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Abstract: I show how multivariate integration over a physical object serves as a handy tool for a 

gentle introduction to multivariate probability theory with continuous variables. This exercise helps 

to visualise and thus link concepts that at first sight seem distant or even unrelated. The concepts and 

methods presented are digestible for advanced high school classes and above. 
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1. Introduction 

Integration can be used to derive the mass of non-homogeneous objects if the structure is not too 

complex. Such an exercise, however, is not only useful in engineering, but can also be a very 

illustrative, tangible way of introducing multivariate probability theory with continuous variables. It 

seems logical to start with the three-dimensional case, since this is what we encounter every day, and 

thus what we can easily relate to. 

2. Mass of a physical object 

Take a non-homogeneous cube with an edge of 𝑎 meters. Suppose that its density (𝜌) depends 

on the sum of the shortest distances from the three faces meeting at a given vertex. Thus, placing the 

cube into a Cartesian coordinate system where the origin is that particular vertex (Figure 1), the 
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density can be expressed as the sum of the spatial coordinates,
1
 

𝜌 𝑥, 𝑦, 𝑧 =  𝑥 + 𝑦 + 𝑧  
kg

m4
 . (1) 

It follows that the density of the large cube is a spectrum between 0 kg m3  and 3𝑎 kg m3 . 

Since the equation 𝑥 + 𝑦 + 𝑧 = 𝑗 ∈ ℝ+ m defines a hyperplane, the cube consists of a continuum of 

parallel cross-sections (slices). Practically speaking, each slice is a set of points for which the sums 

of the coordinates are equal (Figure 2). 

 

 Figure 1. Perspective view in a Cartesian Figure 2. Cross-section ABC at 𝑗 = 𝑎. 

  coordinate system. 

Question 1: What is the mass of the small cube with an edge of 𝑎/2 meters and its relation to the 

mass of the large cube? 

If the material were homogeneous, the answer would be straightforward. The volume of the small 

cube is 𝑎3 8  m3, which should be multiplied by the density of the material to get the mass. In our 

case, however, the density is in not a constant but a linear function of 𝑥, 𝑦, 𝑧. Triple integration 

comes to our rescue. 

In this process, the object is scanned properly along each dimension. Since we are dealing with 

cubes that have three edges on the axes of the coordinate system, we have an easy job: The limits of 

integration, i.e. the lower and upper bounds of the scan are simply the origin and the edge length in 

each dimension. That is, the mass of the small cube is (substituting Equation 1)
2
 

                                                             
1 Note that the unit of measurement of the variables is meter, and so m ∙ kg/m4 = kg/m3. 
2 Only power rule is applied:  𝑥𝑛 𝑑𝑥 = 𝑥𝑛+1  𝑛 + 1  + 𝑐. Note that the constant cancels out for a definite integral. For 

simplicity, the units of measurement were omitted during the integration. However, notice that, at the end, the meters 

would be to the fourth power, which together with the factor kg m4  of the density function is m4 ∙ kg m4 = kg. 
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   𝜌(𝑥, 𝑦, 𝑧)

𝑎
2

0

𝑎
2

0

𝑎
2

0

𝑑𝑧 𝑑𝑦 𝑑𝑥 =     𝑥 + 𝑦 + 𝑧 

𝑎
2

0

𝑎
2

0

𝑎
2

0

𝑑𝑧 𝑑𝑦 𝑑𝑥

=    𝑥𝑧 + 𝑦𝑧 +
𝑧2

2
 

0

𝑎
2

𝑎
2

0

𝑎
2

0

𝑑𝑦 𝑑𝑥 =    
𝑎

2
𝑥 +

𝑎

2
𝑦 +

𝑎2

8
 

𝑎
2

0

𝑎
2

0

𝑑𝑦 𝑑𝑥

=   
𝑎

2
𝑥𝑦 +

𝑎

4
𝑦2 +

𝑎2

8
𝑦 

0

𝑎
2

𝑎
2

0

𝑑𝑥 =   
𝑎2

4
𝑥 +

𝑎3

8
 

𝑎
2

0

𝑑𝑥 =  
𝑎2

8
𝑥2 +

𝑎3

8
𝑥 

0

𝑎
2

=
𝑎4

32
+

𝑎4

16
=

3𝑎4

32
 kg . 

(2) 

The mass is calculated in the same way for the large cube: 

   𝜌(𝑥, 𝑦, 𝑧)
𝑎

0

𝑎

0

𝑎

0

𝑑𝑧 𝑑𝑦 𝑑𝑥 =     𝑥 + 𝑦 + 𝑧 
𝑎

0

𝑎

0

𝑎

0

𝑑𝑧 𝑑𝑦 𝑑𝑥

=    𝑥𝑧 + 𝑦𝑧 +
𝑧2

2
 

0

𝑎𝑎

0

𝑎

0

𝑑𝑦 𝑑𝑥 =    𝑎𝑥 + 𝑎𝑦 +
𝑎2

2
 

𝑎

0

𝑎

0

𝑑𝑦 𝑑𝑥

=   𝑎𝑥𝑦 +
𝑎

2
𝑦2 +

𝑎2

2
𝑦 

0

𝑎𝑎

0

𝑑𝑥 =   𝑎2𝑥 + 𝑎3 
𝑎

0

𝑑𝑥 =  
𝑎2

2
𝑥2 + 𝑎3𝑥 

0

𝑎

=
𝑎4

2
+ 𝑎4 =

3𝑎4

2
 kg . 

(3) 

Table 1 summarises our answer to Question 1. 

Table 1. Masses and their ratios. 

 Small cube Large cube Ratio 

Homogeneous* 
3𝑎4

8
 kg 3𝑎4 kg 

1

8
 

Non-homogeneous 
3𝑎4

32
 kg 

3𝑎4

2
 kg 

1

16
 

*𝜌 = 3𝑎 kg m3  (i.e., the spectral maximum of the non-homogenous) is assumed. 

Of a homogeneous object and its non-homogenous lookalike, the one with the lower average 

density is the lighter. Since the density of the homogeneous is assumed to be equal to the spectral 

maximum of the non-homogeneous, it is obvious why the homogeneous is the heavier. 

Overall, for complex structures, it is usually necessary to go beyond simple geometric formulae 

and use integration to calculate the mass. Depending on the shape of the surface and also the density 
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structure, other coordinate systems may be more useful. For example, in the spherical coordinate 

system, the three coordinates of a point 𝑃 are the radial distance (i.e., the length of the line segment 

𝑂𝑃), the azimuthal angle (measured between the x-axis and 𝑂𝑃’s projected line segment on the 

xy-plane) and the zenith angle (measured between the z-axis and 𝑂𝑃). With a concrete example, the 

point  𝑎, 𝑎, 𝑎  in our Cartesian coordinate system would be the point  𝑎 3, 𝜋 4 , 𝜋 4   in a 

spherical coordinate system assuming identical axes, where the two 45° angles are in radians. 

Without going into the details, this alone suggests that for a non-homogeneous sphere, the radial and 

angular scans under the spherical coordinate system (with more obvious limits of integration) may be 

more appropriate than the scans along the axes under the Cartesian coordinate system. 

3. From mass density through occurrence density to … 

The above concept can be readily applied to probability calculations. Let us suppose that a source 

emits sinusoidal pulses for which all their characteristics (amplitude, wavelength, speed) are random 

variables. Assume that each variable can take a value between 0 and 𝑎 in their own unit of 

measurement, and that a pulse is more likely to occur if the value of any of its properties is greater.
3
 

Assuming direct proportionality with proportionality constant 1 for each variable and, for simplicity, 

taking the values without the units of measurement, it means 

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 + 𝑧 , (4) 

where 𝑥, 𝑦 and 𝑧 are the values for amplitude, wavelength and speed, respectively.
4
 Thus, we 

know the ranges (0 to 𝑎 for each), we know the occurrence density of the triplets (defined by 

function 𝑓), and so we know the set of all possible outcomes of our random experiment, i.e., the 

sample space (𝑆).
5
 This abstract space can be imagined as if it were a real space. That is, 𝑥, 𝑦, and 

𝑧 can be thought of as “spatial” coordinates and the function 𝑓 as the descriptor of “mass” density. 

Question 2: What is the probability that the next pulse emitted will have amplitude and wavelength of 

𝑎/2 meters or less and speed of 𝑎/2 𝑚/𝑠 or less? 

Actually, we have already solved this puzzle. The set of outcomes defined in Question 2 is a 

so-called event (𝐸), therefore the probability in question is (recall Table 1) 

𝑃𝑟 𝐸 =
𝐸

𝑆
=

"𝑀𝑎𝑠𝑠" 𝑜𝑓 𝑠𝑚𝑎𝑙𝑙 𝑐𝑢𝑏𝑒

"𝑀𝑎𝑠𝑠" 𝑜𝑓 𝑙𝑎𝑟𝑔𝑒 𝑐𝑢𝑏𝑒
=

3𝑎4

32
3𝑎4

2

=
1

16
 , (5) 

where 𝑃𝑟 is a function called probability measure that maps all events to a real number between 0 

and 1, i.e., 𝑃𝑟: 𝐸𝑣𝑒𝑛𝑡 →  0,1 . That is, the domain of this function is a collection of sets. 

For example, let us take two events whose union gives the sample space: The one that we have 

already defined (𝐸), and its complement set (𝐸𝐶), where all three variables are greater than 𝑎/2 (in 

                                                             
3 This is just an arbitrary example with no underlying physical content. 
4 If the function were defined for the values with units of measurement, it would be 𝑓 𝑥, 𝑦, 𝑧 = 𝑥/m + 𝑦/m + 𝑧 ∙ s/m 

similar to Equation 1. 
5 Note that, in a continuous space, a single point (triplet) has no mass and hence no density, but the very small 

environment around it has mass and hence density. 
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their own unit of measurement). Then, the domain consists of these two disjoint events which the 

probability measure maps to 1 16  and 15 16  (recall Equation 5), plus the trivial events, the 

empty set (∅) and the sample space (𝑆), which it maps to 0 and 1.
6
 Note that non-trivial events are 

not necessarily defined as disjoints. The point is that all outcomes should be covered, i.e., the union 

of non-trivial events should be the sample space. Empty set can be, for example, an elementary event, 

meaning an event having only a single outcome (e.g., “Each variable equals 𝑎/2”). By geometric 

analogy, a point has no extent and hence no mass, i.e. the numerator in Equation 5 and so the 

probability will be zero (𝑃𝑟: ∅ → 0). 

4. … probability density 

Recall that the “mass” of the large cube is 3𝑎4 2 . Thus, with 𝑎 ≔  2/34
, our non-homogenous 

structure of the large cube represents not only an occurrence density, but also a probability density: It 

integrates to 1 just like the probability density function (PDF) of a normal (Gaussian) or any other 

absolutely continuous probability distribution.
7
 Practically, as the “mass” of the sample space is 1, it 

means that the “mass” of an event is also the probability of the event (e.g., 

Pr 𝐸 = "𝑀𝑎𝑠𝑠" 𝑜𝑓 𝑠𝑚𝑎𝑙𝑙 𝑐𝑢𝑏𝑒/1). 

Thus, in this case, Equation 4 is a three-variable joint PDF. A three-variable PDF has three 

marginal PDFs. The marginal PDF shows the probability distribution of a variable considering all 

related value pairs of the remaining two variables. For example, it shows the probability distribution 

of amplitude considering all related pairs of wavelength and speed. Formally, the marginal PDF of 

amplitude is (using the expression 𝑎2𝑥 + 𝑎3 obtained in Equation 3 after the integration with 

respect to 𝑧 and 𝑦, and substituting 𝑎 =  2/34
) 

𝑓𝐴𝑀𝑃 𝑥 = 𝑥 
2

3
+   

2

3
 

34

 . (6) 

Question 3: What is the probability that the next pulse emitted will have amplitude of a/2 meters or 

less? 

To answer this question, we need to integrate 𝑓𝐴𝑀𝑃 𝑥  from 0 to  2/34 /2 (i.e., halfway). 

Visually, the integration of this function can be also thought of as an underlying cross-section scan of 

the large cube along the desired segment of the 𝑥-axis. That is, the “mass” of the ABCDEFGO 

cuboid in Figure 3 and the size of the shaded area in Figure 4 are exactly the same, namely the 

probability we want to find. 

                                                             
6 This collection  ∅, 𝐸, 𝐸𝐶 , 𝑆  is a so-called 𝜍-algebra on 𝑆. The trio of sample space, 𝜍-algebra, and probability 

measure is called the probability space. 
7 The Cantor distribution is a notable example of a continuous (but not absolutely continuous) distribution without a 

PDF. For a geometric discussion of this interesting distribution, see Presnell [1]. 
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 Figure 3. Cross-section scan along 𝑥. Figure 4. Marginal PDF and CDF (r. axis) 

   of amplitude. 

The cumulative distribution function (CDF) simply shows the integrated “mass” of the PDF from 

the minimum value of the random variable to a specific value of the random variable, i.e., the 

probability that the random variable is smaller than the specific value. As for amplitude, the event is 

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ≤ 𝑥, and so the related probability is 𝑃𝑟 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 ≤ 𝑥 . It logically follows that the 

CDF goes from 0 to 1 as 𝑥 increases from its minimum value. Formally, the marginal CDF of 

amplitude is (using Equation 6) 

𝐹𝐴𝑀𝑃 𝑥 =  𝑓𝐴𝑀𝑃 𝑡 
𝑥

0

𝑑𝑡 =   𝑡 
2

3
+   

2

3
 

34

 
𝑥

0

𝑑𝑡 =
𝑥2

2
 

2

3
+ 𝑥  

2

3
 

34

 

≡ 𝐹   
2

3

4

 ,  
2

3

4

, 𝑥 =    𝑓 𝑡, 𝑦, 𝑧 
𝑥

0

 2
3

4

0

 2
3

4

0

𝑑𝑧 𝑑𝑦 𝑑𝑡 , 

(7) 

where the expressions after sign ≡ recalls the underlying content highlighted in Figure 3. The 

specific value from Question 3 is 𝑥 =  2/34 /2, so substituting this into Equation 7 gives the 

probability sought. 

To conclude this section, let us invoke our old acquaintance, the small cube. The probability of 

the event it represents (here: “All variables are  2/34 /2 or less in their own unit of measurement”) 

is, of course, already known. Notice, however, that since it is located at the origin (i.e., at the 

minimum values of the variables), the probability can be expressed by the joint CDF, 

O
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𝐹

 

 
 2

3

4

2
,
 2

3

4

2
,
 2

3

4

2

 

 =
1

16
 . (8) 

5. Towards generalisation with a bit of formalism 

Let us return to the general concept of “small cube / large cube” with 𝑎 > 0. The concept can be 

easily generalized to higher (or lower) dimensions. For example, if the duration of a pulse varies, this 

new dimension can be added to our sample space. Assuming a range of 0 to 𝑎 seconds, the sample 

space becomes a tesseract, i.e., a 4-dimensional hypercube. 

Let 𝑤 , 𝑥 , 𝑦 , and 𝑧  denote the values (without the units of measurement) for duration, 

amplitude, wavelength and speed, respectively. Suppose that, in the occurrence density function, the 

duration also has the same proportionality as the other addends. Thus, the sample space is (denoting 

dimension in parenthesis) 

𝑆 4 =  𝑣 =  𝑤, 𝑥, 𝑦, 𝑧 ∈ ℝ4   

0 < 𝑤 ≤ 𝑎
0 < 𝑥 ≤ 𝑎
0 < 𝑦 ≤ 𝑎
0 < 𝑧 ≤ 𝑎

    , (9) 

whereas the occurrence density function is 𝑓 4  𝑤, 𝑥, 𝑦, 𝑧 = 𝑤 + 𝑥 + 𝑦 + 𝑧. Using the result of 

Equation 3, the “mass” of such an object is 

    𝑓 4 (𝑤, 𝑥, 𝑦, 𝑧)
𝑆 4 

𝑑𝑧 𝑑𝑦 𝑑𝑥 𝑑𝑤 =      𝑤 + 𝑥 + 𝑦 + 𝑧 
𝑎

0

𝑎

0

𝑎

0

𝑎

0

𝑑𝑧 𝑑𝑦 𝑑𝑥 𝑑𝑤

=  
3𝑎4

2

𝑎

0

𝑑𝑤 +     𝑤
𝑎

0

𝑎

0

𝑎

0

𝑎

0

𝑑𝑧 𝑑𝑦 𝑑𝑥 𝑑𝑤 =  
3𝑎4

2
𝑤 

0

𝑎

+  
𝑎3

2
𝑤2 

0

𝑎

=
3𝑎5

2
+

𝑎5

2
= 2𝑎5 . 

 

(10) 

The event in which the duration is 𝑎/2 seconds or less, in addition to the other three analogous 

conditions, is 

𝐸 4 =  𝑣 =  𝑤, 𝑥, 𝑦, 𝑧 ∈ ℝ4   

0 < 𝑤 ≤ 𝑎/2
0 < 𝑥 ≤ 𝑎/2
0 < 𝑦 ≤ 𝑎/2
0 < 𝑧 ≤ 𝑎/2

    , 
 

(11) 

and so its “mass”, using the result of Equation 2, is 



149 

 

STEM Education  Volume 4, Issue 2, 142–150 

    𝑓 4 (𝑤, 𝑥, 𝑦, 𝑧)
𝐸 4 

𝑑𝑧 𝑑𝑦 𝑑𝑥 𝑑𝑤 =      𝑤 + 𝑥 + 𝑦 + 𝑧 

𝑎
2

0

𝑎
2

0

𝑎
2

0

𝑎
2

0

𝑑𝑧 𝑑𝑦 𝑑𝑥 𝑑𝑤

=  
3𝑎4

32

𝑎
2

0

𝑑𝑤 +     𝑤

𝑎
2

0

𝑎
2

0

𝑎
2

0

𝑎
2

0

𝑑𝑧 𝑑𝑦 𝑑𝑥 𝑑𝑤 =  
3𝑎4

32
𝑤 

0

𝑎
2

+  
𝑎3

16
𝑤2 

0

𝑎
2

=
3𝑎5

64
+

𝑎5

64
=

𝑎5

16
 , 

(12) 

and so the probability of such an event is 

Pr 𝐸 4  =
𝐸 4 

𝑆 4 
=

𝑎5

16
2𝑎5

=
1

32
 . 

(13) 

6. Dimensionality and shape issues 

Notice that the probability of our 4-dimensional event (see Equation 13) is only half of the 

probability of our 3-dimensional event (see Equation 5). It is easy to see that the probabilities of 

events defined along similar patterns dwarf as the dimension increases. Assuming an occurrence 

density of 1, for simplicity, the limit is 

lim
𝑛→∞

𝐸 𝑛 

𝑆 𝑛 
= lim

𝑛→∞

 
𝑎
𝑘
 
𝑛

𝑎𝑛
= lim

𝑛→∞

1

𝑘𝑛
= 0 . (14) 

where 𝑛 ∈ ℕ denotes the dimension and 𝑘 > 1 is a constant. 

Note that, in this context, the shape of the sample space and the event is not irrelevant. Think of a 

homogeneous spherical sample space and a cubical event with radius (𝑟) and edge (𝑙) of 𝑎 “metres” 

and identical center of symmetry. It follows that 𝐸𝑐𝑢𝑏𝑒  (𝑙=𝑎)
 3 

⊂ 𝑆𝑠𝑝𝑕𝑒𝑟𝑒  (𝑟=𝑎)
 3 

 as the body diagonal of 

the cube is smaller than the diameter of the sphere (𝑎 3 < 2𝑎). As 𝑛 goes to infinity, however, their 

ratio also goes to infinity, 

lim
𝑛→∞

𝐸𝑐𝑢𝑏𝑒   𝑙=𝑎 
 𝑛 

𝑆𝑠𝑝𝑕𝑒𝑟𝑒   𝑟=𝑎 
 𝑛 

= lim
𝑛→∞

𝑎𝑛

𝑎𝑛 𝜋𝑛 Γ  
𝑛
2

+ 1  
= lim

𝑛→∞

Γ  
𝑛
2

+ 1 

 𝜋𝑛
= ∞ ↯ , (15) 

where Γ denotes the gamma function.
8
 That is, beyond a certain point, 𝐸𝑐𝑢𝑏𝑒  (𝑙=𝑎)

 𝑛 
⊄ 𝑆𝑠𝑝𝑕𝑒𝑟𝑒  (𝑟=𝑎)

 𝑛 
 

is inevitable, which relation makes no sense. 

7. Conclusions 

I proposed an approach for those who prefer visualisation to abstraction when they first 

                                                             
8 For an in-depth discussion of the interesting properties of n-sphere’s volume (e.g., besides its asymptotic nullity, its 

non-monotonicity to n), see Smith and Vamanamurthy [2]. 
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encounter a more complex subject such as multivariate probability theory with continuous variables. 

Once the link is established through a three-dimensional physical example, one could easily move 

towards abstraction. In fact, geometry as a complement can help to understand several algebraic 

concepts. Adventurous readers with a deeper interest in geometric probability should delve into the 

books of, for example, Solomon [3], Klain and Rota [4], or Mathai [5]. 
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