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Abstract: Given the characteristics of the flexible job-shop scheduling problem and the practical 

production of a given enterprise, a flexible job-shop scheduling model was proposed to minimize the 

maximum completion time. A novel algorithm was proposed to solve the model by integrating the 

dung beetle optimization algorithm and the simulated annealing algorithm. Algorithmic 

improvements include the design of a single-layer process encoding scheme with machine selection 

during decoding to ensure a higher level of the initial population. During population update, the dung 

beetle optimization algorithm was applied for optimization, followed by simulated annealing 

operations to enhance the convergence speed and solution quality of the algorithm. Through 

simulation experiments and comparisons with other algorithms, the effectiveness and superiority of 

the proposed algorithm were validated. In addition, the feasibility of the algorithm was tested 

through a real-world factory production case. In conclusion, the improvements made in this paper to 

the algorithms and scheduling models offer valuable insights into the educational aspects of job-shop 

scheduling. For instance, the single-layer encoding proposed herein simplifies the coding process, 

making it more accessible for beginners. Additionally, the accompanying decoding strategy yields 

relatively higher-quality initial solutions, facilitating subsequent optimization processes by 

accelerating convergence without compromising solution quality. Students were able to gain a better 

understanding of real workshop conditions through this project, going beyond the sole goal of 

minimizing completion time. They began to consider more complex situations in the machining 

process, such as machine breakdowns, changes in machining schedules, and the load on bottleneck 
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machines and total machine load. This allowed students to have a holistic view of a complex 

production workshop. In terms of education, the project improved students' ability to consider 

practical aspects when solving problems and provided them with a way to solve problems. 

Keywords: flexible job-shop scheduling problems, maximum completion time, dung beetle 

optimizer, simulated annealing, single layer encoding 

 

1. Introduction  

The flexible job-shop scheduling problem (FJSP) is an extension of the traditional job-shop 

scheduling problem [1,2] and has been proven to be an NP-hard problem. Due to limitations of 

production equipment and costs, the majority of production workshops in China still rely on manual 

scheduling, resulting in low scheduling efficiency and difficulty in handling complex situations. On 

the other hand, companies that utilize intelligent scheduling methods [3‒5] for production processing 

demonstrate superior efficiency and performance in highly complex production scenarios. Therefore, 

intelligent scheduling becomes particularly important, and the quality of algorithms plays a crucial 

role. In recent years, several metaheuristic algorithms have been proposed, such as particle swarm 

optimization (PSO) [6], grey wolf optimization (GWO) [7], and whale optimization algorithm 

(WOA) [8]. Scholars have achieved significant progress in solving shop scheduling problems by 

employing these emerging metaheuristic algorithms [9‒11]. Shen et al. [12] improved the global and 

local optimization capabilities and diversity of a bird swarm by modifying the structure of the bird 

swarm, by introducing crossover and mutation operators, and by incorporating a variable 

neighborhood search algorithm in different bird swarms, thereby enhancing the algorithm's ability to 

escape local optima and improving convergence. Chen et al. [13] proposed a self-learning genetic 

algorithm based on reinforcement learning (RL) to intelligently adjust key parameters of the genetic 

algorithm (GA), leading to outstanding performance in solving flexible job-shop scheduling 

problems. Wang et al. [14] introduced a population improvement strategy to the genetic algorithm, 

significantly enhancing its effectiveness in flexible job-shop scheduling problems. Lin et al. [15] 

proposed a discrete PSO algorithm with adaptive inertia weight and verified its effectiveness and 

implementation through comparative experiments. N.I. Anuar et al. [16] presented an improved PSO 

algorithm with enhanced search capability through particle reinitialization, systematic switching of 

the best solution, and taboo search-based mutation. Zhao et al. [17] proposed an improved ant colony 

algorithm by enhancing the ant colony's pheromone updating method, thereby improving the 

algorithm's efficiency and optimization results. Luan et al. [18] proposed a novel metaheuristic 

algorithm, whale swarm algorithm (WSA), for flexible job-shop scheduling problems and verified its 

effectiveness. Yuan et al. [19] proposed a new hybrid harmony search algorithm (HHS), which 

enhances the local search capability of the harmony search (HS) algorithm. Li et al. [20] introduced a 

hybrid artificial bee colony algorithm based on taboo search, which improves the effectiveness of the 

algorithm by enhancing the quality of the population. In summary, each algorithm has its own 

advantages and disadvantages. Therefore, several improved algorithms that are proposed for the 

flexible job-shop scheduling problem have focused on addressing the shortcomings of the algorithms 

themselves, aiming to achieve more desirable results. However, there have been few attempts to 

improve the connection between the algorithm and the problem, specifically the encoding and 

decoding schemes. This situation may lead to a scenario where algorithm improvements reach their 

limits but there is no improvement in the flexible job-shop scheduling problem itself. This paper 
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deals with that by proposing simultaneous improvements to the encoding and decoding approaches 

as well as the algorithm itself. 

In this paper, a flexible job-shop scheduling model with the objective of minimizing the 

maximum completion time is established, and a novel algorithm that combines the dung beetle 

optimization algorithm and simulated annealing algorithm is used to solve this model. To address the 

issues of low convergence accuracy and susceptibility to local optima in flexible job-shop scheduling 

algorithms, a series of improvements are made to the dung beetle optimization. Considering the high 

complexity of dual-layer encoding for operations and machines, which increases the difficulty of 

optimization, this paper adopts a single-layer approach for process encoding and incorporates 

machine selection during decoding, significantly improving the quality of the initial solutions. 

During population update, the dung beetle optimization algorithm is applied for optimization, 

followed by simulated annealing operations on the population to enhance the algorithm's 

convergence speed and solution quality. Finally, through simulation experiments and comparisons 

with other algorithms, the effectiveness and superiority of the proposed algorithm are validated. 

Additionally, the feasibility of the algorithm is demonstrated through a case study of factory 

production. 

2. Problem description 

The description of the flexible job-shop scheduling problem (FJSP) [21‒23] is as follows: There 

are n jobs {J1,J2…Jn} that need to be processed on m machines {M1, M2,…Mm}. Each job Ji consists 

of one or more operations, and the sequence of operations is predetermined. Oij represents the j-th 

operation of job Ji, which can be processed on one of the different machines, denoted as Mij. The 

processing time for each operation varies depending on the machine used. The scheduling objective 

of FJSP is to select the most suitable machine for each operation Oij, to determine the optimal 

processing sequence of operations for each machine, and to determine the start time for each 

operation, in order to optimize the performance metrics of the entire system. Therefore, the flexible 

job-shop scheduling problem consists of two sub-problems: determining the machine assignments 

for each job and determining the processing sequence on each machine. 

Some flexible job-shop scheduling problem mathematical models are shown in Table 1. 

Table 1. Flexible job-shop scheduling problem mathematical models. 

Constraint Formulation  

Objective function 𝑓 = 𝑚𝑖𝑛 𝑚𝑎𝑥 𝐶𝑖  1 ≤ 𝑖 ≤ 𝑛 (1) 

Machine constraints  𝑋𝑖𝑗𝑘 = 1,1 ≤ 𝑖 ≤ 𝑛

𝑚

𝑘=1

 (2) 

Processing sequence constraints  𝑆𝑖𝑗𝑘 + 𝑡𝑖𝑗𝑘 ≤ 𝑆𝑖 𝑗+1 𝑘 ′, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑛 (3) 

Processing cannot be interrupted 𝑆𝑖𝑗𝑘 + 𝑡𝑖𝑗𝑘 = 𝐸𝑖𝑗𝑘 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑛 (4) 

Processing time constraints 𝑆𝑖𝑗𝑘 ≥ 0,1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑚 (5) 

 

In Eq (1), Ci represents the completion time of job Ji. Equation (2) indicates that the operation j 

of job Ji is processed on machine k, that Xijk = 1, otherwise Xijk = 0. This equation ensures that each 

operation of a job is processed on exactly one machine. Equation (3) introduces the variables Sijk, 
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which represents the start time of the operation j of job Ji on machine k, and tijk, which represents the 

processing time of the operation j of job Ji on machine k. Si(j+1)k represents the start time of the 

operation j+1 of job Ji on machine k. Equation (3) enforces the constraint that the processing 

sequence of different operations of the same job must be respected. In Eq (4), Eijk represents the 

completion time of the operation j of job Ji on machine k. This equation indicates that once an 

operation starts, it cannot be interrupted, and it also implies that a job can be processed at most on 

one machine at any given time. Equation (5) states that all jobs can start processing at time zero, 

meaning there are no restrictions on the initial start times of the jobs. 

3. Basic algorithm description 

3.1. Dung beetle optimizer 

The dung beetle optimizer (DBO) [24], proposed by Professor Shen Bo's team at Donghua 

University in November 2022, is a novel swarm intelligence optimization algorithm. It follows their 

previous work on the sparrow search algorithm (SSA) [25]. The DBO algorithm is inspired by the 

behaviors of dung beetles, including rolling ball, dancing, breeding, foraging, and stealing. It was 

specifically designed for global optimization problems and first introduced in the 79th issue of the 

Journal of Supercomputing in the United States. 

Five behavior patterns [24] and corresponding position update formulations are shown in Table 2. 

Table 2. Dung beetle behavior patterns and position update formulations. 

Behavior patterns Position update formulations  

Rolling ball 
𝑥𝑖 𝑡 + 1 = 𝑥𝑖 𝑡 + 𝛼 × 𝑘 × 𝑥𝑖 𝑡 − 1 + 𝑏 × 𝛥𝑥 

(6) 
𝛥𝑥 =  𝑥𝑖 𝑡 − 𝑋𝑤   

Dancing 𝑥𝑖 𝑡 + 1 = 𝑥𝑖 𝑡 + 𝑡𝑎𝑛 𝜃  𝑥𝑖 𝑡 − 𝑥𝑖 𝑡 − 1   (7) 

Breeding 

𝐿𝑏∗ = 𝑚𝑎𝑥 𝑋∗ ×  1 − 𝑅 , 𝐿𝑏  
(8) 

𝑈𝑏∗ = 𝑚𝑎𝑥 𝑋∗ ×  1 + 𝑅 , 𝑈𝑏  

𝐵𝑖 𝑡 + 1 = 𝑋∗ + 𝑏1 ×  𝐵𝑖 𝑡 − 𝐿𝑏∗ + 𝑏2 ×  𝐵𝑖 𝑡 − 𝑈𝑏∗  (9) 

Foraging 

𝐿𝑏𝑏 = 𝑚𝑎𝑥 𝑋𝑏 ×  1 − 𝑅 , 𝐿𝑏  
(10) 

𝑈𝑏𝑏 = 𝑚𝑎𝑥 𝑋𝑏 ×  1 + 𝑅 , 𝑈𝑏  

𝑥𝑖 𝑡 + 1 = 𝑥𝑖 𝑡 + 𝐶1 ×  𝑥𝑖 𝑡 − 𝐿𝑏𝑏 + 𝐶2 ×  𝑥𝑖 𝑡 − 𝑈𝑏𝑏  (11) 

Stealing 𝑥𝑖 𝑡 + 1 = 𝑋𝑏 + 𝑆 × 𝑔 ×  𝑥𝑖 𝑡 − 𝑋∗ +  𝑥𝑖 𝑡 − 𝑋𝑏   (12) 

 

In Eq (6), the symbol t represents the current iteration number, and xi(t) represents the position of 

the dung beetle i in the population at the iteration t. The constant value k∈(0,0.2] denotes the 

divergence factor, b is a constant value between 0 and 1, and α is a natural coefficient set to -1 or 1, 

where 1 represents no bias and -1 represents a deviation from the original direction. X
w
 represents the 

worst position in the current population, and ∆x is used to simulate the variation of light intensity. 

Equation (7) introduces the variable θ, which is an angle between 0 and π that represents the 

divergence angle. |xi(t)-xi(t-1)| represents the difference between the position of the dung beetle i at 

the iteration t and its position at the iteration t-1. It is important to note that if θ equals 0, π/2, or π, 



303 

 

STEM Education                                                                Volume 4, Issue 3, 299–327 
 

 

the position of the dung beetle is not updated. 

In Eq (8), X
*
 represents the current local best position, and Lb

*
 and Ub

*
 represent the lower and 

upper bounds of the breeding region, respectively. R=1-t/Tmax, where Tmax represents the maximum 

number of iterations, and Lb and Ub are the upper and lower bounds of the optimization problem. 

Equation (9) introduces Bi(t), which represents the position information of the dung beetle i at the 

iteration t. b1 and b2 are two independent random vectors of size 1×D, where D represents the 

dimension of the optimization problem. 

In Eq (10), X
b
 represents the global best position, while Lb

b
 and Ub

b
 represent the lower and 

upper limits of the optimal foraging region. 

Equation (11) involves the variable C1, which is a random number following a normal 

distribution, and C2 is a random vector belonging to the interval (0, 1). 

Equation (12) introduces the variable g, which is a random vector of size 1×D following a 

normal distribution, and S represents a constant value. 

 
Figure 1. Conceptual model of dung beetle rolling ball trajectory (Xue and Shen 2023). 

   
(a)                                                                     (b) 

Figure 2. The relationship between dance behavior and tangent function (Xue and Shen 

2023). (a) Tangent function curve; (b) a conceptual model of dung beetle dance behavior. 

The algorithm partitions the population into five segments and updates their positions based on 

the five behavioral patterns by using corresponding formulations presented in Table 2. Finally, the 

global population is updated to determine the optimal position. Figure 1 depicts the direction of dung 

beetle rolling, guided by sunlight navigation. Figure 2 showcases the dance behaviors that are 

performed by dung beetles when encountering obstacles, contrasting it with the tangent function. 

Figure 2(a) is the tangent function curve and 2(b) is a conceptual model of dung beetle dance 

behavior. 
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3.2. Simulated annealing 

The simulated annealing (SA) algorithm (Vecchi and Kirkpatrick 1983), that was proposed in 

1983, is a well-established algorithm that has been widely used in the field of combinatorial 

optimization. This algorithm was inspired by the annealing process of solid materials. When the 

temperature of a solid is high, its particles move rapidly, and as the temperature decreases, the 

particles gradually reach a stable state. Due to the similarities between the SA algorithm and 

combinatorial optimization problems, it has been increasingly applied in the engineering domain. For 

solving minimization optimization problems, the main steps of SA are as follows: 

Step 1: Set the initial parameters: a sufficiently large temperature T0, cooling rate α, and the number 

of iterations k. Let T0 = T.  

Step 2: Initialize the iteration counter i = 1. Generate an initial solution X0 randomly. Set Xbest = X0 

and calculate the objective function value E(Xbest). 

Step 3: Generate a neighboring solution Xnew based on Xbest. Calculate E(Xnew) and the objective 

function increment E = E(Xnew)-E(Xbest). 

Step 4: If ∆E < 0, set Xbest = Xnew and accept the new solution as the current solution.  

Step 5: If ∆E > 0, calculate the acceptance probability p = e
-∆E/T

. Generate a random number r 

between 0 and 1. If r < p, accept the new solution by setting Xbest = Xnew. Otherwise, reject the new 

solution, and the original solution remains the best. Increment i by 1.  

Step 6: Set T = α × T.  

Step 7: Check the relationship between i and k. If i is less than k, repeat steps 3 to 5. Otherwise, exit 

the loop. 

4. Improved dung beetle optimization algorithm based on simulated annealing 

algorithm 

Due to the limited performance of the original DBO algorithm in the context of flexible job-shop 

scheduling models, particularly in terms of low convergence accuracy and susceptibility to local 

optima, the simulated annealing (SA) algorithm is considered to be integrated with the DBO 

algorithm. SA can avoid local optimization to a large extent in the early stage and has high 

convergence accuracy in the later stage. An enhanced algorithm called dung beetle optimization with 

simulated annealing (DBO + SA) is proposed for the flexible job-shop scheduling problem. In the 

SA component, perturbed solutions are generated by applying different crossover methods to the 

initial solutions. Furthermore, the algorithm incorporates simulated annealing operations into each 

iteration, allowing for a higher probability of accepting suboptimal solutions during the early stages 

of iteration. This approach helps prevent the algorithm from getting stuck in local optima. As the 

number of iterations increases, the probability of accepting suboptimal solutions gradually decreases, 

leading to improved convergence accuracy in the final solution. 

4.1. Encoding and decoding 

In current research, most scholars employ a two-stage encoding approach for flexible job-shop 

scheduling problems, involving work order sequencing and machine assignment selection [26‒28]. 

Two-stage encoding requires longer lengths, which gives twice the total number of work orders 

when compared to single-layer encoding. This exponentially increases the number of possible 
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permutations, posing challenges for optimization. Additionally, the initial solutions that are 

generated using two-stage encoding are based on completely random machine assignments, which 

results in poor initial solutions and slower convergence rates. To address these issues, this paper 

proposes a single-layer encoding approach that only encodes work orders without considering 

machine assignments. A unique decoding scheme is developed to correspond to the single-layer 

encoding. Integer encoding [29‒31] is employed during the encoding process, while the decoded 

solutions are obtained by rounding real numbers to integers and then performing the decoding 

process. 

Different from the majority of two-stage double-layer encoding approaches, this proposal 

introduces a change in the encoding scheme by using a single-layer encoding. Only the work orders 

of the jobs are encoded, and the length of the encoding is the total number of work orders across all 

jobs. Random initialization is employed to enhance the global search capability of the initial 

population, and machine assignments are determined during the decoding process. By adopting the 

single-layer encoding, the encoding workload can be significantly reduced, making the encoding 

process more concise. Besides, single-layer encoding has better pedagogical results for beginners. 

The specific steps of the encoding process are formulated as follows: 

Step 1: L represents the total number of work orders, Li represents the total number of work orders 

for job i, 1≤i≤total number of jobs, and i is an integer. The numbers 1 to L1 represent the number of 

work order for job 1, the numbers L1+1 to L2 represent the number of work order for job 2, and so 

on, until all work orders for all jobs have corresponding numbers. 

Step 2: Generate a zero vector, x, of length L. Fill the numbers 1 through L randomly into L positions 

in the vector. At this stage, x represents a complete individual of a dung beetle. 

Step 3: Repeat Step 2 multiple times until the predetermined population size is achieved. 

Since only the work orders are encoded without encoding the machines, decoding requires 

selecting the machines corresponding to the work orders before proceeding with subsequent 

operations. Machine selection involves considering various factors, including the completion time of 

the previous work order, whether there are other work orders to be processed on the selected 

machine, the earliest available start time if the machine is chosen with other work orders, and 

whether it affects the subsequent work orders. Additionally, attention should be given to situations 

where multiple machines are available, such as how to make the selection. 

To address the aforementioned issue, the solution proposed in this paper involves recording the 

involvement of each machine in the processing. Each machine has its dedicated timetable, which 

records the time slots when it is engaged in processing. Similarly, each work order has a progress 

table that keeps track of the current operation number for that work order. Whenever a work order 

completes an operation, the corresponding entry in the progress table is incremented. Additionally, a 

decoding table is created, consisting of five columns: work order number, machine number, 

operation number, start time, and end time. The number of rows in the decoding table is equal to the 

total number of operations. Following these steps, when decoding an encoded element, the work 

order number and operation number can be obtained. By referencing the decoding table entries 

corresponding to that work order, the completion time of the previous operation can be determined. 

Combining this with the timetables of all available machines, the earliest start time for the current 

operation can be identified. The machines are then selected in chronological order until a suitable 

machine that can accommodate the operation is found. The accompanying decoding strategy yields 
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relatively higher-quality initial solutions, facilitating subsequent optimization processes by 

accelerating convergence without compromising solution quality. The specific decoding rules are as 

follows: 

Step 1: Identify the work order number and operation number corresponding to the encoded element. 

Step 2: Utilizing the machine timetable, work-order operation progress table, and decoding table, 

retrieve the available machine codes for the current operation and their respective scheduling 

schemes based on the machines' availability. 

Step 3: Based on the scheduled schemes for each machine, determine the available time slots for the 

current operation on each machine and arrange them in ascending order. 

Step 4: Iterate through the available time slots and check if the current operation can fit within each 

interval. If a suitable slot is found, insert this operation. Then, proceed to Step 5. 

Step 5: Update the machine timetable, work-order operation progress table, and decoding table 

accordingly. Then, return to Step 1 and repeat the process until all the encoding elements have been 

decoded. The process is shown in Figure 3. 

 

Figure 3. Decoding flowchart. 

4.2. Algorithm and implementation 

The specific steps of the DBO + SA algorithm are summarized in the flowchart in Figure 3. 

Step 1: Set parameters and initialize the population: Set t = 1, define population size, maximum 

iteration count Tmax, proportion of each behavior in the total population, deflection coefficient k, 

natural coefficient α1, constant b and S, initial temperature T0, and cooling coefficient α2. Create 

initial solutions and the initial population based on the encoding method described in Section 3.1.1. 

Step 2: Calculate the objective function value: Decode the solutions using the decoding method 

described in Section 3.1.2 and retrieve the maximum value from the fifth column of the decoding 

table, which represents the objective function value. 

Step 3: Position update: Update the positions of the individuals in the population according to their 

respective behavior patterns and the corresponding formulations. Note that the result of the 

certificate code calculated by the formula may be decimal. Before calculating the objective function 

value, the decimal values should be rounded to the nearest integers and then decoded. 

Step 4: Simulated annealing operation on the population: Each individual in the population has a 

one-third probability of generating a perturbed solution using one of the three methods that are 

illustrated in Figures 4(a)–4(c). Assuming the original encoding is 1–5, random positions X1 and X2 

are selected for subsequent operations. The inversion operation reverses the elements between X1 

and X2, the exchange operation swaps the elements at positions X1 and X2, and the insertion 
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operation inserts the element at X2 after the element at position X1. Each individual in the 

population generates a perturbed solution through these operations. If the perturbed solution is better 

than the original solution, it is accepted directly. If the perturbed solution is worse, it is accepted with 

a probability of p = e
-∆E/T

, where ∆E is the difference in objective function value between the 

perturbed solution and the original solution. At the beginning of the iteration, when T has a large 

value, p is close to 1, resulting in a higher probability of accepting worse solutions. As the iteration 

progresses and T decreases, p approaches 0, reducing the probability of accepting worse solutions. 

Step 5: Update the population, replace the global best individual and its fitness value, and set 

t = t + 1. 

Step 6: If t > T or the stopping criteria are met, end the algorithm and output the current best solution. 

Otherwise, return to Step 3. 

 

Figure 4. A flowchart of the proposed DBO+SA algorithm. 
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(a)                               (b)                                 (c) 

Figure 5. Generation method of perturbed solution. (a) Reverse, (b) exchange, and (c) insert.  

After multiple tests, it was found that the proportion of each behavior can determine the emphasis 

of the algorithm. Rolling behavior helps increase the algorithm's global search capability, while 

dancing behavior accelerates the algorithm's convergence speed, enhancing its efficiency in the local 

search space. Breeding, foraging, and stealing behaviors contribute to refining and improving the 

already found solutions, thus enhancing the algorithm's convergence precision. After multiple 

comparisons, the proportions of rolling, dancing, breeding, foraging, and stealing behavioral patterns 

were determined to be 27%, 3%, 30%, 20%, and 20%, respectively. Additionally, x was set to 0.9, y 

to 0.1, initial temperature to 3000, and cooling coefficient to 0.97. 

5. Comparative analysis of experiments 

5.1. Comparison of standard examples 

To validate the effectiveness of the integrated algorithm proposed in this study, we selected the 

widely-used Brandimarte benchmark instance (MK01-MK10) [32] from the FJSP standard 

scheduling problem. For FJSP-related algorithms, there are numerous test cases available, with the 

most commonly used ones categorized into three types: Brandimarte cases, Kacem cases, and 

custom-built cases. Brandimarte cases are semi-flexible, Kacem cases are fully flexible, and custom-

built cases are not convenient for comparing multiple algorithms. As semi-flexible scenarios better 

reflect the current real-world workshop conditions, this paper opts for Brandimarte cases as the 

testbed for algorithm evaluation.  

The DBO+SA algorithm was implemented using Matlab2017b and executed on a system running 

Windows 10, with an Intel(R) Core(TM) i5-6300HQ CPU @ 2.30GHz and 16 GB of memory. Set 

the population size to 100 and the maximum iteration count to 100. 

To validate the effectiveness of the improvements made by incorporating the simulated annealing 

approach in the DBO+SA algorithm, a comparative experiment was conducted between the basic 

DBO and DBO+SA. In order to mitigate the influence of randomness, the algorithm was executed 10 

times. The term "Best" represents the best result obtained among the 10 simulation experiments, 

while "Avg" denotes the average optimization outcome over the 10 simulations. The experimental 

results are summarized in Table 3, where the problem instances are defined by their dimensions, with 

"m" representing the number of jobs and "n" representing the number of machines. The results 

indicate the total processing time required to complete all jobs. The best results are highlighted in 

bold red in Table 3. 
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Table 3. Comparison between algorithm DBO and DBO+SA. 

Example Scale 
DBO DBO＋SA Increased amount Increased percentage 

Best Avg Best Avg Best Avg Best Avg 

MK01 10*6 42 43.2 40 41.3 2 1.9 4.8％ 4.4％ 

MK02 10*6 35 36.1 31 31.6 4 4.5 11.4％ 12.5％ 

MK03 15*8 204 206.8 204 205.1 0 1.7 0％ 0.8％ 

MK04 15*8 70 71.3 60 63.2 10 8.1 14.3％ 11.4％ 

MK05 15*4 185 187.1 175 177.6 10 9.5 5.4％ 5.1％ 

MK06 10*10 86 87.8 72 78.6 9 9.2 16.3％ 10.5％ 

MK07 20*5 175 176.0 152 154.3 23 21.7 13.1％ 12.3％ 

MK08 20*10 525 528.4 523 526.4 2 2 0.4％ 0.4％ 

MK09 20*10 330 331.2 315 316.1 15 15.1 4.5％ 4.6％ 

MK10 20*15 264 266.7 231 234.8 33 31.9 12.5％ 12.0％ 

 

Taking the MK03 instance from the aforementioned cases as an example, in Figure 6(a), it can be 

observed that the optimal value converges around the 20th generation and achieves a favorable 

convergence value. Moreover, Figure 6(b) illustrates that the average objective function value of the 

initial population is around 223. This demonstrates the effectiveness of the proposed encoding 

scheme in significantly improving the quality of the initial solutions. This further validates the 

superior convergence speed of the DBO+SA algorithm. 

Figure 7 presents the Gantt chart generated based on the scheduling results for the MK03 

instance. The chart uses the start time of the first operation as the reference zero time point, with the 

horizontal axis representing the total processing time in hours and the vertical axis denoting the 

machine number. Each rectangular block represents an operation, and the text within the block 

indicates the job number, operation number, and processing duration. For instance, "P(5,6)" denotes 

that operation 6 of job 5. The vertical position of the block indicates the machine number on which 

the operation is scheduled, while the left and right coordinates of the block represent the start and 

end times of the operation, respectively. 

 

  
     (a)                                                           (b) 

Figure 6. Convergence curve of the example MK03 results under DBO + SA algorithm. 

(a) Best value and (b) average value.  
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Figure 7. Gantt chart of MK03 scheduling results. 

Simultaneously, the DBO+SA algorithm was compared with other metaheuristic algorithms, 

including the basic genetic algorithm, the quantum whale optimization algorithm [33], the hybrid 

grey wolf optimization algorithm [34], and the hybrid genetic optimization algorithm proposed 

in [35]. The optimal results are highlighted in bold red in Table 4. 

From Table 3, it can be observed that the fused DBO+SA algorithm outperforms the initial DBO 

algorithm in terms of both the optimal and average values. This confirms the effectiveness of the 

DBO+SA algorithm. In Table 4, when comparing the DBO+SA algorithm with other algorithms, it is 

found that the DBO+SA algorithm outperforms the algorithms mentioned in the literature in 6 out of 

10 standard cases. This further demonstrates the superiority of the DBO+SA algorithm. 

Table 4. Comparison of DBO+SA algorithm with other algorithms. 

Example Literature [33] Literature [34] Literature [35] DBO+SA 

MK01 41 40 40 40 

MK02 29 30 27 29 

MK03 204 204 204 204 

MK04 67 60 60 60 

MK05 171 175 178 175 

MK06 72 73 78 68 

MK07 149 149 147 152 

MK08 523 523 523 523 

MK09 317 330 341 315 

MK10 241 252 279 238 

 

Finally, the convergence curves of each algorithm on instances MK01, MK02, MK06, and MK10 

are depicted in Figure 8. Additionally, the Gantt charts of the scheduling solutions for DBO+SA on 

instances MK01, MK02, MK06, and MK10 are presented in Figures 9–12. 

From Figure 8, it can be observed that the algorithm proposed in this paper exhibits a superior 

initial population than other algorithms. Consequently, it significantly increases the convergence 
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speed without compromising convergence precision, thanks to the encoding and decoding strategies 

proposed in this paper. This finding provides a valuable insight for researchers, suggesting the 

potential for improvement through enhancements to encoding and decoding methods.  

  
      (a)                                                                              (b) 

  
    (c)                                                                               (d)      

Figure 8. Convergence curves of instances MK01, MK02, MK06, and MK10 across 

different algorithms. (a) MK01, (b) MK02, (c) MK06, and (d) MK10. 

As can be seen from Figures 9–12, although the overall scheduling scheme has achieved the goal 

of minimizing the maximum completion time, the machine load varies greatly. Some machines have 

almost no downtime events, while others have a lot of idle time, which will cause machines with 

high loads to malfunction more frequently and increase costs. Therefore, it is necessary for relevant 

scholars to work on multi-objective FJSP to make FJSP more relevant to the real situation in the 

workshop. 
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Figure 9. Gantt chart of MK01 scheduling results. 

 
Figure 10. Gantt chart of MK02 scheduling results. 
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Figure 11. Gantt chart of MK06 scheduling results. 

 
Figure 12. Gantt chart of MK10 scheduling results. 

5.2. Simulation of a workshop study case 

Although the algorithm presented in this paper performs well on standard test cases, validating its 

feasibility requires real-world workshop scheduling cases. To this end, we collected instance 
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information from company X's precision workshop, which is a partially flexible job shop. The 

workshop is represented by a scale of 28 × 24, indicating 28 jobs, 24 machines, and a total of 130 

operations. Due to space limitations, the instance information is divided into two parts and presented 

in the appendix. It has also been uploaded to the cloud for reference by readers [36]. Table 5 displays 

the job numbers, operation numbers, machine numbers available for use, and the processing times 

for the first 11 machines for each corresponding operation. Table 6 shows the processing times for 

the remaining 13 machines for each corresponding operation. 
 

 
 

Figure 13. Workshop layout of company X. 

Figure 13 illustrates the layout of company X's precision workshop, which is divided into three 

main sections. The upper end in Figure 13 represents the office area, while the middle section 

corresponds to the processing area, housing a total of 24 machining tools. The letters and numbers in 

Figure 13 denote the machine models, such as "DMU60" referring to a five-axis CNC machine tool 

from the German company DMG Mori. The left lower corner represents Machine 1, with subsequent 

machines numbered sequentially from bottom to top. The above side is dedicated to inspection, 

storage, and polishing of products. The green cross-shaped area in the middle represents the 

pedestrian logistics pathway within the workshop. Additionally, the workshop is equipped with three 

overhead cranes with a lifting capacity of 5 tons each, responsible for handling heavier workpieces. 

Figures 14(a) and 14(b) present the actual view of the workshop's interior. 
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(a)                                                                      (b) 

Figure 14. Realistic view of X company's workshop interior. 

  

(a)                                                       (b) 

Figure 15. Three-dimensional model of 222 products. (a) Bottom of the 222 products; (b) 

top of the 222 products. 

  
      (a)                                                           (b) 

Figure 16. X company produces 222 products. (a) Machine tool 14 processing workpiece 

8; (b) machine tool 3 processing workpiece 4. 

The 222 products, developed and prototyped recently by company X, are processed using a CNC 

5-axis lathe. Each product typically undergoes more than 20 machining operations, 4–6 positioning 

steps, and 3 inspection procedures, resulting in a complex and intricate production process. Figure 

15(a) and 15(b) show two three-dimensional models of a 222 product. Figure 16(a) and 16(b) depict 

a real scene where Machine 14 and Machine 3 are processing workpiece 8 and workpiece 4, 

respectively. Machine 3 is a 5-axis machining center DMU60. It is responsible for processing the 
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side surface of workpiece 4. Machine 14 is a vertical lathe. It is responsible for processing the side 

surface of workpiece 8. Currently, the workshop adopts a manual scheduling approach, where human 

intervention is required to determine the next machining tool after completing each operation. This 

method is inefficient and labor-intensive. Taking the collected instance of 222 products mentioned in 

this paper as an example, excluding scheduling and handling time, the processing time for this 

instance is approximately 300 labor hours. 

 

  
                                                     (a)                                                               (b) 

Figure 17. Convergence curve. (a) Best value; (b) average value. 

 

 

Figure 18. Scheduling plan Gantt chart of 222 product. 

By applying the proposed single-layer encoding and DBO+SA algorithm optimization method 

presented in this paper, the flexible scheduling problem in the workshop can significantly improve 

production efficiency. With a population size of 200 and a maximum iteration count of 100 

generations, the final result yields a maximum processing time of 146 labor hours for the given 

production tasks. Compared to the manual scheduling approach with a processing time of 300 labor 
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hours, the production efficiency has increased by over 50%. Figure 17(a) illustrates the convergence 

curve of the global optimal solution's objective, and Figure 17(b) illustrates the convergence curve of 

the population's average objective function. In Figure 17(a), it can be observed that the optimal value 

converges after 15 iterations, demonstrating a relatively rapid convergence rate. In Figure 17(b), it 

can be seen that the average value also enters a convergence phase after around 80 generations. 

Figure 18 displays the Gantt chart of the scheduling plan for the 222 products. From the chart, it is 

evident that the last operation to be completed is the 6th operation of Job 4, processed by Machine 22. 

Therefore, the maximum completion time for the 222 jobs is determined by the completion time of 

the 6th operation of Job 4, which is 146 labor hours. The successful scheduling of this instance 

demonstrates the feasibility and superiority of the DBO+SA algorithm in flexible job-shop 

scheduling. 

5.3. Discussion 

The students training details include:  

(1) Algorithm improvement: using CEC2021 test functions, the performance of a variety of 

algorithms were all tested, and the possibility of fusion of different algorithms was analyzed. Finally, 

DBO, which has greater development potential, and SA, which is suitable for use in fusing various 

algorithms, were selected from the multiple algorithms. 

(2) Coding and decoding: We tried the two-layer coding and decoding strategy based on machine 

allocation and process ordering and the unified coding strategy and found that they have their own 

advantages and disadvantages. Finally, we tried to combine the two coding strategies to form a 

single-layer coding and decoding strategy; after comparison, we found that the effect is good, and we 

finally determined the coding and decoding strategy in this paper. 

(3) Simulation experiments: Students were sent to Company X for simulation data collection. They 

recorded the basic details of the parts in an order and followed each part through the entire workshop 

scheduling production process. Collected data was then organized for simulation experiments. 

The students were able to gain a better understanding of real workshop conditions through this 

project, going beyond the sole goal of minimizing completion time. They began to consider more 

complex situations in the machining process, such as machine breakdowns, changes in machining 

schedules, and the load of the bottleneck machine and the total machine load, which allowed them to 

have a holistic view of a complex production shop. This further enhanced the students' view of a 

complex production plant. In terms of education, the project improved students' ability to consider 

practical aspects when solving problems and provided them with a way to solve problems. 

6. Conclusions 

In this paper, the flexible job-shop scheduling problem (FJSP) was addressed with the objective 

of minimizing the maximum completion time in a manufacturing process. To tackle the issues of 

complex encoding and susceptibility to local optima in existing algorithms, an algorithm was 

proposed as DBO+SA by integrating the dung beetle optimization (DBO) and simulated annealing 

(SA) algorithms. The approach was achieved as follows:  

First, a one-dimensional encoding scheme was employed to discretely initialize the population 

for the scheduling of operations in the flexible job-shop scheduling problem. This allows for the 
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application of the algorithm to the flexible job-shop scheduling problem. Second, an adaptive 

decoding method was applied to decode the encoding. This involved selecting the processing 

machine for each operation and calculating the objective function value. Next, the dung beetle 

optimization and simulated annealing algorithms were fused together, aiming to enhance both global 

and local search capabilities while ensuring effective exploration of the search space. Test results 

were analyzed with comparisons using the improved algorithms from other literature on the MK 

series instances proposed by Brandimarte. The results demonstrated the effectiveness of the 

algorithm. Furthermore, real-world production instances were collected from Company X's precision 

workshop. By applying the scheduling algorithm proposed in this paper, the production efficiency 

improved 50% when compared with the existing manual scheduling method employed in the 

workshop. It should be noted that the algorithm and model proposed in this paper are only applicable 

to the single-objective FJSP with the objective function of minimizing the maximum completion 

time. While it can accommodate various scales of production scenarios, the considerations and 

objective function are relatively singular, and thus may not address complex production scenarios 

comprehensively.  

This further validates the feasibility of the proposed encoding method and algorithm. Future 

work could involve the application of this algorithm to more complex workshop scheduling 

problems to expand its range of applications. In conclusion, the improvements made to the 

algorithms and scheduling models in this paper offer valuable insights into educational aspects of 

job-shop scheduling. For instance, the single-layer encoding proposed herein simplifies the coding 

process, making it more accessible for beginners. Additionally, the accompanying decoding strategy 

yields relatively higher-quality initial solutions, facilitating subsequent optimization processes by 

accelerating convergence without compromising solution quality. 

The students were able to gain a better understanding of real workshop conditions through the 

exercise of this project and were not limited to the pursuit of completion time as a goal. Instead, they 

began to consider more complex situations in the machining process, such as machine breakdowns, 

changes in machining schedules, and the load of the bottleneck machine and the total machine load, 

providing them with a holistic view of a complex production shop. The students' view of the big 

picture in a complex production plant was further enhanced. In terms of education, the project 

improves students' ability to consider practical aspects when solving problems and provides them 

with a way to solve them. 
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Appendixes  

Appendix A 

Table 5. Processing information 1. 

W P Available machine numbers M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 

1 

1 [37,12,13,22,2111,12,13,22,21] 13 14 15        24 

2 [23,24,15,16,18,19,20]            

3 [8,9,10,23,24,15,16,18,19,20]        35 37 35  

4 [1,2,3,11,12,13,22,21] 11 12 13        22 

5 [4,5,6,7,23,24,15,16,18,19,20]   21 23 25 24     

2 

6 [23,24,15,16,18,19,20]            

7 [23,24,15,16,18,19,20]            

8 [17,4,5,6,7,8,9,10,14]    4 6 7 8 7 5 6  

9 [1,2,3,11,12,13,21,22] 3 2 2        7 

10 [23,24,15,16,18,19,20]            

3 

11 [23,24,15,16,18,19,20]            

12 [23,24,15,16,18,19,20]            

13 [17,4,5,6,7,8,9,10,14]    4 5 6 7 7 5 6  

14 [1,2,3,11,12,13,21,22] 3 4 5        12 

15 [23,24,15,16,18,19,20]            

4 

16 [17,4,5,6,7,8,9,10,14]    7 6 7 8 9 7 6  

17 [23,24,15,16,18,19,20]            

18 [17,4,5,6,7,8,9,10,14]    4 3 3 2 3 5 4  

19 [23,24,15,16,18,19,20]            

20 [1,2,3,11,12,13,21,22] 15 16 17        26 

21 [1,2,3,11,12,13,21,22] 2 3 4        11 

5 

22 [17,4,5,6,7,8,9,10,14]    25 24 24 23 24 26 22  

23 [17,4,5,6,7,8,9,10,14]    40 43 41 42 45 42 43  

24 [17,4,5,6,7,8,9,10,14]    9 7 9 9 8 7 11  

25 [1,2,3,11,12,13,21,22] 3 4 5        12 

6 

26 [17,4,5,6,7,8,9,10,14]    19 17 19 18 18 17 21  

27 [17,4,5,6,7,8,9,10,14]    35 32 34 34 35 31 36  

28 [17,4,5,6,7,8,9,10,14]    9 7 9 9 8 7 11  

29 [1,2,3,11,12,13,21,22] 3 4 5        12 

7 

30 [17,4,5,6,7,8,9,10,14]    7 5 7 7 6 6 8  

31 [23,24,15,16,18,19,20]            

32 [23,24,15,16,18,19,20]            

33 [17,4,5,6,7,8,9,10,14]    36 34 36 36 35 35 37  

34 [17,4,5,6,7,8,9,10,14]    4 5 6 7 7 5 6  

8 

35 [1,2,3,11,12,13,22,21] 13 14 15        24 

36 [23,24,15,16,18,19,20]            

37 [8,9,10,23,24,15,16,18,19,20]        35 37 35  
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38 [1,2,3,11,12,13,22,21] 11 12 13        22 

39 [4,5,6,7,23,24,15,16,18,19,20]   21 23 25 24     

9 

40 [23,24,15,16,18,19,20]            

41 [23,24,15,16,18,19,20]            

42 [17,4,5,6,7,8,9,10,14]    4 6 7 8 7 5 6  

43 [1,2,3,11,12,13,21,22] 3 2 2        7 

44 [23,24,15,16,18,19,20]            

10 

45 [23,24,15,16,18,19,20]            

46 [23,24,15,16,18,19,20]            

47 [17,4,5,6,7,8,9,10,14]    4 5 6 7 7 5 6  

48 [1,2,3,11,12,13,21,22] 3 4 5        12 

49 [23,24,15,16,18,19,20]            

11 

50 [17,4,5,6,7,8,9,10,14]    7 6 7 8 9 7 6  

51 [23,24,15,16,18,19,20]            

52 [17,4,5,6,7,8,9,10,14]    4 3 3 2 3 5 4  

53 [23,24,15,16,18,19,20]            

54 [1,2,3,11,12,13,21,22] 15 16 17        26 

55 [1,2,3,11,12,13,21,22] 2 3 4        11 

12 

56 [17,4,5,6,7,8,9,10,14]    25 24 24 23 24 26 22  

57 [17,4,5,6,7,8,9,10,14]    40 43 41 42 45 42 43  

58 [17,4,5,6,7,8,9,10,14]    9 7 9 9 8 7 11  

59 [1,2,3,11,12,13,21,22] 3 4 5        12 

13 

60 [17,4,5,6,7,8,9,10,14]    19 17 19 18 18 17 21  

61 [17,4,5,6,7,8,9,10,14]    35 32 34 34 35 31 36  

62 [17,4,5,6,7,8,9,10,14]    9 7 9 9 8 7 11  

63 [1,2,3,11,12,13,21,22] 3 4 5        12 

14 

64 [17,4,5,6,7,8,9,10,14]    7 5 7 7 6 6 8  

65 [23,24,15,16,18,19,20]            

66 [23,24,15,16,18,19,20]            

67 [17,4,5,6,7,8,9,10,14]    36 34 36 36 35 35 37  

68 [17,4,5,6,7,8,9,10,14]    4 5 6 7 7 5 6  

15 

69 [1,2,3,11,12,13,22,21] 13 14 15        24 

70 [23,24,15,16,18,19,20]            

71 [8,9,10,23,24,15,16,18,19,20]        35 37 35  

72 [1,2,3,11,12,13,22,21] 11 12 13        22 

73 [4,5,6,7,23,24,15,16,18,19,20]   21 23 25 24     

16 

74 [23,24,15,16,18,19,20]            

75 [23,24,15,16,18,19,20]            

76 [17,4,5,6,7,8,9,10,14]    4 6 7 8 7 5 6  

77 [1,2,3,11,12,13,21,22] 3 2 2        7 

78 [23,24,15,16,18,19,20]            

17 

79 [23,24,15,16,18,19,20]            

80 [23,24,15,16,18,19,20]            

81 [17,4,5,6,7,8,9,10,14]    4 5 6 7 7 5 6  

82 [1,2,3,11,12,13,21,22] 3 4 5        12 

83 [23,24,15,16,18,19,20]            

18 

84 [1,2,3,11,12,13,22,21] 13 14 15        24 

85 [23,24,15,16,18,19,20]            

86 [8,9,10,23,24,15,16,18,19,20]        35 37 35  
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87 [1,2,3,11,12,13,22,21] 11 12 13        22 

88 [4,5,6,7,23,24,15,16,18,19,20]   21 23 25 24     

19 

89 [23,24,15,16,18,19,20]            

90 [23,24,15,16,18,19,20]            

91 [17,4,5,6,7,8,9,10,14]    4 6 7 8 7 5 6  

92 [1,2,3,11,12,13,21,22] 3 2 2        7 

93 [23,24,15,16,18,19,20]            

20 

94 [23,24,15,16,18,19,20]            

95 [23,24,15,16,18,19,20]            

96 [17,4,5,6,7,8,9,10,14]    4 5 6 7 7 5 6  

97 [1,2,3,11,12,13,21,22] 3 4 5        12 

98 [23,24,15,16,18,19,20]            

21 

99 [17,4,5,6,7,8,9,10,14]    25 24 24 23 24 26 22  

100 [17,4,5,6,7,8,9,10,14]    40 43 41 42 45 42 43  

101 [17,4,5,6,7,8,9,10,14]    9 7 9 9 8 7 11  

102 [1,2,3,11,12,13,21,22] 3 4 5        12 

22 

103 [17,4,5,6,7,8,9,10,14]    19 17 19 18 18 17 21  

104 [17,4,5,6,7,8,9,10,14]    35 32 34 34 35 31 36  

105 [17,4,5,6,7,8,9,10,14]    9 7 9 9 8 7 11  

106 [1,2,3,11,12,13,21,22] 3 4 5        12 

23 

107 [17,4,5,6,7,8,9,10,14]    25 24 24 23 24 26 22  

108 [17,4,5,6,7,8,9,10,14]    40 43 41 42 45 42 43  

109 [17,4,5,6,7,8,9,10,14]    9 7 9 9 8 7 11  

110 [1,2,3,11,12,13,21,22] 3 4 5        12 

24 

111 [17,4,5,6,7,8,9,10,14]    19 17 19 18 18 17 21  

112 [17,4,5,6,7,8,9,10,14]    35 32 34 34 35 31 36  

113 [17,4,5,6,7,8,9,10,14]    9 7 9 9 8 7 11  

114 [1,2,3,11,12,13,21,22] 3 4 5        12 

25 

115 [17,4,5,6,7,8,9,10,14]    25 24 24 23 24 26 22  

116 [17,4,5,6,7,8,9,10,14]    40 43 41 42 45 42 43  

117 [17,4,5,6,7,8,9,10,14]    9 7 9 9 8 7 11  

118 [1,2,3,11,12,13,21,22] 3 4 5        12 

26 

119 [17,4,5,6,7,8,9,10,14]    19 17 19 18 18 17 21  

120 [17,4,5,6,7,8,9,10,14]    35 32 34 34 35 31 36  

121 [17,4,5,6,7,8,9,10,14]    9 7 9 9 8 7 11  

122 [1,2,3,11,12,13,21,22] 3 4 5        12 

27 

123 [17,4,5,6,7,8,9,10,14]    25 24 24 23 24 26 22  

124 [17,4,5,6,7,8,9,10,14]    40 43 41 42 45 42 43  

125 [17,4,5,6,7,8,9,10,14]    9 7 9 9 8 7 11  

126 [1,2,3,11,12,13,21,22] 3 4 5        12 

28 

127 [17,4,5,6,7,8,9,10,14]    19 17 19 18 18 17 21  

128 [17,4,5,6,7,8,9,10,14]    35 32 34 34 35 31 36  

129 [17,4,5,6,7,8,9,10,14]    9 7 9 9 8 7 11  

130 [1,2,3,11,12,13,21,22] 3 4 5        12 

Table 6. Processing information 2. 

W P M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 

1 
1 25 26        20 19   

2    20 21  15 16 17   26 27 
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3    24 25  19 20 18   30 31 

4 23 24            

5    20 21  15 16 17   26 27 

2 

6    18 19  13 14 15   24 25 

7    28 29  23 24 25   34 35 

8   11   15        

9 8 9        4 5   

10    7 8  4 5 6   11 12 

3 

11    12 13  9 10 11   16 17 

12    20 21  17 18 19   24 25 

13   10   14        

14 13 14        8 9   

15    6 7  3 4 5   10 11 

4 

16   12   16        

17    18 19  13 14 15   24 25 

18   10   14        

19    18 19  13 14 15   24 25 

20 27 28        22 23   

21 12 13        7 8   

5 

22   36   40        

23   51   55        

24   15   21        

25 13 14        8 9   

6 

26   16   31        

27   32   48        

28   15   21        

29 13 14        8 9   

7 

30   13   18        

31    20 21  15 16 17   26 27 

32    28 29  23 24 25   34 35 

33   42   47        

34   10   14        

8 

35 25 26        20 19   

36    20 21  15 16 17   26 27 

37    24 25  19 20 18   30 31 

38 23 24            

39    20 21  15 16 17   26 27 

9 

40    18 19  13 14 15   24 25 

41    28 29  23 24 25   34 35 

42   11   15        

43 8 9        4 5   

44    7 8  4 5 6   11 12 

10 

45    12 13  9 10 11   16 17 

46    20 21  17 18 19   24 25 

47   10   14        

48 13 14        8 9   

49    6 7  3 4 5   10 11 

11 

50   12   16        

51    18 19  13 14 15   24 25 

52   10   14        

53    18 19  13 14 15   24 25 

54 27 28        22 23   

55 12 13        7 8   

12 

56   36   40        

57   51   55        

58   15   21        

59 13 14        8 9   

13 
60   16   31        

61   32   48        
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62   15   21        

63 13 14        8 9   

14 

64   13   18        

65    20 21  15 16 17   26 27 

66    28 29  23 24 25   34 35 

67   42   47        

68   10   14        

15 

69 25 26        20 19   

70    20 21  15 16 17   26 27 

71    24 25  19 20 18   30 31 

72 23 24            

73    20 21  15 16 17   26 27 

16 

74    18 19  13 14 15   24 25 

75    28 29  23 24 25   34 35 

76   11   15        

77 8 9        4 5   

78    7 8  4 5 6   11 12 

17 

79    12 13  9 10 11   16 17 

80    20 21  17 18 19   24 25 

81   10   14        

82 13 14        8 9   

83    6 7  3 4 5   10 11 

18 

84 25 26        20 19   

85    20 21  15 16 17   26 27 

86    24 25  19 20 18   30 31 

87 23 24            

88    20 21  15 16 17   26 27 

19 

89    18 19  13 14 15   24 25 

90    28 29  23 24 25   34 35 

91   11   15        

92 8 9        4 5   

93    7 8  4 5 6   11 12 

20 

94    12 13  9 10 11   16 17 

95    20 21  17 18 19   24 25 

96   10   14        

97 13 14        8 9   

98    6 7  3 4 5   10 11 

21 

99   36   40        

100   51   55        

101   15   21        

102 13 14        8 9   

22 

103   16   31        

104   32   48        

105   15   21        

106 13 14        8 9   

23 

107   36   40        

108   51   55        

109   15   21        

110 13 14        8 9   

24 

111   16   31        

112   32   48        

113   15   21        

114 13 14        8 9   

25 

115   36   40        

116   51   55        

117   15   21        

118 13 14        8 9   

26 
119   16   31        

120   32   48        
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121   15   21        

122 13 14        8 9   

27 

123   36   40        

124   51   55        

125   15   21        

126 13 14        8 9   

28 

127   16   31        

128   32   48        

129   15   21        

130 13 14        8 9   
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