Citation: Seidu A. Richard. Elucidating the novel biomarker and therapeutic potentials of High-mobility group box 1 in Subarachnoid hemorrhage: A review[J]. AIMS Neuroscience, 2019, 6(4): 316-332. doi: 10.3934/Neuroscience.2019.4.316
[1] | Sobey CG, Faraci FM (1998) Subarachnoid haemorrhage: what happens to the cerebral arteries? Clin Exp Pharmacol Physiol 25: 867–876. doi: 10.1111/j.1440-1681.1998.tb02337.x |
[2] | Singer RJ, Ogilvy CS, Rordorf G (2013) Aneurysmal subarachnoid hemorrhage: Epidemiology, risk factors, and pathogenesis. UpToDate. |
[3] | Worthington JM, Goumas C, Jalaludin B, et al. (2017) Decreasing risk of fatal subarachnoid hemorrhage and other epidemiological trends in the era of coiling implementation in Australia. Front Neurol 8: 424. doi: 10.3389/fneur.2017.00424 |
[4] | Cook DA (1995) Mechanisms of cerebral vasospasm in subarachnoid haemorrhage. Pharmacol Ther 66: 259–284. doi: 10.1016/0163-7258(94)00080-M |
[5] | Smith R, Clower B, Grotendorst G, et al. (1985) Arterial wall changes in early human vasospasm. Neurosurgery 16: 171–176. doi: 10.1227/00006123-198502000-00008 |
[6] | Dhandapani S, Singh A, Singla N, et al. (2018) Has Outcome of subarachnoid hemorrhage changed with improvements in neurosurgical services? Study of 2000 patients over 2 decades from India. Stroke 49: 2890–2895. |
[7] | Weir B (1995) The pathophysiology of cerebral vasospasm. Brit J Neurosurg 9: 375–390. doi: 10.1080/02688699550041386 |
[8] | Wang D, Liu K, Wake H, et al. (2017) Anti-high mobility group box-1 (HMGB1) antibody inhibits hemorrhage-induced brain injury and improved neurological deficits in rats. Sci Rep 7: 46243. doi: 10.1038/srep46243 |
[9] | Hendrix P, Foreman PM, Harrigan MR, et al. (2017) Impact of high-mobility group box 1 polymorphism on delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. World Neurosurg 101: 325–330. doi: 10.1016/j.wneu.2017.01.121 |
[10] | Seidu RA, Wu M, Su Z, et al. (2017) Paradoxical role of high mobility group box 1 in glioma: A suppressor or a promoter? Oncol Rev 11: 325. |
[11] | Sokół B, Woźniak A, Jankowski R, et al. (2015) HMGB1 level in cerebrospinal fluid as a marker of treatment outcome in patients with acute hydrocephalus following aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 24: 1897–1904. doi: 10.1016/j.jstrokecerebrovasdis.2015.05.002 |
[12] | Richard SA, Jiang Y, Xiang LH, et al. (2017) Post-translational modifications of high mobility group box 1 and cancer. Am J Transl Res 9: 5181–5196. |
[13] | Richard SA, Xiang LH, Yun JX, et al. (2017) Carcinogenic and therapeutic role of High-Mobility Group Box 1 in Cancer: Is it a cancer facilitator, a cancer inhibitor or both? World Cancer Res J 4: e919. |
[14] | Su Z, Ni P, She P, et al. (2017) Bio-HMGB1 from breast cancer contributes to M-MDSC differentiation from bone marrow progenitor cells and facilitates conversion of monocytes into MDSC-like cells. Cancer Immunol Immunother 66: 391–401. doi: 10.1007/s00262-016-1942-2 |
[15] | Ieong C, Sun H, Wang Q, et al. (2018) Glycyrrhizin suppresses the expressions of HMGB1 and ameliorates inflammative effect after acute subarachnoid hemorrhage in rat model. J Clin Neurosci 47: 278–284. doi: 10.1016/j.jocn.2017.10.034 |
[16] | Andersson U, Tracey KJ (2011) HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol 29: 139–162. doi: 10.1146/annurev-immunol-030409-101323 |
[17] | Richard SA (2018) High-mobility group box 1 is a promising diagnostic and therapeutic monitoring biomarker in Cancers: A review. AIMS Molecular Science 5: 183–241. doi: 10.3934/molsci.2018.4.183 |
[18] | Festoff BW, Sajja RK, van Dreden P, et al. (2016) HMGB1 and thrombin mediate the blood- brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer's disease. J Neuroinflammation 13: 194. doi: 10.1186/s12974-016-0670-z |
[19] | Nakahara T, Tsuruta R, Kaneko T, et al. (2009) High-mobility group box 1 protein in CSF of patients with subarachnoid hemorrhage. Neurocrit Care 11: 362–368. doi: 10.1007/s12028-009-9276-y |
[20] | King MD, Laird MD, Ramesh SS, et al. (2010) Elucidating novel mechanisms of brain injury following subarachnoid hemorrhage: An emerging role for neuroproteomics. Neurosurg Focus 28: E10. |
[21] | Richard SA (2018) Myeloid-derived suppressor cells in cancer: A review on the pathogenesis and therapeutic potentials. Open Cancer Immunol J 7. |
[22] | Richard SA, Min W, Su Z, et al. (2017) Epochal neuroinflammatory role of high mobility group box 1 in central nervous system diseases. AIMS Molecular Science 4: 185–218. doi: 10.3934/molsci.2017.2.185 |
[23] | Sun Q, Wu W, Hu YC, et al. (2014) Early release of high-mobility group box 1 (HMGB1) from neurons in experimental subarachnoid hemorrhage in vivo and in vitro. J Neuroinflammation 11: 106. doi: 10.1186/1742-2094-11-106 |
[24] | Wang L, Zhang Z, Liang L, et al. (2019) Anti-high mobility group box-1 antibody attenuated vascular smooth muscle cell phenotypic switching and vascular remodelling after subarachnoid haemorrhage in rats. Neurosci Lett 708: 134338. doi: 10.1016/j.neulet.2019.134338 |
[25] | Chang CZ, Wu SC, Kwan AL, et al. (2015) 4′-O-β-d-glucosyl-5-O-methylvisamminol, an active ingredient of Saposhnikovia divaricata, attenuates high-mobility group box 1 and subarachnoid hemorrhage-induced vasospasm in a rat model. Behav Brain Funct 11: 28. doi: 10.1186/s12993-015-0074-8 |
[26] | Wolfson RK, Chiang ET, Garcia JG (2011) HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption. Microvasc Res 81: 189–197. doi: 10.1016/j.mvr.2010.11.010 |
[27] | Richard SA, Sackey M, Su Z, et al. (2017) Pivotal neuroinflammatory and therapeutic role of high mobility group box 1 in ischemic stroke. Biosci Rep 37. |
[28] | Furlani D, Donndorf P, Westien I, et al. (2012) HMGB‐1 induces c‐kit+ cell microvascular rolling and adhesion via both toll‐like receptor‐2 and toll‐like receptor‐4 of endothelial cells. J Cell Mol Med 16: 1094–1105. doi: 10.1111/j.1582-4934.2011.01381.x |
[29] | Bae JS, Rezaie AR (2013) Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Rep 46: 544–549. doi: 10.5483/BMBRep.2013.46.11.056 |
[30] | Bustin M (1999) Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol 19: 5237–5246. doi: 10.1128/MCB.19.8.5237 |
[31] | Chaudhry S, Hafez A, Rezai Jahromi B, et al. (2018) Role of damage associated molecular pattern molecules (DAMPs) in aneurysmal subarachnoid hemorrhage (aSAH). Int J Mol Sci 19: E2035. doi: 10.3390/ijms19072035 |
[32] | Zhu XD, Chen JS, Zhou F, et al. (2012) Relationship between plasma high mobility group box-1 protein levels and clinical outcomes of aneurysmal subarachnoid hemorrhage. J Neuroinflammation 9: 194. |
[33] | Murakami K, Koide M, Dumont TM, et al. (2011) Subarachnoid hemorrhage induces gliosis and increased expression of the pro-inflammatory cytokine high mobility group box 1 protein. Transl Stroke Res 2: 72–79. doi: 10.1007/s12975-010-0052-2 |
[34] | Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418: 191. doi: 10.1038/nature00858 |
[35] | Friedrich V, Flores R, Sehba FA (2012) Cell death starts early after subarachnoid hemorrhage. Neurosci Lett 512: 6–11. doi: 10.1016/j.neulet.2012.01.036 |
[36] | Kim JB, Choi JS, Yu YM, et al. (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26: 6413–6421. doi: 10.1523/JNEUROSCI.3815-05.2006 |
[37] | Haruma J, Teshigawara K, Hishikawa T, et al. (2016) Anti-high mobility group box-1 (HMGB1) antibody attenuates delayed cerebral vasospasm and brain injury after subarachnoid hemorrhage in rats. Sci Rep 6: 37755. doi: 10.1038/srep37755 |
[38] | Dorsch N, King M (1994) A review of cerebral vasospasm in aneurysmal subarachnoid haemorrhage Part I: Incidence and effects. J Clin Neurosci 1: 19–26. doi: 10.1016/0967-5868(94)90005-1 |
[39] | Greenhalgh AD, Brough D, Robinson EM, et al. (2012) Interleukin-1 receptor antagonist is beneficial after subarachnoid haemorrhage in rat by blocking haem-driven inflammatory pathology. Dis Model Mech 5: 823–833. doi: 10.1242/dmm.008557 |
[40] | Munakata A, Naraoka M, Katagai T, et al. (2016) Role of cyclooxygenase-2 in relation to nitric oxide and endothelin-1 on pathogenesis of cerebral vasospasm after subarachnoid hemorrhage in rabbit. Transl Stroke Res 7: 220–227. doi: 10.1007/s12975-016-0466-6 |
[41] | Zhao XD, Mao HY, Lv J, et al. (2016) Expression of high-mobility group box-1 (HMGB1) in the basilar artery after experimental subarachnoid hemorrhage. J Clin Neurosci 27: 161–165. doi: 10.1016/j.jocn.2015.06.034 |
[42] | Mu SW, Dang Y, Wang SS, et al. (2018) The role of high mobility group box 1 protein in acute cerebrovascular diseases. Biomed Rep 9: 191–197. |
[43] | Li H, Wu W, Sun Q, et al. (2014) Expression and cell distribution of receptor for advanced glycation end-products in the rat cortex following experimental subarachnoid hemorrhage. Brain Res 1543: 315–323. doi: 10.1016/j.brainres.2013.11.023 |
[44] | Chang CZ, Lin CL, Wu SC, et al. (2014) Purpurogallin, a natural phenol, attenuates high-mobility group box 1 in subarachnoid hemorrhage induced vasospasm in a rat model. Int J Vasc Med 2014: 254270. |
[45] | Camelo S, Iglesias AH, Hwang D, et al. (2005) Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 164: 10–21. doi: 10.1016/j.jneuroim.2005.02.022 |
[46] | Kiiski H, Långsjö J, Tenhunen J, et al. (2017) Time-courses of plasma IL-6 and HMGB-1 reflect initial severity of clinical presentation but do not predict poor neurologic outcome following subarachnoid hemorrhage. Eneurologicalsci 6: 55–62. doi: 10.1016/j.ensci.2016.11.010 |
[47] | Umahara T, Uchihara T, Hirokawa K, et al. (2018) Time-dependent and lesion-dependent HMGB1-selective localization in brains of patients with cerebrovascular diseases. Histol Histopathol 33: 215–222. |
[48] | Sabri M, Kawashima A, Ai J, et al. (2008) Neuronal and astrocytic apoptosis after subarachnoid hemorrhage: a possible cause for poor prognosis. Brain Res 1238: 163–171. doi: 10.1016/j.brainres.2008.08.031 |
[49] | Mann KG, Jenny RJ, Krishnaswamy S (1988) Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Annu Rev Biochem 57: 915–956. doi: 10.1146/annurev.bi.57.070188.004411 |
[50] | Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407: 258. doi: 10.1038/35025229 |
[51] | Steinhoff M, Buddenkotte J, Shpacovitch V, et al. (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 26: 1–43. |
[52] | Kassis I, Grigoriadis N, Gowda-Kurkalli B, et al. (2008) Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol 65: 753–761. |
[53] | Louboutin JP, Strayer DS (2013) Relationship between the chemokine receptor CCR5 and microglia in neurological disorders: consequences of targeting CCR5 on neuroinflammation, neuronal death and regeneration in a model of epilepsy. CNS Neurol Disord Drug Targets 12: 815–829. doi: 10.2174/18715273113126660173 |
[54] | Ito T, Kawahara K, Okamoto K, et al. (2008) Proteolytic cleavage of high mobility group box 1 protein by thrombin-thrombomodulin complexes. Arterioscler Thromb Vasc Biol 28: 1825–1830. doi: 10.1161/ATVBAHA.107.150631 |
[55] | Abeyama K, Stern DM, Ito Y, et al. (2005) The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest 115: 1267–1274. doi: 10.1172/JCI22782 |
[56] | Esmon C (2005) Do-all receptor takes on coagulation, inflammation. Nat Med 11: 475–477. doi: 10.1038/nm0505-475 |
[57] | Birukova AA, Birukov KG, Smurova K, et al. (2004) Novel role of microtubules in thrombin-induced endothelial barrier dysfunction. FASEB J 18: 1879–1890. doi: 10.1096/fj.04-2328com |
[58] | Nawaz MI, Mohammad G (2015) Role of high-mobility group box-1 protein in disruption of vascular barriers and regulation of leukocyte–endothelial interactions. J Recept Signal Transduct Res 35: 340–345. doi: 10.3109/10799893.2014.984309 |
[59] | An JY, Pang HG, Huang TQ, et al. (2018) AG490 ameliorates early brain injury via inhibition of JAK2/STAT3‑mediated regulation of HMGB1 in subarachnoid hemorrhage. Exp Ther Med 15: 1330–1338. |
[60] | Liu H, Yao YM, Yu Y, et al. (2007) Role of Janus kinase/signal transducer and activator of transcription pathway in regulation of expression and inflammation-promoting activity of high mobility group box protein 1 in rat peritoneal macrophages. Shock 27: 55–60. doi: 10.1097/01.shk.0000233197.40989.31 |
[61] | You W-C, Wang C-x, Pan Y-x, et al. (2013) Activation of nuclear factor-κB in the brain after experimental subarachnoid hemorrhage and its potential role in delayed brain injury. PLoS One 8: e60290. doi: 10.1371/journal.pone.0060290 |
[62] | Zheng VZ, Wong GKC (2017) Neuroinflammation responses after subarachnoid hemorrhage: A review. J Clin Neurosci 42: 7–11. doi: 10.1016/j.jocn.2017.02.001 |
[63] | Lu B, Antoine DJ, Kwan K, et al. (2014) JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proc Natl Acad Sci U S A 111: 3068–3073. doi: 10.1073/pnas.1316925111 |
[64] | Lumpkins K, Bochicchio GV, Zagol B, et al. (2008) Plasma levels of the beta chemokine regulated upon activation, normal T cell expressed, and secreted (RANTES) correlate with severe brain injury. J Trauma 64: 358–361. doi: 10.1097/TA.0b013e318160df9b |
[65] | Sugawara T, Fujimura M, Noshita N, et al. (2004) Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 1: 17–25. doi: 10.1602/neurorx.1.1.17 |
[66] | Sun Q, Dai Y, Zhang X, et al. (2013) Expression and cell distribution of myeloid differentiation primary response protein 88 in the cerebral cortex following experimental subarachnoid hemorrhage in rats: a pilot study. Brain Res 1520: 134–144. doi: 10.1016/j.brainres.2013.05.010 |
[67] | Jiang Y, Liu D-W, Han X-Y, et al. (2012) Neuroprotective effects of anti-tumor necrosis factor-alpha antibody on apoptosis following subarachnoid hemorrhage in a rat model. J Clin Neurosci 19: 866–872. doi: 10.1016/j.jocn.2011.08.038 |
[68] | Chang CZ, Wu SC, Kwan AL, et al. (2016) Rhinacanthin-C, a fat-soluble extract from Rhinacanthus nasutus, modulates high-mobility group box 1-related neuro-inflammation and subarachnoid hemorrhage-induced brain apoptosis in a rat model. World Neurosurg 86: 349–360. doi: 10.1016/j.wneu.2015.08.071 |
[69] | Horii H, Suzuki R, Sakagami H, et al. (2013) New biological activities of Rhinacanthins from the root of Rhinacanthus nasutus. Anticancer Res 33: 453–459. |
[70] | Ali MS, Starke RM, Jabbour PM, et al. (2013) TNF-α induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology. J Cereb Blood Flow Metab 33: 1564–1573. doi: 10.1038/jcbfm.2013.109 |
[71] | van Beijnum JR, Buurman WA, Griffioen AW (2008) Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11: 91–99. doi: 10.1007/s10456-008-9093-5 |
[72] | Hildmann C, Riester D, Schwienhorst A (2007) Histone deacetylases-an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 75: 487–497. doi: 10.1007/s00253-007-0911-2 |
[73] | Zhou C, Yamaguchi M, Kusaka G, et al. (2004) Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 24: 419–431. doi: 10.1097/00004647-200404000-00007 |
[74] | Salmivirta M, Rauvala H, Elenius K, et al. (1992) Neurite growth-promoting protein (amphoterin, p30) binds syndecan. Exp Cell Res 200: 444–451. doi: 10.1016/0014-4827(92)90194-D |
[75] | Huttunen H, Rauvala H (2004) Amphoterin as an extracellular regulator of cell motility: from discovery to disease. J Intern Med 255: 351–366. doi: 10.1111/j.1365-2796.2003.01301.x |
[76] | Wang K, Li W, Yu Q, et al. (2017) High mobility group box 1 mediates Interferon‐γ‐Induced phenotypic modulation of vascular smooth muscle cells. J Cell Biochem 118: 518–529. doi: 10.1002/jcb.25682 |
[77] | Wang HL, Peng LP, Chen WJ, et al. (2014) HMGB1 enhances smooth muscle cell proliferation and migration in pulmonary artery remodeling. Int J Clin Exp Pathol 7: 3836–3844. |
[78] | Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5: 331–342. doi: 10.1038/nri1594 |
[79] | Macdonald RL (2014) Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 10: 44–58. |
[80] | Zhang H, Jiang L, Guo Z, et al. (2017) PPARβ/δ, a novel regulator for vascular smooth muscle cells phenotypic modulation and vascular remodeling after subarachnoid hemorrhage in rats. Sci Rep 7: 45234. doi: 10.1038/srep45234 |
[81] | Yang J, Wang W, Dong M, et al. (2015) Effect of nucleoprotein factor-kB (NF-κB) in endothelial cells during high blood flow-associated pulmonary vascular remodeling on vasoactive substances adrenomedullin and prostacyclin. Int J Clin Exp Med 8: 13842–13847. |
[82] | Zhang XS, Li W, Wu Q, et al. (2016) Resveratrol attenuates acute inflammatory injury in experimental subarachnoid hemorrhage in rats via inhibition of TLR4 pathway. Int J Mol Sci 17: E1331. doi: 10.3390/ijms17081331 |
[83] | Richard SA (2019) The therapeutic potential of resveratrol in gliomas. Adv Biosci Clin Med 7: 44–59. doi: 10.7575/aiac.abcmed.v.7n.2p.44 |
[84] | Jing CH, Wang L, Liu PP, et al. (2012) Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience 213: 144–153. doi: 10.1016/j.neuroscience.2012.03.055 |
[85] | Kim MK, Yang DH, Jung M, et al. (2011) Simultaneous determination of chromones and coumarins in Radix Saposhnikoviae by high performance liquid chromatography with diode array and tandem mass detectors. J Chromatogr A 1218: 6319–6330. doi: 10.1016/j.chroma.2011.06.103 |
[86] | Li Z, Ni K, Du G (2007) Simultaneous analysis of six effective components in the anti-Alzheimer's disease effective component group of Xiao-Xu-Ming Decoction. Se pu= Chinese J Chromatogr 25: 80–83. |
[87] | Takizawa T, Tada T, Kitazawa K, et al. (2001) Inflammatory cytokine cascade released by leukocytes in cerebrospinal fluid after subarachnoid hemorrhage. Neurol Res 23: 724–730. doi: 10.1179/016164101101199243 |
[88] | Chen T, Pan H, Li J, et al. (2018) Inhibiting of RIPK3 attenuates early brain injury following subarachnoid hemorrhage: Possibly through alleviating necroptosis. Biomed Pharmacother 107: 563–570. doi: 10.1016/j.biopha.2018.08.056 |
[89] | Lee JM, Yoshida M, Kim MS, et al. (2018) Involvement of alveolar epithelial cell necroptosis in idiopathic pulmonary fibrosis pathogenesis. Am J Respir Cell Mol Biol 59: 215–224. doi: 10.1165/rcmb.2017-0034OC |
[90] | Cho E, Lee JK, Park E, et al. (2018) Antitumor activity of HPA3P through RIPK3-dependent regulated necrotic cell death in colon cancer. Oncotarget 9: 7902–7917. |
[91] | Xiong X, Gu L, Wang Y, et al. (2016) Glycyrrhizin protects against focal cerebral ischemia via inhibition of T cell activity and HMGB1-mediated mechanisms. J Neuroinflammation 13: 241. doi: 10.1186/s12974-016-0705-5 |
[92] | Richard SA, Min W, Su Z, et al. (2017) High mobility group box 1 and traumatic brain injury. J Behav Brain Sci 7: 50–61. doi: 10.4236/jbbs.2017.72006 |
[93] | Zhang J, Wu Y, Weng Z, et al. (2014) Glycyrrhizin protects brain against ischemia–reperfusion injury in mice through HMGB1-TLR4-IL-17A signaling pathway. Brain Res 1582: 176–186. doi: 10.1016/j.brainres.2014.07.002 |
[94] | Sun Q, Wang F, Li W, et al. (2013) Glycyrrhizic acid confers neuroprotection after subarachnoid hemorrhage via inhibition of high mobility group box-1 protein: A hypothesis for novel therapy of subarachnoid hemorrhage. Med Hypotheses 81: 681–685. doi: 10.1016/j.mehy.2013.07.026 |