Citation: Madhura Kulkarni-Chitnis, Leah Mitchell-Bush, Remmington Belford, Jenaye Robinson, Catherine A. Opere, Sunny E. Ohia, Ya Fatou N. Mbye. Interaction between hydrogen sulfide, nitric oxide, and carbon monoxide pathways in the bovine isolated retina[J]. AIMS Neuroscience, 2019, 6(3): 104-115. doi: 10.3934/Neuroscience.2019.3.104
[1] | Wang R (2010) Hydrogen sulfide: the third gasotransmitter in biology and medicine. Antioxid Redox Sign 12: 1061–1064. doi: 10.1089/ars.2009.2938 |
[2] | Ritter JM (2010) Human pharmacology of hydrogen sulfide, putative gaseous mediator. Br J Clin Pharmacol 69: 573–575. doi: 10.1111/j.1365-2125.2010.03690.x |
[3] | Li L, Moore PK (2007) An overview of the biological significance of endogenous gases: new roles for old molecules. Biochem Soc Trans 35: 1138–1141. doi: 10.1042/BST0351138 |
[4] | Szabo C (2016) Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nat Rev Drug Discov 15: 185–203. doi: 10.1038/nrd.2015.1 |
[5] | van den Born JC, Hammes HP, Greffrath W, et al. (2016) Gasotransmitters in vascular complications of diabetes. Diabetes 65: 331–345. doi: 10.2337/db15-1003 |
[6] | Lowicka E, Beltowski J (2007) Hydrogen sulfide (H2S)-the third gas of interest for pharmacologists. Pharmacol Rep 59: 4–24. |
[7] | Kolluru GK, Shen X, Bir SC, et al. (2013) Hydrogen sulfide chemical biology: pathophysiological roles and detection. Nitric Oxide 35: 5–20. doi: 10.1016/j.niox.2013.07.002 |
[8] | Kram L, Grambow E, Mueller-Graf F, et al. (2013) The anti-thrombotic effect of hydrogen sulfide is partly mediated by an upregulation of nitric oxide synthases. Thromb Res 132: e112–117. doi: 10.1016/j.thromres.2013.07.010 |
[9] | Wang R (2003) The gasotransmitter role of hydrogen sulfide. Antioxid Redox Signal 5: 493–501. doi: 10.1089/152308603768295249 |
[10] | Pong WW, Stouracova R, Frank N, et al. (2007) Comparative localization of cystathionine beta-synthase and cystathionine gamma-lyase in retina: differences between amphibians and mammals. J Comp Neurol 505: 158–165. doi: 10.1002/cne.21468 |
[11] | Kimura H, Shibuya N, Kimura Y (2012) Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid Redox Signal 17: 45–57. doi: 10.1089/ars.2011.4345 |
[12] | Kimura H, Nagai Y, Umemura K, et al. (2005) Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal 7: 795–803. doi: 10.1089/ars.2005.7.795 |
[13] | Kimura H (2002) Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26: 13–19. doi: 10.1385/MN:26:1:013 |
[14] | Kimura H (2011) Hydrogen sulfide: its production, release and functions. Amino Acids 41: 113–121. doi: 10.1007/s00726-010-0510-x |
[15] | Persa C, Osmotherly K, Chen KC-W, et al. (2006) The distribution of cystathionine beta-synthase (CBS) in the eye: implication of the presence of a trans-sulfuration pathway for oxidative stress defense. Exp Eye Res 83: 817–823. doi: 10.1016/j.exer.2006.04.001 |
[16] | Shibuya N , Kimura H (2013) Production of hydrogen sulfide from d-cysteine and its therapeutic potential. Front Endocrinol (Lausanne) 4: 87. |
[17] | Shibuya N, Koike S, Tanaka M, et al. (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4: 1366. doi: 10.1038/ncomms2371 |
[18] | Shibuya N, Mikami Y, Kimura Y, et al. (2009) Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146: 623–626. doi: 10.1093/jb/mvp111 |
[19] | Shibuya N, Tanaka M, Yoshida M, et al. (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11: 703–714. doi: 10.1089/ars.2008.2253 |
[20] | Tanizawa K (2011) Production of H2S by 3-mercaptopyruvate sulphurtransferase. J Biochem 149: 357–359. doi: 10.1093/jb/mvr018 |
[21] | Ali MY, Ping CY, Mok YY, et al. (2006) Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? Br J Pharmacol 149: 625–634. doi: 10.1038/sj.bjp.0706906 |
[22] | Li L, Salto-Tellez M, Tan CH, et al. (2009) GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med 47: 103–113. doi: 10.1016/j.freeradbiomed.2009.04.014 |
[23] | Wang R (2002) Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16: 1792–1798. doi: 10.1096/fj.02-0211hyp |
[24] | Whiteman M, Le Trionnaire S, Chopra M, et al. (2011) Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci (Lond) 121: 459–488. doi: 10.1042/CS20110267 |
[25] | Huang X, Meng XM, Liu DH, et al. (2013) Different regulatory effects of hydrogen sulfide and nitric oxide on gastric motility in mice. Eur J Pharmacol 720: 276–285. doi: 10.1016/j.ejphar.2013.10.017 |
[26] | Yong QC, Cheong JL, Hua F, et al. (2011) Regulation of heart function by endogenous gaseous mediators-crosstalk between nitric oxide and hydrogen sulfide. Antioxid Redox Signal 14: 2081–2091. doi: 10.1089/ars.2010.3572 |
[27] | Whiteman M, Li L, Kostetski I, et al. (2006) Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 343: 303–310. doi: 10.1016/j.bbrc.2006.02.154 |
[28] | Zhang QY, Du JB, Zhou WJ, et al. (2004) Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertension. Biochem Biophys Res Commun 317: 30–37. doi: 10.1016/j.bbrc.2004.02.176 |
[29] | Jin HF, Du JB, Li XH, et al. (2006) Interaction between hydrogen sulfide/cystathionine gamma-lyase and carbon monoxide/heme oxygenase pathways in aortic smooth muscle cells. Acta Pharmacol Sin 27: 1561–1566. doi: 10.1111/j.1745-7254.2006.00425.x |
[30] | Kulkarni Chitnis M, Belford R, Robinson J, et al. (2014) Interaction between hydrogen sulfide and nitric oxide in isolated bovine retina (1060.2). FASEB J 28, 1 Supplement: 1060–1062. |
[31] | Yetik-Anacak G, Dereli MV, Sevin G, et al. (2015) Resveratrol stimulates hydrogen sulfide (H2S) formation to relax murine corpus cavernosum. J Sex Med 12: 2004–2012. doi: 10.1111/jsm.12993 |
[32] | Dufton N, Natividad J, Verdu EF, et al. (2012) Hydrogen sulfide and resolution of acute inflammation: A comparative study utilizing a novel fluorescent probe. Sci Rep 2: 499. doi: 10.1038/srep00499 |
[33] | Fitzgerald R, DeSantiago B, Lee DY, et al. (2014) H2S relaxes isolated human airway smooth muscle cells via the sarcolemmal K(ATP) channel. Biochem Biophys Res Commun 446: 393–398. doi: 10.1016/j.bbrc.2014.02.129 |
[34] | Zheng Y, Liao F, Du JB, et al. (2012) Modified methylene blue method for measurement of hydrogen sulfide level in plasma. Sheng Li Xue Bao: [Acta Physiologica Sinica] 64: 681–686. |
[35] | Whiteman M, Moore PK (2009) Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability? J Cell Mol Med 13: 488–507. doi: 10.1111/j.1582-4934.2009.00645.x |
[36] | Xia M, Chen L, Muh RW, et al. (2009) Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys. J Pharmacol Exp Ther 329: 1056–1062. doi: 10.1124/jpet.108.149963 |
[37] | Kulkarni M, Njie-Mbye YF, Okpobiri I, et al. (2011) Endogenous production of hydrogen sulfide in isolated bovine eye. Neurochem Res 36: 1540–1545. doi: 10.1007/s11064-011-0482-6 |
[38] | Wu D, Hu Q, Zhu Y (2016) Therapeutic application of hydrogen sulfide donors: the potential and challenges. Front Med 10: 18–27. doi: 10.1007/s11684-015-0427-6 |
[39] | Kolesnikov SI, Vlasov BY, Kolesnikova LI (2015) Hydrogen sulfide as a third essential gas molecule in living tissues. Vestn Ross Akad Med Nauk 2: 237–241. |
[40] | van Goor H, van den Born JC, Hillebrands JL, et al. (2016) Hydrogen sulfide in hypertension. Curr Opin Nephrol Hypertens 25: 107–113. doi: 10.1097/MNH.0000000000000206 |
[41] | Ahmad A, Sattar MA, Rathore HA, et al. (2015) A critical review of pharmacological significance of hydrogen sulfide in hypertension. Indian J Pharmacol 47: 243–247. doi: 10.4103/0253-7613.157106 |
[42] | Kida K, Ichinose F (2015) Hydrogen sulfide and neuroinflammation. Handb Exp Pharmacol 230: 181–189. doi: 10.1007/978-3-319-18144-8_9 |
[43] | Cui Y, Duan X, Li H, et al. (2015) Hydrogen sulfide ameliorates early brain injury following subarachnoid hemorrhage in rats. Mol Neurobiol 53: 3646–3657. |
[44] | Wang YF, Mainali P, Tang CS, et al. (2008) Effects of nitric oxide and hydrogen sulfide on the relaxation of pulmonary arteries in rats. Chinese Med J 121: 420–423. doi: 10.1097/00029330-200803010-00010 |
[45] | Altaany Z, Yang G, Wang R (2013) Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. J Cell Mol Med 17: 879–888. doi: 10.1111/jcmm.12077 |
[46] | Pong WW, Eldred WD (2009) Interactions of the gaseous neuromodulators nitric oxide, carbon monoxide, and hydrogen sulfide in the salamander retina. J Neurosci Res 87: 2356–2364. doi: 10.1002/jnr.22042 |
[47] | Salomone S, Foresti R, Villari A, et al. (2014) Regulation of vascular tone in rabbit ophthalmic artery: cross talk of endogenous and exogenous gas mediators. Biochem Pharmacol 92: 4661–4668. |
[48] | Zhao W, Wang R (2002) H(2)S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol-Heart C 283: H474–480. doi: 10.1152/ajpheart.00013.2002 |
[49] | Zhao W, Zhang J, Lu Y, et al. (2001) The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20: 6008–6016. doi: 10.1093/emboj/20.21.6008 |
[50] | Zhao W, Ndisang JF, Wang R (2003) Modulation of endogenous production of H2S in rat tissues. Can J Physiol Pharmacol 81: 848–853. doi: 10.1139/y03-077 |
[51] | Guo W, Kan JT, Cheng ZY, et al. (2012) Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction. Oxid Med Cell Longev 2012. |
[52] | Yanfei W, Lin S, Junbao D, et al. (2006) Impact of L-arginine on hydrogen sulfide/cystathionine-gamma-lyase pathway in rats with high blood flow-induced pulmonary hypertension. Biochem Biophys Res Commun 345: 851–857. doi: 10.1016/j.bbrc.2006.04.162 |
[53] | Brancaleone V, Roviezzo F, Vellecco V, et al. (2008) Biosynthesis of H2S is impaired in non-obese diabetic (NOD) mice. Br J Pharmacol 155: 673–680. |
[54] | Dyson RM, Palliser HK, Latter JL, et al. (2015) Interactions of the gasotransmitters contribute to microvascular tone (dys)regulation in the preterm neonate. PLoS One 10: e0121621. doi: 10.1371/journal.pone.0121621 |
[55] | Holwerda KM, Faas MM, van Goor H, et al. (2013) Gasotransmitters: a solution for the therapeutic dilemma in preeclampsia? Hypertension 62: 653–659. doi: 10.1161/HYPERTENSIONAHA.113.01625 |
[56] | Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237: 527–531. doi: 10.1006/bbrc.1997.6878 |
[57] | Privitera MG, Potenza M, Bucolo C, et al. (2007) Hemin, an inducer of heme oxygenase-1, lowers intraocular pressure in rabbits. J Ocul Pharmacol Ther 23: 232–239. doi: 10.1089/jop.2006.101 |
[58] | Stagni E, Bucolo C, Motterlini R, et al. (2010) Morphine-induced ocular hypotension is modulated by nitric oxide and carbon monoxide: role of μ3 receptors. J Ocul Pharmacol Ther 26: 31–36. doi: 10.1089/jop.2009.0081 |
[59] | Peng YJ, Nanduri J, Raghuraman G, et al. (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA 107: 10719–10724. doi: 10.1073/pnas.1005866107 |
[60] | Shintani T, Iwabuchi T, Soga T, et al. (2009) Cystathionine beta-synthase as a carbon monoxide-sensitive regulator of bile excretion. Hepatology 49: 141–150. doi: 10.1002/hep.22604 |
[61] | Morikawa T, Kajimura M, Nakamura T, et al. (2012) Hypoxic regulation of the cerebral microcirculation is mediated by a carbon monoxide-sensitive hydrogen sulfide pathway. Proc Natl Acad Sci USA 109: 1293–1298. doi: 10.1073/pnas.1119658109 |
[62] | Monjok EM, Kulkarni KH, Kouamou G, et al (2008) Inhibitory action of hydrogen sulfide on muscarinic receptor-induced contraction of isolated porcine irides. Exp Eye Res 87: 612–616. doi: 10.1016/j.exer.2008.09.011 |
[63] | Kulkarni-Chitnis M, Njie-Mbye YF, Mitchell L, et al. (2015) Inhibitory action of novel hydrogen sulfide donors on bovine isolated posterior ciliary arteries. Exp Eye Res 134: 73–79. doi: 10.1016/j.exer.2015.04.001 |
[64] | Chitnis MK, Njie-Mbye YF, Opere CA, et al. (2013) Pharmacological actions of the slow release hydrogen sulfide donor GYY4137 on phenylephrine-induced tone in isolated bovine ciliary artery. Exp Eye Res 116: 350–354. doi: 10.1016/j.exer.2013.10.004 |