly HA, Khalaf A, Ibrahim MA, et al. (2015) Influence of green tea extract on oxidative damage and apoptosis induced by deltamethrin in rat brain. Neurotoxicol Teratol 50: 23–31. doi: 10.1016/j.ntt.2015.05.005 |
[11] | Xia Y, Bian Q, Xu L, et al. (2004) Genotoxic effects on human spermatozoa among pesticide factory workers exposed to fenvalerate. Toxicol 203: 49–60. doi: 10.1016/j.tox.2004.05.018 |
[12] | Jaggi S, Sood C, Kumar V, et al. (2001) Leaching of pesticides in tea brew. J Agric Food Chem 49: 5479–5483. doi: 10.1021/jf010436d |
[13] | Huang Z, Zhang Y, Wang L, et al. (2009) Simultaneous determination of 103 pesticide residues in tea samples by LC‐MS/MS. J Sep Sci 32: 1294–1301. doi: 10.1002/jssc.200800605 |
[14] | Paramasivam M, Chandrasekaran S (2014) Persistence behaviour of deltamethrin on tea and its transfer from processed tea to infusion. Chemosphere 111: 291–295. doi: 10.1016/j.chemosphere.2014.03.111 |
[15] | Hua K, Hong M, Xiaolin H, et al. (2010) Simultaneous determination of 16 pyrethroid residues in tea samples using gas chromatography and ion trap mass spectrometry. J Chromatogr Sci 48: 771–776. doi: 10.1093/chromsci/48.9.771 |
[16] | Pakvilai N, Prapamontol T, Thavornyutikarn P, et al. (2015) A simple and sensitive GC-ECD method for detecting synthetic pyrethroid insecticide residues in vegetable and fruit samples. Chiang Mai J Sci 42: 196–207. |
[17] | Wu X, Chen Z, Zhang J, et al. (2017) An quantificational method for 51 pesticide residues determination in Pu'er tea by LC-MS/MS. Electron Sci Technol Appl 4: 1–9. |
[18] | IARC (2017) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 110. |
[19] | Chen H, Yin P, Wang Q, et al. (2014) A modified QuEChERS sample preparation method for the analysis of 70 pesticide residues in tea using gas chromatography-tandem mass spectrometry. Food Anal Method 7: 1577–1587. doi: 10.1007/s12161-014-9791-0 |
[20] | Saito-Shida S, Nemoto S, Teshima R (2015) Multiresidue determination of pesticides in tea by gas chromatography-tandem mass spectrometry. J Environ Sci Health, Part B 50: 760–776. doi: 10.1080/03601234.2015.1058092 |
[21] | Li J, Sun M, Chang Q, et al. (2017) Determination of pesticide residues in teas via QuEChERS combined with dispersive liquid–liquid microextraction followed by gas chromatography–tandem mass spectrometry. Chromatographia 80: 1447–1458. doi: 10.1007/s10337-017-3362-7 |
[22] | Yu X, Yang H (2017) Pyrethroid residue determination in organic and conventional vegetables using liquid-solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles. Food Chem 217: 303–310. doi: 10.1016/j.foodchem.2016.08.115 |
[23] | Yu X, Ang HC, Yang H, et al. (2017) Low temperature cleanup combined with magnetic nanoparticle extraction to determine pyrethroids residue in vegetables oils. Food Control 74: 112–120. doi: 10.1016/j.foodcont.2016.11.036 |
[24] | Yu X, Li Y, Ng M, et al. (2018) Comparative study of pyrethroids residue in fruit peels and fleshes using polystyrene-coated magnetic nanoparticles based clean-up techniques. Food Control 85: 300–307. doi: 10.1016/j.foodcont.2017.10.016 |
[25] | FAO (2015) Implications of Maximum Residue Levels (MRLs) on tea trade. FAO. |
[26] | FAO (2016) Report of the working group on maximum residue levels (MRLs) and MRLs in the brew (Based on Feedback from India, UK, US, China and Canada) FAO. |
[27] | EU (2017) COMMISSION REGULATION (EU) 2017/1016. Official Journal of the European Union. |
[28] | Pestisida K (1997) Metode pengujian residu pestisida dalam hasil pertanian. In: Pertanian D, Jakarta Departemen Pertanian. |
[29] | HSDB (2012) Hazardous Substance Data Bank: Cyhalothrin. U.S. National Library of Medicine. |
[30] | HSDB (2012) Hazardous Substances Data Bank: Cypermethrin. U.S. National Library of Medicine. |
[31] | HSDB (2018) Hazardous Substances Data Bank: Fenvalerate. U.S. National Library of Medicine. |
[32] | HSDB (2012) Hazardous Substances Data Bank: Deltamethrin. U.S. National Library of Medicine. |
[33] | Pitoi MM, Ariyani M, Rosmalina RT, et al. (2018) Simultaneous determination of deltamethrin and 4 other pyrethroids residues in infusion tea: preliminary study. 3rd International Symposium on Green Technology for Value Chains (GreenVC 2018), Tangerang. |
[34] | EC (2010) Guidance document on pesticide residue analytical methods. European Commision. |
[35] | Li Y, Chen X, Fan C, et al. (2012) Compensation for matrix effects in the gas chromatography-mass spectrometry analysis of 186 pesticides in tea matrices using analyte protectants. J Chromatogr A 1266: 131–142. doi: 10.1016/j.chroma.2012.10.008 |
[36] | Wang Y, Jin HY, Ma SC, et al. (2011) Determination of 195 pesticide residues in Chinese herbs by gas chromatography–mass spectrometry using analyte protectants. J Chromatogr A 1218: 334–342. doi: 10.1016/j.chroma.2010.11.036 |
[37] | Lozano A, Rajski Ł, Belmonte-Valles N, et al. (2012) Pesticide analysis in teas and chamomile by liquid chromatography and gas chromatography tandem mass spectrometry using a modified QuEChERS method: Validation and pilot survey in real samples. J Chromatogr A 1268: 109–122. doi: 10.1016/j.chroma.2012.10.013 |
[38] | Cao Y, Tang H, Chen D, et al. (2015) A novel method based on MSPD for simultaneous determination of 16 pesticide residues in tea by LC–MS/MS. J Chromatogr B 998-999: 72–79. doi: 10.1016/j.jchromb.2015.06.013 |
[39] | Hou X, Zheng X, Zhang C, et al. (2014) Ultrasound-assisted dispersive liquid-liquid microextraction based on the solidification of a floating organic droplet followed by gas chromatography for the determination of eight pyrethroid pesticides in tea samples. J Chromatogr B 969: 123–127. doi: 10.1016/j.jchromb.2014.08.010 |
[40] | Cho SK, Abd El-Aty AM, Rahman MM, et al. (2014) Simultaneous multi-determination and transfer of eight pesticide residues from green tea leaves to infusion using gas chromatography. Food Chem 165: 532–539. doi: 10.1016/j.foodchem.2014.05.145 |
[41] | PPID (2016) Outlook Teh Komoditas Pertanian Subsektor Perkebunan: Pusat Data dan Sistem Informasi Pertanian, Sekretariat Jenderal Kementerian Pertanian. |