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Abstract: Australian regional universities have been offering many low-enrollment programs to
students living in regional, rural, and remote (RRR) areas as part of their obligation to serve regional
communities. However, making these programs sustainable has been a significant challenge due to
the small population spread across the vast RRR territory in Australia. There is a lack of studies on
the key factors contributing to the difficulty of running specific low-enrollment programs, and more
importantly, on possible viable solutions to mitigate the negative impact of these factors on program
sustainability. Based on the engagement levels of students in teaching and learning, as well as their
performance in solving selected questions in basic trigonometry and triangles, | analyzed three
independent groups of students enrolled in three offerings of a foundation mathematics course within
a low-enrollment secondary mathematics teaching specialty at an Australian regional university
before and after the COVID-19 pandemic. Through statistical analysis, | found that: 1) Relaxing
entry requirements for the secondary mathematics specialty did not increase student intake
post-pandemic; 2) there was no significant difference in performance between active students before
and after the pandemic in solving the selected questions under similar teaching and learning
conditions; and 3) some students’ unsatisfactory performances in solving the selected questions may
have been influenced by learning habits inherited from their secondary education, characterized by
‘shallow teaching and learning.” This case study also proposes two new ideas, one focused on a
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single institution and the other on multiple institutions to make this low-enrollment program
sustainable at Australian regional universities.

Keywords: student mathematics teacher, problem solving, triangles; inverse trigonometry,
low-enrollment program, regional university, sustainability, mathematics education

1. Introduction

Australia has a large territory of about 7.7 million km=making it the sixth-largest country in the
world, but it has a population of just over 27 million, ranking 53rd out of more than 200
countries [1,2]. According to the classification of Rural, Remote, and Metropolitan Areas, with the
five categories of Major Cities, Inner Regional, Outer Regional, Remote, and Very Remote areas [3],
the Major Cities and Inner Regional areas have an estimated population of over 24 million, while
fewer than 3 million people live in the Outer Regional, Remote, and Very Remote areas [4]. This
means that more than 90% of the population live in capital cities and major urban centers, which
occupy about 5% of the land, while less than 10% live in the vastly distributed regional areas that
make up 95% of Australia’s territory (Figure 1). The Outer Regional, Remote, and Very Remote
areas, sometimes including parts of the Inner Regional area, are commonly referred to as “regional
Australia™ or the regional, rural, and remote (RRR) areas of the country.

1.1%_  0.7%

8.0%

O Major Cities O Inner Regional O Quter Regional @Remote @ Very Remote

Figure 1. Regional classifications of Australia (redrawn from [4] by the author).

However, regional Australia has made significant contributions to the Australian economy in
many ways [5-7]. For instance, mining (minerals, oil, gas, etc.), agribusiness (cropping, horticulture,
fishing, wine production, dairy, meat, etc.), and tourism (both domestic and international) are major
contributors to the Australian economy, and these sectors are primarily based in the RRR areas.
Therefore, despite the small population in these regions, it is crucial to make every effort to sustain a
satisfactory standard of living, infrastructure, health, and prosperity for people in regional Australia.
The key to achieving this sustainability is to offer affordable, employment-oriented tertiary education
to regional students, delivered with convenience and high quality, likely through regional universities
near these communities.
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Regional universities have been the most popular choice for RRR students who wish to pursue
tertiary education. However, offering a wide range of programs to students at regional universities
presents unique challenges compared to metropolitan universities [8-11], largely due to the small
population of fewer than 3 million spread across 95% of the Australian landmass. Hence, most
courses offered in a teaching term in regional universities have a small class size with students from
various RRR locations [12,13].

Running many such courses places the institution under tremendous financial pressure. For
example, at a metropolitan university, the same course might have over 100, or even hundreds of,
enrolled students in one or two venues. The course is typically prepared and delivered by one
lecturer, with several casual tutors handling the tutorial sessions. At a regional university, however,
the lecturer must prepare and teach the course to 30-40 students online, regardless of attendance, and
also more casual tutors are required to conduct face-to-face tutorials with one or a few students at
each of the multiple regional campuses that students have selected as their "home campus.” Since
domestic students pay the same amount of tuition fee for the same course, the efficiency of course
delivery at a regional university is much lower than at a metropolitan university. In other words, the
cost of teaching and support for delivering the same course at a regional university is significantly
higher than at a metropolitan university.

In addition to the higher cost of course delivery at regional universities, there has been a lower
rate of participation in tertiary education by school leavers in RRR areas [8-12]. However,
encouraging statistics show that once students from RRR areas successfully complete their tertiary
programs at a regional university, most graduates are likely to pursue careers in RRR areas after
graduation [5-7]. This provides a strong rationale for regional universities to continue offering
low-enrollment programs to RRR students.

Thus, ensuring the sustainability of low-enrollment programs has been a significant challenge for
regional universities, especially given the severe financial impact of the COVID-19 pandemic and
the slow recovery afterward. A typical example is the secondary mathematics specialty in the
Bachelor of Education program at Central Queensland University (CQU), a regional university with
the largest footprint in Australia.

Regional universities have employed various strategies to encourage as many eligible school
leavers as possible to engage in tertiary education and have offered preparatory courses for school
leavers and adults who are academically ineligible to enroll in tertiary programs, aiming to provide
more potential students with a second chance to participate in tertiary education; hence, to make
these programs financially viable. However, the impact of these efforts has been limited, particularly
due to disruptions caused by the COVID-19 pandemic in recent years. While a few researchers have
briefly addressed the sustainability of low-enrollment programs at regional Australian
universities [14,15], there is a lack of detailed case studies on the key factors contributing to the
challenges faced by specific low-enrollment programs, and more importantly, viable solutions to
mitigate these factors in the future.

Here, | aim to provide a detailed analysis of three offerings of a foundation mathematics course
in a low-enrollment secondary mathematics teaching specialty within the Bachelor of Education
program at CQU, both before and after the COVID-19 pandemic, conducted by me. The study is
based on students’ engagement ratios in teaching and learning, as well as their performance in
solving two selected questions on basic inverse trigonometry and triangles from their assignments
across three independent groups of students. These specific topics were chosen because solving
inverse trigonometric and triangular problems is typically a more challenging task in foundation
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mathematics, particularly for pre-service mathematics teachers (and for students in other disciplines
as well) [16-20]. Solving simple mathematical problems does not adequately reveal students’ level
of engagement in the learning process. Therefore, only by solving more challenging mathematical
problems can students’ true effort in engaging with the teaching and learning processes be assessed.

In Section 2, | provide background information on the secondary mathematics teaching specialty
and the foundation mathematics course, including details on the three groups of students who took
the course before and after the COVID-19 pandemic, as well as the chosen research methodology. In
Sections 3 through 5, | present the questions assigned to the 3 student groups, reference solutions,
and students’ performance in solving these questions. In Section 6, | discuss students’ engagement in
teaching and learning, the implications of their performance for secondary school mathematics
instruction, and the potential realignment of relevant tertiary curricula to improve the sustainability
of the foundation mathematics course and, consequently, the secondary mathematics teaching
specialty. Finally, in Section 7, | summarize the study.

2. Background information

The mathematics specialty in the Bachelor of Education program at CQU serves the needs of
producing mathematics teachers for secondary schools in the RRR areas. The secondary mathematics
specialty consists of one statistics course and five mathematics courses across multiple academic
levels over three years of full-time study. The academic structure of the courses is illustrated in
Figure 2.
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Figure 2. Academic structure of the secondary mathematics specialty based on the CQU
Handbook [21].

Except the essential statistics course, which is relatively independent of other mathematics
courses, the five mathematics courses are progressively linked in terms of academic progression for
the students. All first-year students undertaking this specialty must successfully complete the
foundation course (Essentials of Applied Mathematics) as it is the prerequisite for the differential
calculus course (Calculus A), which in turn is the prerequisite for the integral calculus course
(Calculus B). Both calculus courses are scheduled in the second year, and each is offered in only one
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teaching term due to a small number of enrollments. Generally, the integral calculus course is the
prerequisite for the two advanced courses in the third year of study, but this is only mandatory for the
mathematical modeling course (Advanced Applications of Mathematics). If a student obtained a
higher grade in the differential calculus course but has not attempted the integral calculus course,
such student may be allowed to undertake the Linear Algebra and Vectors course that is not heavily
associated with integration.

The foundation course aims to consolidate basic topics in algebra, geometry, and trigonometry,
which students have learned in secondary schools. This course not only helps recent school graduates
revise their previously acquired mathematical knowledge and/or bridge gaps in their original
mathematics learning but also provides mature adult students who left school more than five years
ago with an opportunity to re-engage in mathematics learning from a foundation level to boost their
confidence for a smoother progression. The pedagogical goals of this course are achieved through
systematic reviews combined with conceptual reasoning, logical articulation, and real-world
applications in weekly lectures and tutorials.

Students enrolled in the foundation mathematics course range from 17/18 years old (new school
graduates) to 50/60 years old. As this foundation course is the prerequisite for the next mathematics
course in the second year, it is offered twice in two teaching terms every year. The first teaching term
during March-June usually attracts 40-50 initial enrollments (hence called the major offering), and
the second term during July-October typically has around 25 students (hence called the minor
offering). Most of the students in a class are likely to live in different RRR areas of Queensland, with
a few in other states of the country, and sometimes abroad. History shows that very few students, if
any, can frequently attend a scheduled physical or online class for this foundation course. This is
because many young RRR students need to take part-time or casual jobs to support their tertiary
education due to financial constraints. Other mature students are likely to have family commitments
in addition to work and study responsibilities. As a result, this course is delivered through weekly
live online classes with or without student participation, but the recorded sessions are uploaded to the
course website soon after each session for students to access at their convenience.

Three student groups are selected for this comparative case study. These students undertook the
foundation mathematics course in three minor offerings before and after the Covid pandemic. These
selections are based on three major reasons. First, these three teaching terms followed the same
pedagogical scheme with similar assessment structures, causing some questions assigned to the three
cohorts in different terms to be comparable. Second, all the teaching activities and learning
assessments were coordinated, conducted, and administered solely by the author, ensuring
consistency across the three offerings. Third, the smaller number of enrollments in the minor offering
reduced the possibility of multiple students requesting long extensions for assignment submission
after the normal due date, which often occurred with larger enrollments in a major teaching term.
This fact ensures that all comparisons of student performance are made on as level a ground as
possible.

The details of these three groups of students are shown in Table 1. The first group of 26 student
teachers took this foundation mathematics course in the minor teaching term of 2019, just before the
Covid-19 outbreak in early 2020. Students enrolled in 2019 needed to satisfy the preset entry
requirement, i.e., either successfully completing Year-12 mathematics or completing a designated
preparatory mathematics program equivalent to Year-12 mathematics. Due to the outbreak of
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Covid-19 in 2020, both offerings in 2020 were coordinated and delivered by different relief lecturers
with altered teaching, learning, and assessment plans, significantly different from the pedagogical
scheme followed in 2019. Thus, the cohort of 2020 students is not included in this comparative
study. The second group of 13 students took this foundation course in the minor teaching term in late
2021, a year after the peak of Covid-19. Students enrolled in this teaching term followed the normal
pedagogical plan and assessment schedule used before the Covid-19 outbreak. The third group of 15
students took this foundation mathematics course in the minor teaching term in late 2022, two years
after the peak of Covid-19, following the same pedagogical plan and assessment schedule as the
previous year, delivered by the same lecturer.

Table 1. Number of students enrolled in the foundation course in the three minor offerings.

Pre-Covid (2019) Post-Covid (2021) Post-Covid (2022) Total
26 13 15 54

Since teaching, learning, and assessments in mathematics education (and other subjects as well)
were substantially affected in high schools in 2020, particularly for senior students in Year 11 and
Year 12, students enrolled in this first-year foundation mathematics course in 2021 and 2022 were
recommended Dby individual schools without the need to pass the formal tertiary entrance
assessments used in pre-Covid years.

Given the background information described above, | explore potential answers to the following
questions:

- How effective was the relaxed tertiary entrance requirement in increasing enrollment numbers
in this secondary mathematics specialty post-Covid?

- How much did the influence of Covid-related interruptions affect problem-solving performances
of active students before and after the Covid pandemic?

- What are the implications of students’ problem-solving performances for teaching and learning
adjustments in high school mathematics education?

- What are the potential strategies to sustain the secondary mathematics specialty in a regional
university?

To maintain consistency in comparing students’ performances in mathematics problem-solving
among the three groups, two questions of similar nature were selected from each group’s
assignments completed in the corresponding teaching term: One question on solving a basic inverse
trigonometric problem and the other on solving a word-based triangular problem. The details of the
individual questions for the three groups of students are presented in the following sections. Given
my purpose of this case study, the most suitable research method is the comparative case study [22],
supported by statistics.

3. The first group
3.1. The first question
3.1.1. Information about the group and the question

The first group of 26 student teachers undertook this foundation mathematics course during the
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minor teaching term in 2019, just before the outbreak of Covid-19 in early 2020. The questions for
the first assignment were made available to all students in Week 1, and the submission was due in
the middle of Week 6. The questions were set according to the content covered in lectures and
tutorials during Weeks 1-5. Multiple questions on algebra, triangles, and basic trigonometry were
included in this assignment, from which only two questions are selected for this comparative case
study.

Each question was awarded full marks if the answer was error-free, partial marks if there were
some errors, and no marks if it was not attempted or contained too many errors to render the attempt
to be without value. To ensure maximum benefit, students were required to present their answers
neatly and clearly, with all appropriate work shown.

The first question, referred to as Question 1, was intended to test students’ understanding of the
non-unique property of angles obtained from inverse trigonometric operations using calculators. It
had been explained to the students in lectures, tutorials, and the designated textbook that the angle
obtained from any inverse trigonometric function on a scientific calculator is only the principal-range
angle for that function. However, there is one more angle within a full 360turn that can produce the
same trigonometric value. Examples of how to determine the other angle using the principal-range
angle from calculators were presented in both tutorials and the textbook that also contains a table
summarizing the process (e.g., Table 2 below).

Table 2. Summary of principal-range angles of inverse sine, cosine and tangent functions [23].

f=sin'z Two angles in 360 @=cos'z | Twoanglesin360°| @#=tan'z Two angles in 3602
0= 9<90° 6 &180<=2 6 0 9<90° 0 & 180°+ ¢
0<x < 180° 0 & 36026
_90% 9<0° | 180 || & 360=- |4 _90%x 9<0°| 1802 |4| & 360 |0

*@is the principal-range angle obtained by calculator.

Given cosa=—0.5592 and a is in Quadrant 111, determine the angle

Question 1. The first problem assigned to the first group of student teachers

3.1.2. The reference solution
Referring to Table 2, the solution to this question can be easily obtained as follows.
Step 1: Use a calculator in degree mode to obtain the principal-range angle by 0 = arcos(-0.5592).
6 = arccos(—0.5592) =124°.

Step 2: Use the principal-range angle 6 to work out the angle « in Quadrant 111 by the relationship
for cosine summarized in Table 2 as follows.

a =360°—0 =360°—-124° = 240°.

The angle « is in Quadrant 111 because cosine is negative in both Quadrant Il and Quadrant I1I.
3.1.3. Performance of the student teachers

Among the 26 students, 21 submitted their assignments. Five students, or about 19% of the total,
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failed to submit anything. Of the 21 who submitted, 14 students solved the problem correctly,
meaning that two-thirds of the students who attempted the problem obtained the correct answer by
following the process demonstrated in the reference solution. Two other students followed the
correct procedure but made careless mistakes in obtaining the principal-range angle by entering a
number different from -0.5592, resulting in their answers being regarded as partly correct.
Nevertheless, these 16 students adhered to the instructions provided in the lectures, worked examples
in the textbook, and tutorials.

However, 5 students simply used calculators to find the principal-range angle § = 124%as their
solution, without considering that the required angle should be in Quadrant IlI, resulting in an

incorrect answer for this question. The overall performance of the student teachers in solving this
problem is summarized in Table 3.

Table 3. The overall performance of the first group of students in solving Question 1.

Outcome Number Percentage (%) of all Percentage (%) of attempted students
Correct 14 53.9 66.7

Partly correct 2 7.7 9.5

Incorrect 5 19.2 23.8

No attempt 5 19.2 -

Total 26 100 100

3.2. The second question

3.2.1. The question

The second problem, referred to as Question 2, was a worded problem related to applying the
Pythagorean theorem and basic trigonometric functions associated with right triangles. The problem
aimed to test students’ understanding of the Pythagorean theorem and basic trigonometric functions,

as well as their ability to use these rules to solve an authentic problem described in words with a
clear strategy.

An observer stood on top of a cliff 255 m above sea level. The observer first saw a boat at
point A in the sea with an angle of inclination of 64< Two minutes later, the observer saw the
boat at point B with an angle of inclination of 33< Assuming the boat traveled in a straight
line, what was the average speed of the boat? (Keep one decimal place for the final result.)

Question 2. The second problem assigned to the first group of student mathematics teachers

According to the teaching and learning plan, students should have completed these topics and all
the designated exercises before attempting this question. A similar example is also presented in the
designated textbook [23].

3.2.2. The reference solution

As demonstrated in [20], there are two general strategies to solve this problem: using right triangles
alone or by mixing right and oblique triangles. Both methods require students to draw a diagram to
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accurately represent the described scenario with the known and derived figures to assist in solving the
problem. A diagram representing the described scenario is shown in Figure 3. Point C indicates where
the observer was standing during the observation.

By right triangles
Referring to the right triangles DAC and DBC in Figure 3, the distance from A to B (AB) can be
found through the following process.

DA =CDtan 26°—— DB =CD tan(31°+26°) =CD tan57°
AB = DB — DA = CD tan57° —CD tan 26° = CD(tan 57° — tan 26°)

The average speed of the boat over two minutes (or 120 seconds) is calculated by

v:ﬁ: CD(tan57°—tan 26°) _ 255(tan 57°—tan 26°) _ 2236m/s=8.05km/h.

t t 2x60
C
e e g
64“&/
33° P
- /
- ~—
-7 31° 7 06°
- 26
z” ,I
’/’ /
/’ /
P /
- 4
- 116°
LT\ 17\ 64° J__
' e e e e - —-—— - d — L -

Figure 3. The diagram depicting the scenario of the second question.

By mixing right and oblique triangles

Referring to the right triangle DAC or DBC and the oblique triangle ABC in Figure 3, the distance
from A to B (AB) can be found through the following process.

CD CD CD CD AB AC BC
=— (= ) or BC =
sin64° ° cos26°

~ sin33° = cosS7°) sin31° sin33° sin116°
B ACsin31°  CDsin31° CDsin31°

sin33°  sin33°sin64° ° sin116°sin33°

The average speed of the boat can be calculated similarly as above.
3.2.3. Performance of student teachers

Excluding the 5 students who did not submit their assignments, 16 of the 21 students who
submitted solved this problem correctly, accounting for about 76% of the students who attempted the
problem, or approximately 62% of all the students. Two students presented partly correct solutions,
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primarily due to errors in calculating the associated angles or trigonometric values while employing a
correct strategy to solve the problem. Three students were completely incorrect, which seemed more
related to their inability to understand the scenario described in words. The overall performance of the
student teachers is summarized in Table 4.

As reported in [20], using right triangles was the overwhelming choice for 18 of the 21 students
who attempted this problem. Only 3 students used the strategy of mixing triangles to solve the problem
and all obtained the correct solution.

Table 4. The overall performance of student teachers in solving Question 2.

Outcome Number Percentage (%) of all Percentage (%) of attempted students
Correct 16 61.5 76.2

Partly correct 2 7.7 9.5

Incorrect 3 115 143

No attempt 5 19.2 -

Total 26 99.9 99.9

4. The second group
4.1. The first question
4.1.1. Information about the group and the question

The second group of 13 students undertook this foundation mathematics course in the minor
teaching term in late 2021, a year after the peak of Covid-19. Students enrolled in this teaching term
followed the normal pedagogical plan and assessment schedule, similar to those before the outbreak
of Covid-19. Since teaching, learning, and assessments in high schools were also affected,
particularly for senior students in Year 11 and Year 12, students enrolled in this first-year foundation
mathematics course in 2021 were recommended by individual schools without formal state-wide
assessments as the entry requirement.

Considering the potential negative impact of the Covid outbreak in 2020 on this group of
students who were in Year 12 during the pandemic, the teaching pace for this foundation
mathematics course was significantly slowed down. Topics such as triangles and basic trigonometry
were moved to the second half of the teaching term. Additionally, the difficulty level of the
assignment questions was slightly adjusted to encourage as many students as possible to continue
progressing positively. The assignment questions were made available to all students in Week 1, with
submission due in the middle of Week 11. The questions were set according to the content covered in
lectures and tutorials during Weeks 6-10. The two questions chosen from the assignment for this case
study are similar to those for the other two groups, with the same assessment criteria. The first
question, referred to as Question 3, was intended to test students’ understanding of the non-unique
property of angles obtained from inverse trigonometric operations using calculators, similar to the
purpose of the first question for the first group of students.

Given sing="? .8910 and « is in Quadrant I11, determine the angle .|

Question 3. The first problem assigned to the second group of student teachers
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4.1.2. The reference solution

Referring to Table 2, the solution to this question can be easily obtained as follows.
Step 1: Use a calculator in degree mode to obtain the principal-range angle by & = arcsin(-0.8910).
@ = arcsin(—0.8910) = —63°.

Step 2: Use the principal-range angle 6 to work out the angle « in Quadrant 111 by the relationship
for sine summarized in Table 2 as follows.

a =180°+| 0 =180°+63° = 243°.
The angle « is in Quadrant 111 because sine is negative in both Quadrant 111 and Quadrant IV.

4.1.3. Performance of the student teachers

Among the 13 enrolled students, only 8 submitted their assignments, while five did not submit
anything. Of the eight who submitted, five students, or about 62% of those who attempted the
problem, obtained the correct answer by following the process demonstrated in the reference
solution. One student made a small mistake in obtaining the principal-range angle using the
calculator, leading to an erroneous angle in Step 2. However, the general procedure was correct, so
this student received half of the full marks. Two students obtained incorrect answers by simply using
calculators to get the principal-range angle as the solution, without considering that the required
angle should be in Quadrant I1l. The overall performance of the student teachers in solving this
problem is summarized in Table 5.

Table 5. The overall performance of the second group of student teachers in solving Question 3.

Outcome Number Percentage (%0) of all Percentage (%) of attempted students
Correct 5 38.5 62.5

Partly correct 1 7.7 12.5

Incorrect 2 154 25.0

No attempt 5 38.5 -

Total 13 101 100

4.2. The second problem
4.2.1. The question

The second question, referred to as Question 4, was a simple word problem related to applying
the Pythagorean theorem to an isosceles triangle. The problem aimed to test students’ understanding
of the general properties of isosceles triangles and their ability to use the Pythagorean theorem to
solve a word problem with a clear strategy.

The area of an isosceles triangle is 24 cm=2and its height based on the unequal side is 6 cm.
Find the length of the equal sides of this isosceles triangle. (Keep one decimal place in the
final result.)

Question 4. The second word problem assigned to the second group of student teachers
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4.2.2. The reference solution

To assist in solving this problem, it is helpful to sketch an isosceles triangle with labels for
reference, as shown in Figure 4. With this diagram, the question can be solved as follows. Other
methods can also be used to solve the problem with additional steps.

Figure 4. The diagram depicting the scenario of Question 4.

Step 1: Assume the length of the unequal side is b and the height from this base to point B should be
h =6 cm for this isosceles triangle. Area (A) of this isosceles triangle should be

_2A 2x24

A:%bh:24—>b =8 (cm).
Step 2: Since two other sizes are equal in length (a), the height and half of the base form a right
triangle, which leads to determining the size a by the Pythagorean theorem.

a’=h’ +(g)2—>a: h2+(g)2 =\6%+4% =/62=7.2 (cm).

4.2.3. Performance of student teachers

Excluding the 5 students who did not submit their assignments, 6 of the 8 students who submitted
the assignment solved this problem correctly. One student followed the correct procedure but made a
mistake in calculation. Another student did not draw a sketch to assist with the solution and used the
entire base (rather than half of the base) in the Pythagorean theorem, leading to an incorrect answer.
This type of mistake often occurred among students who disengaged from the explicit teaching and
learning practices recommended by the lecturer [24]. The overall performance of the student teachers
is summarized in Table 6.

Table 6. The overall performance of the second group of student teachers in solving Question 4.

Outcome Number Percentage (%) of all Percentage (%) of attempted students
Correct 6 46.1 75.0

Partly correct 1 7.7 125

Incorrect 1 1.7 12.5

No attempt 5 38.5 —

Total 13 100 100
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5. The third group
5.1. The first question
5.1.1. Information about the group and the question

The third group of 15 students undertook this foundation mathematics course in the minor
teaching term in late 2022, two years after the peak of Covid-19. Most students enrolled in this
teaching term had experienced the transition from on-campus study to online teaching and learning
during 2020 and 2021 in their Year 11 and Year 12 studies.

Similar to the minor teaching term in 2021, students in this term followed the normal pedagogical
plan and assessment schedule as in the previous year, delivered by the same lecturer who also taught
the first two groups of students. The assignment questions were made available to all students in
Week 1, with submission due in the middle of Week 11. Questions were set according to the content
covered in lectures and tutorials during Weeks 6-10. The two questions chosen from the assignment
for this case study are similar to those used for the first and second groups, with the same assessment
criteria. The first question, referred to as Question 5, was intended to test students’ understanding of
the non-unique property of angles obtained from inverse trigonometric operations using calculators.
This question is similar to Question 1 assigned to the first group of students.

|Given cosa =—0.2079 and «is in Quadrant I11, determine the angle a.\

Question 5. The first problem assigned to the third group of student teachers

5.1.2. The reference solution

Referring to Table 2, the solution to this question can be easily obtained as follows.

Step 1: Use a calculator in degree mode to obtain the principal-range angle by 6 = arccos(—0.2079).
6 =arccos(—0.2079) =102° .

Step 2: Use the principal-range angle 6 to work out the angle « in Quadrant 111 by the relationship
for cosine summarized in Table 2 as follows.
a =360°—6 =360°—-102° = 258°.
The angle « is in Quadrant 111 because cosine is negative in both Quadrant Il and Quadrant I11.

5.1.3. Performance of student teachers

Among the 15 enrolled students, only 9 submitted their assignments, while 6 did not submit
anything. Of the 9 students who submitted, 4, or about 44% of those who attempted the problem,
obtained the correct answer by following the process demonstrated in the reference solution. One
student made a small mistake in obtaining the principal-range angle using the calculator, which led to
an erroneous angle in Step 2. However, 4 students obtained incorrect answers by simply using
calculators to get the principal-range angle as the solution, without considering that the required
angle should be in Quadrant I1l. The overall performance of the student teachers in solving this
problem is summarized in Table 7.
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Table 7. The overall performance of the third group of student teachers in solving Question 5.

Outcome Number Percentage (%) of all Percentage (%) of attempted students
Correct 4 26.7 44.4

Partly correct 1 6.7 11.1

Incorrect 4 26.7 44.4

No attempt 6 40.0 -

Total 15 100.1 99.9

5.2. The second question
5.2.1. The question

The second problem, shown in Question 6, was a simple word problem related to applying the
Pythagorean theorem in the context of an isosceles triangle. The problem aimed at testing students’
understanding of the general properties of isosceles triangles and their ability to use these properties
to solve a problem described in words with a clear strategy. Note that Question 6 is somewhat similar
to Question 4 assigned to the second group of students in 2021, but is relatively easier as it does not
require the use of the Pythagorean theorem.

The area of an isosceles triangle is 24 cm=2and its perimeter is 32 cm. If the height measured
from the unequal side is 8 cm, find the length of the two equal sides of this isosceles triangle
(keep 1 decimal place in the final result).

Question 6. The second problem assigned to the third group of student teachers

5.2.2. The reference solution

To assist in solving this problem, it is helpful to sketch an isosceles triangle with labels, similar to
Figure 4, for reference during the solution process. The problem can be solved as follows (other
methods may also be used, potentially involving additional steps):

Step 1: Refer to Figure 4. By the base b and height h, the area of this isosceles triangle should be
_2A _2x48

A=%bh—>b =12 (cm)

Step 2: The perimeter (P) of this isosceles triangle should be
P=2a+b=32——>2a+12=32——2a=20——a=10 (cm).

Alternatively, once b has been obtained in Step 1, the equal side can be found using the Pythagorean
theorem as follows.

Step 2": By the Pythagorean theorem
a’=h’+ (g)2 ——a=,[h’ +(g)2 = /8% +6° =+/100 =10 (cm).

Thus, the length of the equal sides of this isosceles triangle is 10 cm. The known perimeter
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simplifies the process but can be used for verification if needed.
5.2.3. Performance of student teachers

By excluding the 6 students who did not submit their assignments, 6 of the 9 students who did
submit solved this problem correctly. Among these, 3 used the Pythagorean theorem, 2 used the
perimeter of the isosceles triangle, and 1 used both approaches. Two students made simple errors in
calculations in Step 1, leading to incorrect answers in Step 2, and were marked as partially correct. One
student did not draw a sketch and mistakenly treated the isosceles triangle as a right triangle, resulting
in an incorrect answer. The overall performance of the student teachers is summarized in Table 8.

Table 8. The overall performance of the third group of students in Question 6.

Outcome Number Percentage (%) of all Percentage (%) of attempted students
Correct 6 40.0 67.7

Partly correct 2 13.3 22.2

Incorrect 1 6.7 11.1

No attempt 6 40.0 -

Total 15 100 100

6. Discussion
6.1. Entry requirement and student’s commitment to learning

Visually, there is a clear difference in the proportion of students who did not attempt the
assignments in this foundation mathematics course before and after Covid-19, as shown in Figure 5.
In 2019, less than 20% of students did not attempt the assigned questions, but this ratio doubled to
about 40% for students enrolled in both 2021 and 2022. These students had experienced online
teaching and learning during the peak of Covid-19 in 2020 and 2021 in Years 11 and 12 than
traditional face-to-face education. The total enrollment in each of these two post-Covid years was
about half of that in 2019, yet the number of non-attempts was at the same level as in 2019. Given
the small number of enrollments and the similarity in the numbers of submissions and
non-submissions, Table 9 combines the numbers and ratios of attempts and non-attempts for these
two post-Covid years.

With the frequencies of student attempts and non-attempts before and after Covid-19 given in
Table 9, the similarity in patterns of attempts versus non-attempts before and after Covid-19 can be
assessed using a chi-square test at a significance level of « = 0.05 [25]. The chi-square value for the
post-Covid pattern compared to the pre-Covid pattern is 4.214, which is greater than the critical
value of 3.841 (see Table 10), or the p-value of 0.04 is smaller than « = 0.05. This indicates that the
patterns of student attempts and non-attempts on the assignments before and after Covid-19 are
statistically different from each other.
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Figure 5. Distribution of numbers of total (blue), no-attempts (red) students and the ratio (Green).

Table 9. Frequencies of attempts and non-attempts by student teachers before and after Covid-19.

Pre-Covid (2019) Post-Covid (2021-2022) Total
Attempt 21 17 38
No attempt 5 11 18
Total 26 28 54

Table 10. Results of chi-test on patterns of student’s attempts before and after Covid-19.

Chi-square p-value Critical chi-square (df = 1; a = 0.05)
4.214 0.040 3.841

The higher rate of non-attempts among the 2021-2022 cohort may be attributed to several factors
associated with the negative impact of the Covid pandemic on student engagement in mathematics
learning. For instance, students might have been inadequately prepared due to a lower standard of
authentic learning through online delivery and a lack of formal and invigilated assessments during
2020-2021 in Years 11 and 12, compared to the standards of on-campus learning. Additionally,
family or personal financial constraints following the pandemic might have forced more students to
take on multiple casual or part-time jobs, reducing their time for mathematics study, particularly for
students in regional, rural, and remote areas.

Another significant factor is the removal of formal entry requirements for tertiary programs for
the 2021-2022 cohorts, especially for secondary mathematics teaching. Teaching secondary
mathematics is arguably one of the most challenging career choices for school leavers aspiring to
become high school teachers. Unlike subjects in other natural or social sciences that are primarily
based on factual description, elaboration, life experiences, social norms, or regulations with minimal
formulation and algorithmic processes, mathematics focuses on logical reasoning and technical
procedures involving various topics. The ultimate goal of mathematics education is to enable
students to use mathematical reasoning and techniques to solve both practical exercises and
real-world problems with confidence. Thus, tertiary mathematics relies on a solid foundation of basic
mathematics established during secondary education. While tertiary mathematics may review
foundational concepts, it focuses on strengthening and expanding mathematical knowledge beyond
what was covered in secondary schools. There is no capacity within the tertiary mathematics
curriculum to simply repeat the basic mathematics taught over six years in secondary school.
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Therefore, reintroducing formal entry requirements for tertiary programs in secondary mathematics
teaching is crucial. This would better support well-prepared students in becoming competent
secondary mathematics teachers and prevent under-prepared students from incurring financial loss
and academic penalties due to course failures.

6.2. Student engagement and performance in problem solving

For students who attempted the assignment questions, the statistics revealed no significant
difference in performance between the two small groups enrolled in 2021 and 2022. The chi-square
values were smaller than the critical value of 5.992 at a significance level of & = 0.05 (see Table 11),
indicating that these two cohorts can be combined into one post-Covid group. Consequently, the
performance of the pre-Covid and post-Covid groups in terms of correct, partly correct, and incorrect
solutions is summarized in Table 12.

Table 11. Results of chi-test on students’ performances for the 2021 and 2022 cohorts.

Test item Q3-Q5 Q4-Q6 Critical chi-square (df = 2; a = 0.05)
Chi-square (p-value) 1.250 (0.535) 0.500 (0.779) 5.992

Table 12. Performances in solving the questions by the student cohorts before and after Covid-19.

Pre-Covid Post-Covid
Question Correct Partly correct Incorrect | Question Correct Partly correct  Incorrect
Q1 14 2 5 Q3/Q5 9 2 6
Q2 16 2 3 Q4/Q6 12 3 2
Total 30 4 8 21 5 8

Based on the frequencies of student performances in solving the corresponding questions
presented in Table 12, the chi-square test at a significance level of « = 0.05 indicates no statistical
difference in performance patterns between the pre-Covid and post-Covid groups for both inverse
trigonometric problems (Q1-Q3/Q5) and triangular problems (Q2-Q4/Q6). The chi-square values
were below the critical value of 5.992 (see Table 13), suggesting that students who attempted the
assignments achieved similar levels of success or failure in solving these problems, with minimal
impact from the Covid pandemic.

This finding implies that the consistency in teaching and assessment for this foundation
mathematics course was largely maintained by the same lecturer before and after the Covid
pandemic, despite an increase in the number of students who did not attempt the assignments
post-pandemic.

Table 13. Results of chi-test on students’ performances before and after Covid-19.

Test item Q1-Q3/Q5 Q2-Q4/Q6  Critical chi-square (df = 2; &= 0.05)
Chi-square (p-value) 2.944 (0.229) 2.167 (0.338) 5.992

Several students in both cohorts obtained completely incorrect answers to the questions. While
these students may have made a reasonable effort, it did not necessarily reflect engagement with the
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explicit teaching and learning practices that the instructor had developed over time to foster more
effective and efficient mathematics learning. Engaged learning, driven by the students themselves, is
crucial for effectively building mathematical knowledge, regardless of the teaching approach [24].
For instance, nearly all students who followed the prescribed procedure for obtaining the correct
angle from the principal-range angle using calculators (as outlined in Table 2) achieved the correct
answer for the inverse trigonometric problem. In contrast, those who disregarded this procedure
ended up with incorrect answers.

6.3. Implication for school mathematics education

Since no statistical difference was found in the pattern of solving assigned questions among
students who attempted the questions before and after the Covid pandemic, these two groups can be
combined into a larger cohort of 38 students for further statistical analysis of performance on inverse
trigonometric and triangular questions (see Table 14). The chi-square test indicates a significant
difference between performances on inverse trigonometric questions and triangular questions for all
38 students who submitted their assignments. This is evidenced by the chi-square value of 8.293,
which exceeds the critical value of 5.992, or the p-value of 0.016, which is smaller than the
significance level « = 0.05 (see Table 15). Therefore, students performed statistically better for
triangular questions compared to inverse trigonometric questions.

In this study, triangular questions were generally less challenging for students who had a solid
understanding of right triangles. Given that right triangles and their applications form the foundation
for learning more advanced topics like obtuse triangles and trigonometry, and that these topics are
extensively covered in secondary education, solving right triangle-based problems should have been
relatively straightforward for most students. Except for a few who made careless calculation errors,
course logs indicated that students who struggled with triangular questions often lacked active
engagement in the course throughout the term. These students might have been able to solve simple
triangular problems using calculators but faced difficulties in accurately representing scenarios
described in words and logically connecting multiple steps to solve the problems. In other words,
their ‘shallow mathematics learning’ followed ‘shadow mathematics teaching’ in secondary school
were insufficient for handling such problems without full engagement in their first tertiary
mathematics course.

Table 14. Students’ performances in solving the inverse trigonometric and triangular questions.

Question Correct Partly correct  Incorrect Subtotal
Inverse trigonometry (Q1/Q3/Q5) 23 4 11 38
Triangle (Q2/Q4/Q6) 28 5 5 38
Total 51 9 16 76

Table 15. Results of chi-test on students’ performances in different types of questions.

Test item Triangle-Trigonometry  Critical chi-square (df = 2; & = 0.05)
Chi-square (p-value) 8.293 (0.016) 5.992

The inverse trigonometric questions further highlighted the inadequacies of the ‘shallow teaching
and learning’ prevalent in many secondary schools. It has become a standard practice for
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mathematics teachers to instruct students on how to use scientific calculators to ‘solve’ mathematical
problems from the early stages of secondary schooling and even primary school [26-28]. This
calculator-dependent approach has led to many high school graduates being able to perform basic
arithmetic operations like addition or subtraction of fractions using calculators but unable to carry
out these tasks using mathematical procedures. This issue arises from shallow teaching that focuses
on ‘how’ to obtain results rather than ‘why and how’ these results are derived.

Similarly, students who did not actively engage in the teaching and learning of this course often
ended up with incorrect answers for the inverse trigonometric questions by simply accepting the
angles returned directly by calculators. They were not taught by their secondary school mathematics
teachers that an angle obtained via inverse trigonometric functions is merely the ‘principal-range
angle’ and that there can be another angle within 360that produces the same trigonometric value. In
fact, some in-service mathematics teachers themselves might not fully understand ‘why and how’ the
result should be obtained, as noted by a few in-service teachers during a workshop hosted by the
author a few years ago.

Therefore, while students must be actively engaged in the mathematics teaching and learning
process, it is equally important for school mathematics teachers to continuously improve their
technical skills. Teachers need to not only show students how to use calculators or other
mathematical software to find answers but also to clearly explain the underlying mathematical
concepts, the rationale behind specific procedures, and the appropriate contexts in which these
procedures can be applied to solve real-world problems.

6.4. Sustainability of tertiary mathematics education in regional Australia

There has been a significant decline in enrollments in the foundation mathematics course in the
minor teaching term following the Covid-19 pandemic. Before the pandemic, approximately 40
students enrolled in the major teaching term and around 25 students in the minor teaching term for
this course at the regional Australian university. Ideally, to ensure financial viability and
sustainability of the secondary mathematics teaching specialty, offering this foundation course once
per year to all first-year students would be the most economical choice for a regional university,
given the higher running costs compared to metropolitan institutions. However, people and families
living in regional, rural, and remote areas in Australia face numerous uncertainties, such as
employment instability, job mobility, and environmental factors like floods and droughts.
Consequently, RRR students and their families may be more cautious about committing to tertiary
education compared to their metropolitan counterparts.

Offering the foundation mathematics course twice a year not only maximizes the number of
students entering their desired specialty in secondary mathematics teaching but also provides a
second chance for those who failed in the major term to retake the course without delaying their
progress by a year. A year-long wait to retake the foundation course as a prerequisite for subsequent
mathematics courses could lead many RRR students to drop out of mathematics study or tertiary
education altogether. Thus, regional Australian universities often prioritize supporting as many
students as possible in their educational pursuits over financial concerns, fulfilling their social
obligations. However, the long-term sustainability of such programs can be jeopardized during
prolonged periods of financial constraint, particularly when revenue from other programs declines.

The impact of the Covid pandemic exacerbated the challenge of maintaining the minor teaching
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term due to the reduced number of students. The simplest option might be to offer the foundation
mathematics course only once per year, but canceling the minor term could lead to further reductions
in student numbers. This reduction in students progressing to second-year mathematics courses could
continue into third-year courses. Increasing first-year enrollments in regional Australia has proven
difficult, despite persistent efforts by recruitment departments using various strategies over the past
decade. While continuing successful recruitment strategies is essential, exploring new ideas is crucial
to ensure the sustainability of programs for training future generations of competent secondary
mathematics teachers.

At the university level, the foundation mathematics course is mandatory for the mathematics
education specialty, while engineering programs have separate foundation courses for different
specialties. Many science (e.g., chemistry, physics, biology, agriculture, environment) and
technology programs (e.g., information technology, communication systems, information systems)
do not mandate mathematics courses, although students may choose them as electives. Basic
mathematics underpin numerous operations in these science and technology fields; thus, making the
foundation mathematics course a core requirement for all first-year students in STEM specialties
could be beneficial for their subsequent studies and professional lives. With higher enrollment
numbers, offering this course twice or even three times a year would become viable. Increased pass
rates in the foundation course might lead some students initially enrolled in other STEM programs to
transfer to the mathematics specialty or pursue double majors or minors, thus contributing to the
sustainability of the mathematics program.

Beyond a single regional university, collaborative efforts among multiple regional institutions
could address low enrollment issues. Such cooperation would allow each university to focus on
developing and delivering specific courses within a joint program. For example, if three regional
universities in Queensland collaborate on the secondary mathematics specialty, they could divide
responsibilities: One university could develop and deliver statistics and one of the third-year
mathematics courses, another university could handle the foundation mathematics course and the
other third-year mathematics course, and the remaining university could take charge of the two
second-year mathematics courses. The quality assurance of these courses would be managed by a
joint program committee to ensure adherence to national academic standards. However, such
collaboration would require significant additional work in administration, finance, management, and
technical support from all participating institutions, in addition to academic responsibilities.

7. Conclusions

This comparative case study sheds light on the major factors affecting the sustainability of
low-enrollment programs and offers potential strategies to address these challenges. The findings
revealed that the Covid-19 pandemic significantly reduced enrollments in the minor offerings of the
foundation mathematics course compared to before the pandemic. Additionally, relaxing entry
requirements did not increase student intake in the post-pandemic minor teaching term. Instead, a
higher proportion of new students failed to submit assignments, contributing to increased attrition.

Despite these challenges, | found no significant difference in the performance of active students
before and after the pandemic when they were subject to similar teaching and learning conditions.
This suggests that the impact of Covid on learning was minimal for students who maintained
engagement with their studies. However, this also highlighted that some students’ unsatisfactory
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performance might be linked to ineffective learning habits inherited from their secondary education,
characterized by ‘shallow teaching and learning’. This underscores the need for adjustments in high
school mathematics education to foster more effective learning habits early on.

Given the difficulty in dramatically increasing student numbers for low-enrollment programs in
regional universities due to the dispersed population and other challenges faced by potential students
and their families, new strategies are needed to ensure the sustainability of these programs. Using the
secondary mathematics teaching specialty at CQU as a case study, two potential strategies are
proposed:

1. A single regional institution can make the foundation mathematics course mandatory for all
first-year students in as many STEM programs as possible. This approach would not only benefit
students in their future studies and careers but also increase the likelihood of some students
considering a secondary mathematics teaching specialty as a minor.

2. Multiple regional institutions could collaborate to co-offer low-enrollment programs. Such a
joint program would allow institutions to share the development and delivery of courses, thus
pooling resources and enhancing program viability.

Ensuring the sustainability of low-enrollment programs at regional universities presents a
significant challenge. This requires a collaborative effort from all levels of government, universities,
schools, teachers, families, communities, organizations, and industries in regional, rural, and remote
areas. Students must also be prepared to make the necessary effort to overcome the challenges of
their educational journey. As emphasized in [20], tertiary education is not only a right but a privilege
that equips individuals to serve society professionally. For pre-service mathematics teachers, this is
particularly crucial as their competence impacts not only their own teaching but the mathematics
learning of future generations. Without effective measures, low-enrollment programs risk becoming
unsustainable, wasting valuable resources, and hindering educational opportunities.
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