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Abstract: Numerical integration plays an important role in solving various engineering and scientific 

problems and is often learnt in applied calculus commonly through the trapezium and Simpson’s 

methods (or rules). A common misconception for some students is that Simpson’s method is the 

default choice for numerical integration due to its higher accuracy in approximation over the 

trapezium method by overlooking the requirement for using Simpson’s method. As learning 

progressed to other numerical methods scheduled later in advanced mathematics, such as 

interpolations and computational modelling using computing tools like MATLAB, there is a lack of 

articulation among these numerical methods for students to solve problems solvable only by 

combining two or more approaches. This classroom note shares a few teaching and learning practices 

the author experienced in lectures, tutorials, and formal assessments on comparing or combining 

different numerical methods for numerical integration for engineering students in applied calculus 

and advanced mathematics over the past decade at Central Queensland University (CQU), a regional 

university in Australia. Each case represents a common concern raised or a mistake made by some 

students in different times. These efforts helped not only correct the misconception on the use of 

Simpson’s method by some students, but also develop students’ strategic thinking in problem 

solving, particularly involving decision-making for choosing the best possible method to produce a 

more appropriate solution to a problem that does not have an analytical solution. 
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1. Introduction  

Numerical computing is useful for solving problems in engineering (and many other disciplines). 

Therefore, various numerical techniques are introduced to engineering students during their 

mathematics studies in applied calculus, advanced mathematics, and computational modelling in 

engineering curriculum in most universities in the world. For example, engineering students at 

Central Queensland University (CQU) of Australia used to learn solving nonlinear equations by 

Newton’s method, numerical integration by the trapezium and Simpson’s methods, and numerical 

approximation by Taylor’s and McLaurin’s series in applied calculus [1‒3], curve fitting by 

interpolations and solving ODEs by Euler’s and Runge-Kutta methods in advanced mathematics [4], 

followed by computational modelling using MATLAB [5].  

In the normal sequence of mathematics teaching and learning, numerical integration is taught 

before interpolations and ODEs, so in most cases the trapezium and Simpson’s methods are 

introduced to students at the time when learning applied calculus. Once progressed to the later stage 

to learn interpolations and modelling, numerical integration is no longer the focus of teaching and 

learning. As a result, the numerical techniques learnt separately earlier or later are often not 

incorporated to solve theoretical and applied problems to which analytical solutions are not available, 

for example 
1

4

0
1 x dx . There is also a lack of seamless articulation between solving some integrals 

by analytical methods and by numerical methods for students in practice, which saw many students 

stuck with either the analytical methods or numerical methods for a problem solvable only by 

combining the two approaches. However, addressing these issues is not an easy task as it requires the 

instructor to recall the related topics previously learnt whenever progressing to a new topic later, and 

more importantly to demonstrate strategy and tactics of logical articulation with two or more 

techniques using meaningful examples to students. 

This classroom note shares a few teaching and learning practices in comparing or combining 

different numerical methods for numerical integration the author experienced in lectures, tutorials, 

and formal assessments at CQU. Most cases presented in this note are reworked by the author from 

various examples delivered to engineering students in applied calculus and advanced mathematics 

involving numerical integration over the past decade. Each case represents a common concern raised 

or a mistake made by some students in different times. 

The first three examples showed that the higher accuracy in approximation for numerical 

integration resulted from Simpson’s method when the requirement is met may lead students to take 

Simpson’s method as their default choice for approaching numerical integration, often overlooked 

the requirement that Simpson’s method only applies to cases where the equal subdivision must have 

even numbers. Applying Simpson’s method to problems with equal subdivision of odd numbers 

would produce a result much worse than that by the trapezium method. This misperception on using 

Simpson’s method as the default choice occurred in a formal assessment showed in Example 4 where 

some students directly applied the method to nine data sets. In other special circumstances, the 

trapezium method can also overperform Simpson’s method, which is demonstrated in Example 5. 

The next three cases were triggered by students’ uncertainty on how to assess accuracy of an 

estimated result from applying a numerical integration method where the analytical solution is not 

available, despite availability of error bound for the chosen method. These examples aimed to show 

the students: 1) how to choose the suitable method and interval size with respect to the given 
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accuracy or error limit; 2) how to use an alternative method to verify the result produced by the 

chosen method; 3) how to incorporate numerical methods to solve scientific and engineering 

problems.  

These examples helped develop students’ strategic thinking in problem solving, particularly 

involving decision-making for choosing the best possible method to produce a more appropriate 

solution to a problem that does not have an analytical solution. Such ability is vital for engineering 

students because most real-world engineering problems may not have exact solutions; hence 

choosing an approximate result that is more appropriate to the circumstances is a decision engineers 

must make in real-world engineering projects.  

In the rest of this paper, the trapezium and Simpson’s methods are first outlined in Section 2 with 

five examples to demonstrate the strengths and weaknesses of the two most popular methods in 

numerical integration. Section 3 presents three more examples used in the past lectures and tutorials 

for engineering students to show how different techniques can be incorporated to solve problems 

involving integration. This classroom note is closed by discussions and conclusions presented in 

Section 4.  

2. The trapezium and Simpson’s methods for numerical integration 

2.1. The trapezium method or trapezium rule 

The trapezium method is to divide the given range into n vertical strips of equal interval and each 

strip is treated as a trapezoid (Figure 1). Hence, the subarea of a single strip should be 

1

1
( )      where    .

2
i i i

b a
A y y h h

n



    

Adding the n subareas together, the integral sought is expressed as 

0 1 2 3 1( ) [ 2( ... ) ].
2

b b

n n
a a

h
f x dx ydx y y y y y y                (1) 

 

Figure 1. Sketch of the trapezium method. 
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Assuming the integrand y = f(x) is continuous and its second-order derivative exists in range [a, 

b], the error of a single strip and the total error of all strips together for approximation using the 

trapezium method were proven to be bounded by [6‒9]  
3

3

3
2

2

( )
( )

12
,

( )
( )

12

i

n

b a M
E O h

b a M
E O h

n

 
 




  


            (2) 

where M is the maximum value of the second-order derivative of f(x) where x =  is within the range, 

i.e., ( ) ,  [ , ]f M a b    . This indicates that the maximum error of the composite trapezium method 

is about the order of O(h
2
) even though that for a single strip is in the order of O(h

3
). If the width of a 

single interval is around 1/10 = 0.1, the maximum errors would be around the order of O(10
-3

) for a 

single strip and of O(10
-2

) for all n strips together. Hence in general, the smaller the interval, the 

more accurate the approximation. 

2.2. Simpson’s method or Simpson’s 1/3 rule 

If dividing the range into vertical strips of equal interval by an even-number, a local quadratic 

interpolation can be created using the three known points of any two adjunct strips (Figure 2) to 

replace y = f(x) within the subrange [xi-1, xi+1]. The area under the interpolation in [xi-1, xi+1] is 

regarded as an approximate to the area under f(x) for this subrange. Sliding this window through the 

whole range should get the areas for all paired vertical strips and their sum can be regarded as an 

approximate to the integral. 

 

Figure 2. Sketch of the Simpson’s method. 

As the process is repeated by a sliding window of two adjacent strips over the whole range, i.e., 

from x0–x2 to x2–x4 to x4–x6 and so on, the formula of a subarea derived from any two adjacent strips 

should be applicable to other adjacent strips. In general, the subarea of any two adjacent strips 

centred at xi can be approximated by [10]: 

1 1( 4 ).
3

i i i i

h
S y y y               (3) 

The total area of all strips can be obtained by adding all n/2 subareas together as follows: 
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0 1 3 2 4[ 4( ...) 2( ...) ].
3

b

n
a

h
ydx y y y y y y               (4) 

This is known as Simpson’s method or Simpson’s 1/3 rule for numerical integration [10‒13]. 

Assuming the integrand y = f(x) is continuous and its fourth-order derivative exists in range [a, 

b], the error of a single subarea and that of the total area approximated by Simpson’s formulas (3-4) 

were proven to be bounded by [6,7,9]  
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where M is the maximum value of the fourth-order derivative of f(x) where x =  is within the range, 

i.e., (4) ( ) ,  [ , ]f M a b   . Formula (5) indicates that the maximum error of the composite Simpson’s 

method is about the order of O(h
4
). If the size of the interval is around 1/10 = 0.1, the maximum error 

would be in the order of O(10
-4

) for all n strips together, much more accurate than that of the 

trapezium method in general cases, which is demonstrated by the following examples. In all the 

examples presented in this paper, the numerical results are tabulated using Excel with a default 

truncation error to five decimal places to ensure that the final result is accurate to the fourth decimal 

place after rounding, unless the error limit is specified for a given problem. 

If the range is divided into vertical strips of equal interval by a number that is a multiple of 3, a 

section of three consecutive strips can form a cubic polynomial that can be integrated analytically to 

obtain the area of this section. Moving this integral window across the whole range would form a 

composite formula expressed as follows, which is commonly called Simpson’s 3/8 rule [12], 

1 /3 1

0 1 2 4 3 6 0 3

1, 3 1

3 3
[ 3( ...) 2( ...) ] 3 2

8 8

n nb

n i i n
a

i i k i

h h
ydx y y y y y y y y y y y

 

  

 
             
  

  .   (6) 

Under the same condition, Simpson’s 3/8 rule has an error bound in the order of O(h
4
) but about 

three times smaller than that of Simpson’s method [12]. Other numerical methods for integration can 

be derived by using different orders of polynomials or combinations through the Newton-Cotes 

formulas [14]. However, the trapezium and Simpson’s (or 1/3 rule) methods are the most used 

techniques in numerical integration. 

Example 1: Use the trapezium method with seven strips of equal interval and Simpson’s method 

with six strips of equal interval to approximate 
2

1

ln x
dx

x . 

Solution 

We use a table by Excel to realise the trapezium method (1) with h = 1/7 as shown in the table below.  

i 0 1 2 3 4 5 6 7 Sum 

xi 1 1.14286 1.28571 1.42857 1.57143 1.71429 1.85714 2  

y0 or yn 0       0.49013 0.49013 

2yi  0.24981 0.44328 0.59683 0.72112 0.82333 0.90850  3.74287 

Integral  hSum/2 = 0.30236    4.23300 



135 

 

STEM Education  Volume 3, Issue 2, 130–147 

Similarly, we can also use a table by Excel to realise Simpson’s method (4) with six strips or h = 

1/6 as follows.  

i 0 1 2 3 4 5 6 Sum 

xi 1 1.16667 1.33333 1.50000 1.66667 1.83333 2  

y0 or yn 0      0.49013 0.49013 

4yi(odd)  0.57086  1.32424  1.79064  3.68575 

2yi(even)   0.49828  0.79137   1.28965 

Area  hSum/3 = 0.30364   5.46553 

However, Simpson’s method (4) cannot be applied to the case with seven strips where the 

trapezium method (1) was applied. Otherwise, the result would have a larger error that is 

demonstrated in the table blow. 

i 0 1 2 3 4 5 6 7 Sum 

xi 1 1.14286 1.28571 1.42857 1.57143 1.71429 1.85714 2  

y0 or yn 0       0.49013 0.49013 

4yi(odd)  0.49963  1.19366  1.64666   3.33995 

2yi(even)   0.44328  0.72112  0.90850  2.07290 

Integral  hSum/3 = 0.28109    5.90298 

This integral has an exact solution [15] 

22

1
1

ln
2 (ln 2 0 366) .30

x
dx x x

x
   . 

With this analytical solution as a reference, the absolute errors with respect to the exact solution 

from the trapezium and Simpson’s methods with 7 and 6 subdivisions are tabulated below, along 

with the result from the misused Simpson’s method to the seven strips. The error for the trapezium 

method is in the order of O(10
-3

) whereas the error of Simpson’s method is in the order of O(10
-5

) 

even with 6 wider strips compared to the 7 narrower strips for the trapezium method. If the accuracy 

of approximation is set to be accurate to the fourth decimal place, Simpson’s method would be the 

only choice for this case.  

Method Approximate solution Absolute error Actual error O(10-n) 

Trapezium (n = 7) 0.30236 0.00130 10-3  

Simpson (n = 6) 0.30364 0.00002 10-5 

Misused Simpson (n = 7) 0.28109 0.02257 10-2 

Exact solution 0.30366 

An interesting observation on this example is the effect of the odd (7) and even (6) numbers for 

equal divisions over range [1, 2] on the results. In theory, the trapezium method applies to equal 

divisions of any number whereas Simpson’s method only applies to equal divisions of even numbers. 

Due to higher accuracy of Simpson’s method over the trapezium method in ‘common’ cases where 

the integrand is continuous and smooth, users may take Simpson’s method as the default choice for 

numerical integration by neglecting the requirement on equal divisions of even numbers for applying 

Simpson’s method. Should Simpson’s method be applied to the case with seven equal intervals, the 

result would be with an error in the order of O(10
-2

), worse than the order of O(10
-3

) from the 

trapezium method. 

The integrand of this question is continuous and its second and fourth derivatives exist as 
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(4)

5/2 9/2

3ln 8 105ln 352
  and  

4 16

x x
y y

x x

 
   . 

The absolute maximum value for the second derivative in [1, 2] should be at x = 1, i.e., M = 

|y"(1)| = 2. By formula (2), the error bound for the trapezium method with seven intervals would be 

3
3

2 2

( ) 2
0.003401 3.401 10

12 12 7
n

b a M
E

n


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
. 

The actual error of 0.00130 by the trapezium method is indeed smaller than this estimated error 

bound. 

The absolute maximum value for the fourth derivative in [1, 2] should be at x = 1, i.e., M = 

|y
(4)

(1)| = 22. By formula (5), the error bound for Simpson’s method with six intervals would be 

5
5

4 4

( ) 22
9.431 10

180 180 6
n

b a M
E

n


   


. 

The actual error of 0.00002 by Simpson’s method is also smaller than this estimated error bound. 

Example 2: Use the trapezium method with five strips of equal interval and Simpson’s method with 

four strips of equal interval to approximate 
2

3

1
lnx xdx . 

Solution 

We use a table by Excel to realise the trapezium method (1) with h = 1/5 = 0.2 as a table below.  

i 0 1 2 3 4 5 Sum 

xi 1 1.2 1.4 1.6 1.8 2  

y0 or yn 0     5.54518 5.54518 

2yi  0.6301033 1.84656 3.85027 6.85594  13.18288 

Integral  hSum/2 = 1.87281  18.72805 

Similarly, we can also use a table by Excel to realise Simpson’s method (4) with four strips or h 

= ¼ = 0.25 as follows.  

i 0 1 2 3 4 Sum 

xi 1 1.25 1.5 1.75 2  

y0 or yn 0    5.54518 5.54518 

4yi(odd)  1.74331  11.99676  13.74007 

2yi(even)   2.73689   2.73689 

Integral  hSum/3 = 1.83518 22.02214 

However, should Simpson’s method (4) be applied to the case with five strips, the result would 

have a larger error that is demonstrated in the table blow. 

i 0 1 2 3 4 5 Sum 

xi 1 1.2 1.4 1.6 1.8 2  

y0 or yn 0     5.54518 5.54518 

4yi(odd)  1.26021  7.70054   8.96075 

2yi(even)   1.84656  6.85594  8.70250 

Integral  hSum/3 = 1.54723  23.20843 

This integral has an exact solution [15] 
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2
2

3 4

1
1

1
ln (4ln 1) 1.83509

16
x xdx x x   . 

With this analytical solution as a reference, the absolute errors with respect to the exact solution 

from the trapezium and Simpson’s methods with 5 and 4 subdivisions are tabulated below, along 

with the result from the misused Simpson’s method to the five strips. The error for the trapezium 

method is about the order of O(10
-2

) whereas that of Simpson’s method is in the order of O(10
-4

) to 

O(10
-5

) even with 4 wider strips compared to the 5 narrower strips for the trapezium method. Should 

Simpson’s procedure be applied to the five strips, the result would be with an error in the order of 

O(10
-1

), even worse than the trapezium method. If the error limit of approximation is set to be better 

than parts per thousand (‰), Simpson’s method would be the only choice for this case.  

Method Approximate solution Absolute error Actual error O(10-n) 

Trapezium (n = 5) 1.87281 0.03772 10-2  

Simpson (n = 4) 1.83518 0.00009 10-5 

Misused Simpson (n = 5) 1.54723 0.28786 10-1 

Exact solution 1.83509 

The integrand of this question is continuous and its second and fourth derivatives exist as 

(4) 6
6 ln 5   and  y x x x y

x
    . 

The absolute maximum value for the second derivative in [1, 2] should be at x = 2, i.e., M = 

|y"(2)| = 18.31777. By formula (2), the error bound for the trapezium method with five intervals 

would be 

3
2

2 2

( ) 18.31777
0.06106 6.106 10

12 12 5
n

b a M
E

n


    


. 

The actual error of 0.03772 by the trapezium method is smaller than this estimated error bound. 

The absolute maximum value for the fourth derivative in [1, 2] should be at x = 1, i.e., M = 

|y
(4)

(1)| = 6. By formula (5), the error bound for Simpson’s method with four intervals would be 

5
4

4 4

( ) 6
0.00013 1.3 10

180 180 4
n

b a M
E

n


    


. 

The actual error of 0.00009 by Simpson’s method is also smaller than this estimated error bound. 

 

Example 3: Use the trapezium method with seven strips of equal interval and Simpson’s method 

with six strips of equal interval to approximate 
1

0
arctanx xdx . 

Solution 

We use a table by Excel to realise the trapezium method (1) with h = 1/7 as below. 

i 0 1 2 3 4 5 6 7 Sum 

xi 0 0.14286 0.28571 0.42857 0.57143 0.71429 0.85714 1  

y0 or yn 0       0.78540 0.78540 

2yi  0.04054 0.15903 0.34705 0.59331 0.88607 1.21479  3.24079 

Integral hSum/2 = 0.28758 4.02619 
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The result using Simpson’s method (4) with h = 1/6 is shown in the following table. 

i 0 1 2 3 4 5 6 Sum 

xi 0 0.16667 0.33333 0.50000 0.66667 0.83333 1  

y0 or yn 0      0.78540 0.78540 

4yi(odd)  0.11010  0.92730  2.31579  3.35319 

2yi(even)   0.21450  0.78400   0.99850 

Integral   hSum/3 = 0.28539  5.13709 

If Simpson’s method were misused to the seven strips, the result would be as follows. 

i 0 1 2 3 4 5 6 7 Sum 

xi 0 0.14286 0.28571 0.42857 0.57143 0.71429 0.85714 1  

y0 or yn 0       0.78540 0.78540 

4yi(odd)  0.08108  0.69410  1.77214   2.54733 

2yi(even)   0.15903  0.59331  1.21479  1.96713 

Integral hSum/3 = 0.25237 5.29985 

This integral has an exact solution [16] 

1
1

2

0
0

1
arctan [( 1) arctan ] 0 2

2
. 8540I x xdx x x x     . 

With this analytical solution as a reference, the absolute errors with respect to the exact solution 

from the trapezium and Simpson’s methods with 7 and 6 subdivisions are tabulated below, along 

with the result from the misused Simpson’s method to the seven strips. Again, Simpson’s method 

produced the best result with an error in the order of O(10
-5

) for the six strips, much better than the 

trapezium method for the seven strips with an error in the order of O(10
-3

). However, if Simpson’s 

method were applied to the seven strips, the result would be the worst with an error in the order of 

O(10
-2

). 

Method Approximate solution Absolute error Actual error O(10-n) 

Trapezium (n=7) 0.28758 0.00219 10-3  

Simpson (n=6) 0.28539 0.00001 10-5 

Misused Simpson (n=7) 0.25237 0.03302 10-2 

Exact solution 0.28540 

The integrand of this question is continuous and its second and fourth derivatives exist as 

2
(4)

2 2 2 4

2 8(5 1)
  and  

(1 ) (1 )

x
y y

x x


  

 
. 

The absolute maximum value for the second derivative in [0, 1] should be at x = 0, i.e., M = 

|y"(0)| = 2. By formula (2), the error bound for the trapezium method with seven intervals would be 

3
3

2 2

( ) 2
0.003401 3.401 10

12 12 7
n

b a M
E

n


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
. 

The actual error of 0.00219 by the trapezium method is indeed smaller than this estimated error 

bound. 
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The absolute maximum value for the fourth derivative in [0, 1] should be at x = 0, i.e., M = 

|y
(4)

(0)| = 8. By formula (5), the error bound for Simpson’s method with six intervals would be 

5
5

4 4

( ) 8
3.429 10

180 180 6
n

b a M
E

n


   


. 

The actual error of 0.00001 by Simpson’s method is also smaller than this estimated error bound. 

All the examples above demonstrated that under similar (not the same) conditions, Simpson’s 

method would produce a more accurate approximate than the trapezium method. This led some users 

to use Simpson’s method as their default choice to approach problems involving numerical 

integration by neglecting the basic requirement that Simpson’s method is only applicable to the cases 

with sequential datasets of equal interval with even numbers. The following example was from an 

assignment to the past engineering students. 

Example 4: A plot of land lies between a straight fence (x-axis) and a stream (northern bound). 

Measured from the western end of the fence, the breadth of the plot (y-axis) was recorded in the table 

below. Choose an appropriate method to estimate the area of this plot of land. Keep 1 decimal place 

in the final result.  

x (metre) 0 3 6 9 12 15 18 21 24 27 

y (metre) 16.3 17.9 20.7 22.8 23.7 23.3 21.9 19.8 18.5 19.7 

 

Figure 3. Plot of the measurements for the block of land in Example 4.  

Solution 

This question was assigned to 20 engineering students as part of a formal assessment several years 

ago. Since there are nine equal intervals over 27 metres, the trapezium method would be a more 

appropriate choice than Simpson’s method. The estimated area for this problem should be 559.8 m
2
 

by directly using the trapezium method.  

All the 20 students obtained the same or a similar value by applying the trapezium method. 

However, eleven students also directly used Simpson’s method to approximate the area with a 

different value of 540.8 m
2
 as shown in Figure 4, for which they could not explain why such a large 

difference in the land area was resulted from the two methods.  

Three students did not use Simpson’s method as they correctly noted that Simpson’s method was 

unsuitable to this problem with 9 datasets. Other six students correctly identified the unsuitability of 

directly using Simpson’s method to this problem but also proposed to combine the trapezium and 

Simpson’s methods together for this case. They applied Simpson’s method to the first 8 strips and 
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the trapezium rule to the 9
th

 strip and finally added the two together as an estimate to the land area 

(Figure 5). The area of 559.9 m
2
 by this modified method is almost the same as that from the 

trapezium method.  

 

Figure 4. An example of misusing Simpson’s method to estimate the land area in Example 4.  

 

Figure 5. An example of using the modified method to estimate the land area in Example 4.  

Since this problem has nine known datasets, a multiple of three, Simpson’s 3/8 rule (6) can be 

used to check the estimated results from the two methods. The result from Simpson’s 3/8 rule would 

be 559.2 m
2
, which is very close to the estimated area by both the trapezium and modified methods 

used by the students. 

To answer a recent query from a student about whether the trapezium method would perform 

better than Simpson’s method under the same condition, the following example was conceptualised 

based on the recent numerical modelling with a self-balanced two-wheel robot [17]. 

Example 5: A self-balanced two-wheel robot was controlled by combination of a constant 

acceleration and a ‘periodic turbulence’ during the first 10 seconds. The two components for the 

speed of the motion were defined as follows: 

1

2

0.5 0 10

1 2 , [0,10]

v t t s

v t p s t

  


   

          

        
. 
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Choose an appropriate method to estimate the accumulated distance the robot travelled in the first 10 

seconds. Keep 1 decimal place in the final result.  

Solution 

The speed at any time during this period should be the sum of v1 and v2. Using an equal interval of 1 

second, ten datasets can be calculated and are tabulated below. A corresponding t-v diagram is drawn 

in Figure 6.  

t (s) 0 1 2 3 4 5 6 7 8 9 10 

v (m/s) 1.0 0.5 2.0 1.5 3.0 2.5 4.0 3.5 5.0 4.5 6.0 

 

 
Figure 6. The t-v diagram for Example 5.  

The speed within any interval of 1 second is a linear function and changes to another linear 

function in the next interval. The accumulated distance travelled by this robot in 10 seconds is 

equivalent to the area under this ascending zigzag curve. By treating each interval as a trapezoid, the 

total area under this zigzag curve is 30 units, or the exact accumulated distance travelled by this 

robot in 10 seconds is 30 m.  

By applying the trapezium method to the t-v table above, the estimated total distance is 30 m, the 

same as the exact distance travelled. If using Sampson’s method, the estimated total distance would 

be 28.3 m, with an error of 1.7 m. For this case, Simpson’s method unnecessarily corrected the 

zigzag lines of any two adjacent intervals with a quadratic curve, which led to the error in the 

estimated distance. On the other hand, the trapezium method is a perfect fit to this case of 10 

different-sized trapezoids.  

3. Examples of incorporating alternative methods in numerical integration 

The following three cases were reworked from classroom lectures or tutorials for the past 

engineering students at CQU to demonstrate how the numerical integration could be incorporated 

with other techniques to solve engineering and scientific problems. Example 6 was associated with 

the design of an underground network of pipelines. Example 7 was about approximate computing of 

the cardinal sine function sincx that often occurs in engineering applications, such as communication, 

electronics, digital signal processing, and optical engineering. Example 8 was about numerical 

computing to estimate the accumulated distance that a particle travelled in the initial period. These 

problems have no analytical solutions and can only be approximated by numerical techniques with 
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the pre-set error limits. 

Example 6: In designing an underground network of pipelines, one section of the pipeline follows a 

cubic pattern 31
( )

3
f x x  in the local range 0–2 meters. Estimate the length of the pipeline in this 

section and be accurate to millimetres. 

Solution 

The length of any section of the function 31
( )

3
f x x  within [a, b] can be calculated by  

2 4
1 ( ) 1

b b

a a

df
L dx x dx

dx
     . 

Plot of the integrand 4
1y x   in section [0, 2] is shown in Figure 7. Although this is a 

continuous and smooth function, no analytical solution to this integral can be found. Hence, 

numerical integration becomes the choice to estimate the length of pipeline in this section. Since the 

final estimate must be accurate to millimetres or error order of 10
-3

, the intermediate calculations 

should keep at least 4 decimal places or in the order of 10
-4

 to make sure that the final result is 

accurately rounded to the order of 10
-3

. Simpson’s method should be chosen for this case as it is 

more accurate than the trapezium method under the same condition. If choosing the size of equal 

interval as h = 0.1, the error bound for the composite Simpson’s method should be around O(h
4
) = 

O(10
-4

). Therefore, the range [0, 2] must be divided into 20 equal intervals to ensure the required 

accuracy to millimetres. Following the similar process by Excel demonstrated in Examples 1-3 in the 

previous section, Simpson’s method produced an estimated length of 3.653 m. If the trapezium 

method is used for the same division, the estimated length becomes 3.657 m. There would be a 

difference of 4 mm between the two estimates. 

We can also divide the range into 18 equal intervals so that Simpson’s 3/8 rule (6) can be used to 

check accuracy of the result from Simpson’s method. This should produce an estimated length of 

3.653 m, which is the same as the estimated length by Simpson’s method using 20 equal intervals. 

 

Figure 7. Curve of the integrand in Example 6 in section [0, 2]. 
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Example 7: Approximate the integral of the cardinal sine function 
1

0

sin x
dx

x to be accurate to the 

order of 10
-5

. 

Solution 

Since this integral has no analytical solution, the challenging issue for this problem is not only about 

calculating an approximate value for the integral by Simpson’s method with adequate number of 

subdivided strips, but also on how to verify that the value is met the required order of accuracy by other 

method. Because the accuracy is to the order of 10
-5

, or the error order of O(10
-6

), the size of equal 

interval for Simpson’s method should be around h = 1/20 = 0.05 so that h
4
 = 0.05

4
 = 6.26 × 10

-6
. 

Following the similar process by Excel demonstrated in Examples 1-3 in the previous section, 

Simpson’s method produced an estimated integral of 0.9460831, rounded down to 0.94608. If the 

trapezium method is used for the same division, the estimated integral becomes 0.94602. There 

would be a difference of 60 ppm (parts per million) between the two estimates. Note that in the 

numerical computing above, 0
0

sin
lim 1.
x

x
y

x

   

We are confident that the result from Simpson’s method for this case meets the required accuracy 

and likely has no error at least at the fifth decimal place under its error bound of O(10
-6

). However, 

how accurate this estimate could be is still not validated. Maclaurin series can be used to obtain 

numerical solutions for some integrands that cannot be integrated by any integration techniques, such 

as 
sin x

dx
x . The Maclaurin series for sinx is  

3 5 7 9

sin ...
3! 5! 7! 9!

x x x x
x x     . 

Hence, 

3 5 7 9

2 4 6 8...
sin 3! 5! 7! 9! 1 ...

3! 5! 7! 9!

x x x x
x

x x x x x

x x

   

      ; 

1
2 4 6 8 3 5 7 91 1

0 0
0

sin
(1 ...) ( ...)

3! 5! 7! 9! 3 3! 5 5! 7 7! 9 9!

1 1 1 1
1 ...

3 3! 5 5! 7 7! 9 9!

x x x x x x x x x
dx dx x

x
         

   

    
   

 

  

 

Since 51
2.83 10

7 7!

 


 and 71
3.06 10

9 9!

 


, the sum of the first five terms should make the error 

in the order of 10
-7

 or be accurate at least at the sixth decimal place that is  

1

0

sin 1 1 1 1
1 0.9460831

3 3! 5 5! 7 7! 9 9!

x
dx

x
     

    . 

This is the same as the result from Simpson’s method with 20 equal intervals obtained above. 

Therefore, the error bound of O(h
n
) for Simpson’s method is a conservative estimate on the error of 

approximation in common circumstances. The actual accuracy of estimation by Simpson’s method is 

more likely to be higher than that indicated by the error bound of O(h
n
) in practice.  
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Example 8: A particle was accelerated initially. Five speed readings in metre per second (m/s) were 

recorded in the first five seconds as shown in the table below. Choose an appropriate method to 

estimate the accumulated distance that the particle travelled during this period. Use other means to 

verify the accuracy of the estimated distance. Keep 2 decimal places in the final result.  

t (second) 1 2 3 4 5 

v (m/s) 6.11 4.98 5.09 6.53 9.31 

 

 

Figure 8. Plot of the speed readings in Example 8.  

Solution 

Plot of these speed readings in the first five seconds shows that the speed seems in a quadratic 

pattern during the period (Figure 8). Although the size of interval for this case is 1 second, the 

proportional time interval for estimating the error is h = (single interval)/(total range) = 1s/4s = 0.25. 

If using Simpson’s method, its error bound is around h
4
 = 0.25

4
 = 3.9×10

-3
, or in the order of O(10

-3
). 

This error bound should be sufficient for the requirement of this problem to keep the final result with 

2 decimal places. The trapezium method is not suitable for this case as its error bound is around h
2
 = 

0.25
2
 = 6.25×10

-2
, or in the order of O(10

-2
). 

The distance travelled during the period is equivalent to the area under the curve connecting the 

speed readings in sequence in Figure 8. For the four intervals, Simpson’s method produced an 

estimated distance of 23.88 m for the period, compared to that of 24.31 m produced by the trapezium 

method. 

As this case is a sequence of discrete data, we are not able to use a known formula like Maclaurin 

series in Example 7 to verify the result from Simpson’s method. However, we can use an 4
th

-order 

interpolation formula by either the Lagrange or Newton’s divided difference methods [4,5] to 

approximate this numerical integral. For example, by using Lagrange interpolation, a 4
th

-order 

polynomial can be formulated by 

55

4

1 1,

( )
j

i
i ji j j i

t t
L t v

t t
  





  . 

The process to get an interpolation used to be tedious by hand, but now one can easily get the 

formula from various software packages or advanced calculators. For example, by typing the five 

datasets in the table of speed readings into WolframAlpha [18], i.e., interpolation {(1,6.11), (2,4.98), 

(3,5.09), (4,6.53), (5,9.31)}, the following formula is displayed: 
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4 3 2
4( ) 0.00333 0.04833 0.41333 2.65833 8.31L t t t t t      . 

This formula is truncated at the fifth decimal place and hence accurate enough for this problem to be 

accurate to the second decimal place. Applying integration to this interpolation from first second to 

5
th

 second should produce another estimate to the accumulated distance, i.e.,  

5 5
4 3 2

4
1 1

( ) 0.00333 0.04833 0.41333 2.65833 8.31 23.8832L t dt t t t t dt       
   . 

This verifies that the accumulated distance estimated by Simpson’s method is indeed accurate to 

centimetres, or the second decimal place.  

4. Discussion and Conclusion 

The eight examples demonstrated in this note shared some common concerns raised or mistakes 

made by engineering students at different stages of mathematics learning. Examples 1-3 outlined that 

the higher accuracy of approximation in numerical integration using Simpson’s method may cause 

misconception to some students to take Simpson’s method as the default choice to deal with 

numerical integration by overlooking the requirement that Simpson’s method only applies to the 

cases with equal intervals of even numbers. Example 4 proven the consequence of misusing 

Simpson’s method directly to nine data sets in an assessment item, which produced a result much 

worse than that by the trapezium method. Example 5 demonstrated that the trapezium method can 

overperform Simpson’s method in special circumstances. 

Example 6 demonstrated how to translate an engineering design to a problem involving 

numerical integration that does not have an analytical solution. By analysing the required accuracy, 

Simpson’s method with an appropriate interval size was chosen to obtain the required outcome, 

which was then verified by Simpson’s 3/8 rule. Example 7 demonstrated the same strategy of using 

Simpson’s method to obtain the required integral for the cardinal sine function, but the accuracy was 

validated through Maclaurin series for the function. Example 8 demonstrated how to approach the 

accumulated distance confined under a set of sequential datasets and verify the accuracy of the 

estimated result by means of a Lagrange interpolation through available software or computing tools. 

All the examples solved by different numerical methods also led to the following observations. 

 If an integrand is a well-defined continuous and smooth function in a given range, by 

adjusting the number of intervals (hence the width of the interval), Simpson’s method would 

be able to produce an approximate solution satisfying the given accuracy or error limit. The 

error bound of O(h
4
) would hold true for most such cases and hence users should have 

confidence in the estimated error bound in practice.  

 In cases where the integrand has a linear pattern between two adjacent known points (hence 

with a zigzag curve), the trapezium method would perform better than the Simpson’s method. 

In cases where the integrand has high-frequency oscillations between any two adjacent 

known points, the trapezium method may also overperform Simpson’s method [19]. 

 Under any circumstances, Simpson’s method should not be directly applied to problems that 

have equal intervals of odd numbers as such would produce an estimate with a large error. 



146 

 

STEM Education  Volume 3, Issue 2, 130–147 

 If a set of discrete and sequential data points over a range is known, the estimated value to the 

integral over the range by applying any credible numerical method meeting the required 

accuracy should be regarded as a credible solution to the problem. This is because both the 

exact solution and the trend between any two adjacent points are unknown. Although 

different methods could be used for different cases, such as Simpson’s 3/8 rule in Example 4 

and a Lagrange interpolation in Example 8, they only provide new approximates, from which 

the estimate that is close to the majority of the approximated values may be regarded as the 

most appropriate result.  

 In terms of learning and using numerical integration, choosing an approximate method from 

many practical options for a given problem is a task to ensure obtaining an acceptable 

solution according to the conditions. However, in cases where the exact solution is unknown, 

choosing another credible numerical method that can validate the obtained solution to the 

required accuracy or error limit is equally important. 

This note only covered some common scenarios in using numerical integration to solve 

theoretical and practical problems. It would be much more helpful if a generalised framework could 

be established with accumulation of more studies in this area of research in the future. Also, these is 

a need to generalise Simpson’s methods so that similar formulas could be applied to cases where 

equal intervals of odd numbers are only known, for which one alternative will be presented in the 

second part of this topic [20]. 
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