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Abstract: Finding effective ways to engage students in sense-making while learning is one of the 

central challenges discussed in mathematics education literature. One of the big issues is the 

prevalence of summative assessment tasks prompting students to demonstrate procedural knowledge 

only, which is a common problem at the tertiary level. In this study, in a large university classroom 

setting (N = 355), an instructional innovation was designed, developed, implemented and evaluated 

involving novel tasks–Knowledge Organisers. The tasks comprised prompts for students to generate 

examples/non-examples and construct a concept map of the key mathematical concepts in the course. 

The initiative‘s design was based on the current understanding of human cognitive architecture. A 

concept map is a visualisation of a group of related abstract concepts with their relationships 

identified by connections using directed arrows, which can be viewed as an externalisation of a 

schema stored in a learner‘s long-term memory. As such, we argue for a distinction between a local 

conceptual understanding (e.g., example space) versus a global conceptual understanding, 

manifesting through a high-quality concept map linking a group of related concepts. By utilising a 

mixed-methods approach and triangulation of the findings from qualitative and quantitative analyses, 

we were able to discern critical aspects pertaining to the feasibility of implementation and evaluate 

learners‘ perceptions. Students‘ performance on concept mapping is positively correlated with their 

perceptions of the novel tasks and the time spent completing them. Qualitative analysis showed that 

students‘ perceptions are demonstrably insightful about the key mechanisms that supposedly make 

the tasks beneficial to their learning. Based on the results of the data analyses and their theoretical 

interpretations, we propose pedagogical strategies for the effective use of Knowledge Organisers. 

 

https://dx.doi.org/10.3934/steme.2023008


104 

 

STEM Education  Volume 3, Issue 2, 103–129 

Keywords: Knowledge Organisers, concept maps, examples, variation theory, global conceptual 

understanding, undergraduate mathematics 

 

1. Introduction  

Concept mapping is becoming an increasingly popular educational tool in various educational 

settings [1,2]. Based on the principles of Novak‘s [3] theory of meaningful learning and assimilation, 

a concept map is a graphical representation of knowledge, depicting linear hierarchical relationships 

and cross-relations between related concepts. It is assumed that concept mapping promotes effective 

meaning-making by prompting learners to logically synthesise and organise information in a 

hierarchy of concepts underpinned by the identification of a unifying logical structure [1‒6]. At the 

higher levels of the conceptual hierarchy, the most general concepts are used, from which arrows 

emanate, identifying increasingly specific concepts. Cross-relations connect concepts located in 

different branches of a concept map [3]. Identifying and representing the relationships between 

concepts prompts a learner to engage in the analysis of knowledge, the application of inductive and 

deductive thinking, and the evaluation of understanding. A recent meta-analysis, published in 

November 2022, concluded that the concept mapping method is more effective for the improvement 

of students‘ analyticity (as a cognitive disposition) and for all motivational critical thinking 

dispositions (open-mindedness, truth-seeking, inquisitiveness) than traditional teaching methods [2]. 

Pertaining to concrete learning outcomes, another meta-analysis of 142 studies concluded that 

learning with concept maps produces a moderate, statistically significant effect (g = .58, p < .001) 

compared to other common forms of learning [1]. Furthermore, moderator analysis showed that 

learners gained greater benefits when creating concept maps (g = .72, p < .001) when compared to 

simply studying concept maps (g = .43, p < .001). Of the 142 studies included in the meta-analysis, 

118 were concerned with STEM subjects. A large majority were grounded in learning natural 

sciences: biology, physics, and chemistry. At the tertiary level, three studies investigated concept 

mapping as a learning tool in statistics courses [7‒9]. However, none of the studies included in the 

meta-analysis considered concept mapping in the tertiary mathematics context. 

A small number of qualitative case studies are reported in the mathematics education literature, 

illustrating possible implementations, mostly at a school level, and alluding to the potential viability 

of concept mapping in mathematics classrooms [10‒15]. There are some isolated examples of the use 

of concept mapping in teacher training in the UK, USA and Australia [15‒18], albeit such use may 

not be fully reported in research journals. And some work has been done to describe the training 

needed to enable students to construct concept maps in a study of Grade-8 Chinese classrooms [19] 

and ascertain the nature of the conceptual understanding held by this group of learners [20,21]. 

Thus, it appears that there is a dearth of research that explores the specifics of concept mapping 

in the context of mathematics education at the tertiary level, with one exception. In our recent paper, 

we investigated the use of concept mapping as a weekly task completed by learners in a large service 

mathematics course at the University of (N = 219) [22]. We focused on examining the relationships 

between the quality of student concept mapping and two major outcome variables: overall course 

achievement and one of the most fundamental psychological constructs – self-efficacy (which was 

measured using a validated instrument, MASE [23]). Using hierarchical multiple regression, we 

showed that concept mapping performance explains a statistically significant amount of variance in 
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both the final exam scores and the Emotional Regulation factor of assessment self-efficacy after 

accounting for other conventional coursework assessments. Second, the association with the 

emotional regulation efficacy measure suggests that concept mapping as a learning activity that 

involves more positivity about the ability to succeed in facing challenges than a typical assignment. 

This indicates the potential for more perseverance and effortful learning while actively engaged in 

meaning-making and the type of relational reasoning prompted by concept mapping [22]. 

In this article, using methods analysis, we report an explorative case study to complement our 

previous study with three aims. The first is to ascertain student perceptions on embedding concept 

mapping as a regular assessment/learning tool as part of a weekly Knowledge Organiser. Secondly, 

we examine the relationship between the implementation indicators, such as time-on-task, their 

marks, and student perceptions of the utility of Knowledge Organisers. And lastly, we use the data to 

inform a set of guidelines for design, development, assessment and implementation that could be 

used by other practitioners. We next present a brief overview of the research literature from 

educational psychology and mathematics education as a theoretical justification for using the 

Knowledge Organisers‘ constituent components: examples of a given concept, non-examples and a 

concept map.  

2. Theoretical and empirical foundation 

2.1. What is learning? 

When discussing teaching and learning, it is beneficial to consider the latest research on human 

cognition. In educational psychology, a commonly utilised model to describe the way in which 

human cognitive structure and functions are organised is presented as ―Human Cognitive 

Architecture‖ [24]. The central idea is the interaction between three components: sensory memory, 

working memory and long-term memory, which is depicted diagrammatically in Figure 1 (reprinted 

from [25]). Working memory represents a central structure processing information that is coming 

from (1) external sources (such as visual and audio information), through a temporary storage facility 

of sensory memory and (2) the information stored in the long-term memory.  

One of the main functions of working memory is processing and encoding the information for 

long-term memory storage. Long-term memory is conceptualised as ―the store holding all knowledge 

acquired during the process of learning‖ [24]. When receiving new, unfamiliar information, working 

memory is known to have limitations in both the amount of information it can accommodate and the 

period during which the information is stored [24,26]. However, experimental studies showed that 

the limitations of working memory were no longer a barrier when it came to receiving information 

that had been stored in long-term memory. Therefore, according to the cognitive load theory, the 

ultimate goal of learning is acquiring and preserving information in long-term memory [24,26]. 
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Figure 1. A modal model of Human Cognitive Architecture. Note. Reprinted from [25], p. 

225. Copyright 2022 by the Authors. Reprinted with permission. 

2.2. How is knowledge stored? 

A cognitive structure unit in which knowledge is organised and stored in long-term memory is 

called a schema [27,28]. It allows for numerous relevant elements of knowledge to be organised into 

a single body of information (illustrated in Figure 1). Hence, in the process of learning, we 

incorporate more complicated elements with the primary elements of relevant information that pre-

exist in our long-term memory.  

Another major role of schemas is to diminish the burden of working memory. As mentioned 

previously, there are limitations on how many elements can be taken in concurrently. However, 

Sweller et al. [26] argue that there are no limitations to ―the size, complexity and sophistication of 

elements‖ in a schema. In fact, schemas that have been developed over a long duration can 

potentially accumulate information with a large capacity [27]. Therefore, research asserts that the 

formation of schemas in long-term memory and their utility in the working memory encapsulates the 

main mechanism of learning. 

2.3. Examples, non-examples and concept maps 

We next provide a brief overview of the literature concerning the use of examples and non-

examples in mathematics and more general research pertaining to concept mapping. 



107 

 

STEM Education  Volume 3, Issue 2, 103–129 

2.3.1. Examples in mathematics education 

Examples have been widely accepted as one of the main educational tools in mathematics, based 

on early research establishing their effectiveness [29]. They are commonly used in mathematics 

education, and they are considered to play an important role in fostering an understanding of 

mathematical concepts and proofs [30‒33]. An example is defined by researchers in various ways. It 

is the ―illustrations of concepts and principles‖ [34], ―any mathematical object from which it is 

expected to generalise‖ [30] as well as ―a mathematical object satisfying the definition of some 

concept‖ [35]. In tertiary-level mathematics, examples are often provided by a teacher for the 

students as part of instructional explanations [36]. However, constructing examples is also a 

beneficial learning activity. Research has alluded to various benefits as an outcome of having 

students construct their own examples. This has been well documented at a wide range of 

educational levels in the mathematics education literature [32,34,36].  

Key notions considered by researchers are a concept image and an example space. A concept 

image is a term first used by Tall and Vinner [37] to denote the whole cognitive structure that is 

associated with a particular concept. This conceptualisation is somewhat similar to what educational 

psychologists describe as schema [27,28], with a marked resemblance in their describing 

characteristics. However, the term ‗schema‘ is reserved for use in a general, non-discipline-specific 

sense.  

An example space is a certain subset within the concept image in which the individual‘s prior 

knowledge of examples and the methods of creating those examples is combined [31]. Goldenberg 

and Mason [38] view example spaces as inescapable components of the learners‘ experience. That is, 

learning more about a concept includes gaining access to further examples, ―as well as enriching the 

interconnections and extending the triggers and resonances affording access to those spaces‖ (p. 190). 

Teaching effectively includes making use of tasks and interactions through which learners gain 

access to examples, to construction methods, and of course to mathematically relevant features of 

different examples. 

Marton‘s [39] theory of variation is often used as a foundation for explaining how learners can 

learn concepts from examples. People have a natural disposition for detecting variation in objects 

within close temporal and physical proximity. As such, it is believed that varying not too many 

factors at once (nor too few) prompts learners‘ natural sense-making processes to be activated, which 

are conducive to discerning generality. The generalising is enabled by noticing dimensions of 

(possible) variation and ranges of permissible change, thereby observing generality through the 

particular [38]. 

2.3.2. Non-examples and how they are used 

Some considerations have been given to the use of non-examples as pedagogical tools in the 

literature. Zaslavsky and Shir [40] defined non-examples as ―a statement that is not equivalent to its 

commonly accepted definition‖ and emphasised their importance in mathematics learning. They 

posited that the benefits are derived because to be able to distinguish statements that are not 

equivalent to the actual definition, students must engage in substantial logical considerations. In 

early research, Henderson [41] simply referred to a non-example as ―[a]n object which is not a 

member of the referent set‖ and focused on pedagogical observations that non-examples are useful to 
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demonstrate a particular condition often missed by students needed to satisfy the definition of a 

concept. 

Unlike examples, which are frequently used as a tool to support students‘ learning, non-examples 

do not commonly appear in mathematics education [40]. However, as the definitions of non-

examples imply, the benefit of incorporating non-examples into mathematics education is that they 

―serve to clarify boundaries‖ [42], making it a crucial part of forming an understanding of a 

concept [43]. Especially, constructing non-examples of a concept along with its examples is highly 

effective when each non-example has only a single feature that is illustratively not satisfied by 

definition [29].  

More recently, the use and importance of non-examples have been demonstrated through the 

research undertaken by Fukawa-Connelly and Newton [30]. They have manipulated the model of 

example space, which was developed by Mason and Watson [31], and broadened its usage to the 

whole set of examples that students may encounter, including non-examples of the concept of 

interest, thereby revealing the potential of this method for effective learning.  

During the design stage of our project, we took the research on examples and non-examples into 

account by prompting students to construct examples/non-examples of a selected concept as a 

preliminary step before asking students to construct a concept map. It is important to note the 

principal difference between constructing an example space and a concept map. Constructing an 

example space of a concept primarily exploits features of the concept by listing and contrasting 

variations of examples (and non-examples). Whereas constructing a concept map of the selected 

concept may involve an explication of its (albeit limited) example space, the main focus is on the 

identification of a group of related (different) concepts and connections between them. As such, the 

main difference can be conceived as the difference between a local conceptual understanding 

(example space) versus a more global conceptual understanding (concept map) based on the 

explicated relations between numerous concepts. We elaborate on what is meant by concept mapping 

next.  

2.3.3. Concept maps: Overview 

Concept maps were first used as a learning tool at Cornell University as part of a research project 

led by Joseph Novak in 1972 [6,44]. The main purpose of a concept map is to produce a visual 

representation of organised information about a chosen concept [45]. The concepts are often 

presented in enclosed shapes (rectangles or ovals), and directed lines are used to connect any two 

related concepts. The most general concept that embraces all other concepts is presented at the top 

(or sometimes centre), with more specific concepts cascading out of the main one, thus illuminating 

a hierarchy of the presented concepts [6]. ―Linking words or linking phrases‖ [6] are short 

descriptions on the directed lines that specify how the connected concepts are related. Some 

examples of such words/phrases include ―is an example of‖, ―generalises to‖ and ―contains‖. 

Novak [6], the pioneer of concept mapping, described its key features as follows: 

 Hierarchy: The concepts are presented in a manner that reveals the hierarchical structure 

from general concepts to specific concepts in descending order. It should be noted that the 

hierarchical relationship between concepts may vary depending on the context. Deciding 

on a ―focus question‖ [6], which is a specific question that the concept mapper seeks to 

answer, can guide in deciding on the hierarchical relationship between concepts. 
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 Cross-links: The connections used to show the relationship between concepts that have 

been derived under different strands developed from the main concept are called cross-

links. The process of identifying cross-links is highly dependent on the existing 

knowledge of the concept mapper. 

 Examples: Incorporating specific examples into a concept map enhances clarity in 

understanding the concept that may be abstract when presented on its own. 

2.3.4. Concept mapping as an effective learning strategy 

In general, concept mapping is assumed to make learning efficient, with various reasons provided 

in the literature. Schroeder et al. [1] posited that the reasons why constructing and studying concept 

maps might be beneficial can be broadly categorised into three types: concept maps promote 

meaningful learning, concept maps reduce the extraneous load or both. 

Concept mapping promotes meaningful learning because it requires learners to engage deeply 

with the material by focusing on the organisational structure of a set of related concepts and 

producing elaborative connections among them [45,46]. Meaningful learning is thought to occur 

when new knowledge is created and assimilated into the existing schemas, in accordance with 

Human Cognitive Architecture and cognitive load theory, which were discussed earlier [26]. The 

term ‗knowledge elaboration‘ is often used in reference to meaningful learning, emphasising the 

importance of using prior knowledge to expand and refine new insights utilising processes such as 

organising, restructuring, interconnecting, integrating new elements of information, and identifying 

relations between them [47]. Research has shown that knowledge elaboration is the key mechanism 

behind the success of well-known learning strategies such as self-explanations [48] and elaborative 

interrogation [49]. That is, the knowledge elaboration strategies and the processes involved in a 

successful concept mapping activity are manifestly similar. According to Karpicke and Blunt [50], 

―concept mapping bears the defining characteristics of an elaborative study method: It requires 

students to enrich the material they are studying and encode meaningful relationships among 

concepts within an organised knowledge structure‖ (p. 772). 

However, the findings are not clear cut to conclude that concept mapping is the most effective 

learning strategy. For example, in an attempt to compare the effects of retrieval practice and concept 

mapping, O‘Day and Karpicke [51] conducted two randomised controlled experiments. 

Undergraduate students were randomly assigned to various study groups and were given a biology 

text to study. Surprisingly, the results of both studies demonstrated that the combination of concept 

mapping and retrieval practice was no more beneficial than retrieval practice alone, calling the 

proclaimed learning benefits of concept mapping into question. This is in line with the older result by 

Karpicke and Blunt [50], which showed that practising retrieval produces greater gains in meaningful 

learning than elaborative studying with concept mapping. However, these studies were not 

undertaken in mathematics learning contexts; thus, the generalisability of their conclusions is limited.  

2.3.5. Concept mapping in mathematics 

In mathematics education settings and more broadly, it is well understood that learning is not just 

an accumulation of new snippets of information in long-term memory, as in a computer [52]. Rather, 

learning is influenced by two major factors: (1) what is presented and in what format and (2) the 
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extent of the cognitive processing that the learner is actively engaged in during learning. Thus, 

learning is viewed as a generative activity. This conception of learning is a theoretical advance that 

emerged from the unification of ideas that came out from the cognitive revolution with constructivist 

ideas about the importance of meaning-making while learning. This well-evidenced theory predicts 

effective learning to consist of three stages: (1) a learner actively selects the relevant aspects of 

incoming information by paying attention (via sensory memory), (2) which is followed by organising 

this information into a coherent cognitive structure in working memory, and (3) finally, integrating 

this cognitive structure with relevant prior knowledge activated from long-term memory [52]. 

In parallel, mathematics education research extended these ideas to distinguish key 

characteristics of different types of mathematical understanding and knowledge. These ideas can be 

traced back nearly 50 years ago to Skemp‘s [53] distinction between ‗relational understanding‘ and 

‗instrumental understanding‘ of mathematics. The latter describes a limiting yet commonly occurring 

understanding based on knowing a set of rules without understanding the reasons, whereas ―learning 

relational mathematics consists of building up a conceptual structure (schema)‖ [53]. Subsequent 

research divided mathematics knowledge into two types: procedural knowledge and conceptual 

knowledge [54], with the latter defined as ―knowledge that is rich in relationships. It can be thought 

of as a connected web of knowledge, a network in which the linking relationships are as prominent 

as the discrete pieces of information‖ (pp. 3-4). This dichotomy was subsequently questioned and 

reconceptualised by Star [55] to include the dimension accounting for quality. 

The current mathematics cognition perspective asserts that conceptual understanding is achieved 

when a sufficiently well-organised schema has been encoded into long-term memory [56]. From this 

perspective, concept mapping is conducive to developing conceptual understanding and, thus, 

effective learning because it fosters meaningful learning by requiring learners to engage deeply with 

the material and focus on the logical structure underlying and unifying a set of related concepts. 

Arguably, this is a very different process from retrieval practice.  

Generally, research on assessment draws a clear distinction between summative assessments, 

used to mark academic progress after a set unit of material (i.e., assessment of learning) and 

formative assessments, used to track student progress during the learning process for the provision of 

feedback (i.e., assessment for learning) [57]. However, this distinction has been blurred in recent 

tertiary mathematics studies. For example, contradicting the assumption that formative and 

summative assessment approaches are incompatible, Buchholtz et al. [58] showed how these 

assessment types could be combined in university mathematics teacher education. Indeed, the central 

consideration for mathematics education at a tertiary level has been about what type of reasoning is 

elicited and assessed by various tasks. In other words, in parallel with the distinction between 

procedural and conceptual knowledge, an important question is how to design a valid and reliable 

method to assess different types of understanding (such as instrumental versus relational in the sense 

of Skemp [53]. 

The research debates in mathematics education concerning the assessment of procedural 

knowledge have been more or less settled. In contrast, much controversy is centred around the 

supposedly designed tasks to assess conceptual knowledge, which do not always align with 

theoretical claims about mathematical understanding [59]. However, one of the biggest issues 

discussed in undergraduate mathematics is that most questions on exams and coursework are 

‗imitative‘; that is, questions that can be solved by performing prescribed algorithms and recalling 
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analogous (if not identical) solutions [60‒62].  

Against this theoretical and empirical backdrop, our latest finding mentioned in the introduction 

is not unexpected [22]. We found that concept mapping, used as an assessment, can detect learners‘ 

mathematical abilities that are not discerned by conventional assessments and, thus, have the 

potential to assess conceptual understanding. Moreover, there is evidence in support of the use of 

concept mapping as an effective learning tool linking performance to improved affective outcomes 

(such as self-efficacy). Given this promising result, further investigations on incorporating concept 

mapping into practice are warranted. As such, in this study, we investigate the feasibility of 

incorporating concept mapping in university mathematics as both an assessment tool and a learning 

strategy to foster relational reasoning. 

2.4. Research questions 

Given the ample evidence and theoretical foundations pertaining to the benefits of using 

examples, non-examples and concept mapping for learning, we designed, developed, implemented, 

and evaluated an innovation in a natural classroom setting of a university mathematics course. First, 

a lecturer provided an explanation of what a concept map is and demonstrated a few examples during 

the first class of a university semester. Students were notified that a new type of assessment, called a 

Knowledge Organiser, would be used weekly during the semester. Each week a key concept was 

selected, and students were required to fill in a Knowledge Organiser, which consisted of three 

prompts: (1) state its definition, (2) provide examples and non-examples, and (3) create a concept 

map of the concept that includes other related concepts and connections.  

The present exploratory case study aimed to ascertain the Knowledge Organisers‘ 

implementation feasibility and evaluate it from a learner‘s perspective. To that end, a survey was 

conducted at the end of the semester to collect data for answering the following research questions: 

 

RQ1. What are students‘ general perceptions of the Knowledge Organisers? 

RQ2. Is there a relationship between students‘ perceptions of the concept mapping tasks and 

their performance on the tasks? 

RQ3. How much time do students spend on the tasks and is there a relation between the time 

students spent on the concept mapping tasks and their performance? 

RQ4. What pedagogical strategies can be formulated to guide future implementations of 

concept mapping at the undergraduate level? 

3. Methods 

3.1. Research site 

The study was conducted at a large research-intensive university (Auckland, New Zealand) in an 

undergraduate mathematics course covering Calculus II, Linear Algebra II, and Introduction to 

Ordinary Differential Equations, serving the needs of students majoring in a variety of disciplines 

such as computer science, finance, economics and other sciences. Unfortunately, for a large 

proportion of non-mathematics majors taking this course, a lack of interest in mathematics 

contributes to low intrinsic motivation coupled with suboptimal engagement with the course. An 

additional challenge is the size of the course: the enrolment numbers range from 350 to 550 students 
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per semester. The course is delivered over 12 teaching weeks with the following weekly structure: 

three 1-hour lectures and one 1-hour tutorial (25 to 30 students per room working on problems). The 

lectures are purposefully designed not to be transmission-style lecturer‘s monologues and include 

active learning activities such as Think-Pair-Share, quizzing etc.  

This study was undertaken in Semester 1, 2021 (March—June), when, internationally, many 

places were influenced by the COVID-19 pandemic. However, due to the elimination strategy with 

closed borders, most educational institutions have been running as normal since late 2020 in New 

Zealand, with a few exceptions. As a result, most courses were delivered face-to-face except for the 

first two weeks of the semester. 

3.2. Participants and setting 

In the trial semester, 355 students were enrolled in the course, with 35 students studying overseas, 

thus completing the course online. All students were invited to participate in the study, and 323 

provided their consent to the use of their data for research purposes. An important aspect of the 

course was weekly tutorials (practical sessions) where students worked on assigned mathematical 

problems in small groups. Attending a weekly tutorial for ten weeks was compulsory for all students 

enrolled, with participation marks awarded. Additionally, students were expected to submit written 

solutions to short assignments, referred to as ―marked problems‖, which were also assigned weekly.  

3.3. Innovation: Knowledge Organisers 

In semester one, 2021, Knowledge Organisers were assigned as part of the question set in each 

tutorial (1 question out of 4) and twice as the ‗marked problem‘ for the week, for which students‘ 

work was marked. The template for a Knowledge Organiser consisted of sections to state the 

definition of an assigned concept, provide examples/non-examples and elaborate in the form of a 

concept map. The template and guidelines for completing Knowledge Organisers given to students 

can be found in the Appendix (Figures 4 and 5). To encourage students to produce their own 

examples and non-examples, we asked them not to copy them from the coursebook. Additionally, 

when demonstrating a model Knowledge Organiser (an example is given in Figure 5), we 

emphasised that many variations of a ‗correct‘ answer are possible as a disclaimer.  

An example of a concept map as the elaboration part of a Knowledge Organiser on Vector Space 

is given in Figure 2. The overarching idea of this concept map is a consolidated macro view of the 

concept of Vector Space as a mathematical structure used to generalise physical spaces such as ℝ, ℝ2, 

ℝ3  and, more generally, ℝ𝑛 . The map also demonstrates that this structure serves as a unifying 

concept that defines fundamental subspaces related to matrices: the Nullspace, the Column space, 

and an Eigenspace. Moreover, the concept is utilised in solving differential equations since the 

solution set of a linear homogeneous ordinary differential equation is a vector space, which enables 

the formulation of efficient techniques for solving them. Thus, by presenting the relations between a 

group of concepts from different branches of Mathematics, such as Linear Algebra, Calculus, and 

Ordinary Differential Equations, the concept map promotes relational reasoning at a higher level – it 

pinpoints the overarching structure that exists at a higher level of abstraction. Arguably, the 

pedagogical value of identifying and illuminating this higher-level structure that unifies disparate-to-

students mathematical concepts could be impactful.  
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Figure 2. Concept map on Vector Space. 

 

As mentioned, students were expected to complete a Knowledge Organiser in weekly tutorials 

starting in Week 2. (Due to Covid-19, students had an option not to attend an in-person tutorial and 

could submit their solutions online to get a full mark. Only a small proportion of students preferred 

to do that.)  

Moreover, two Knowledge Organiser tasks were set as ‗marked problems‘: the selected concepts 

were Series in Week 3 and Vector Space in Week 7. Students were given at least one week to 

complete each Knowledge Organiser. Thus, two of the ten Knowledge Organisers were collected for 

marking. 

An introductory session on Knowledge Organisers was included as part of the semester‘s first 

class, and an example was uploaded on Canvas (Learning Management System) for students to 

access anytime. However, the quality of student submissions of the first set of Knowledge Organisers 

revealed that some students did not clearly understand the concept mapping task. Therefore, the first 

author, who was an instructor on the course, provided another explanation session during a class in 

Week 4. The session provided a more detailed overview of the main features and characteristics of an 

effective concept map and included examples of high-quality concept maps, which were contrasted 

with low-quality concept maps. 

Students‘ work on concept mapping tasks was assessed using a specially designed rubric 

developed and validated in a previous study [63]. As part of the study, several rubrics were 
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developed based on previous research, and their predictive evaluation capacity was compared. This 

was done by comparing the scores assigned according to four different rubrics with their 

corresponding predictive power of the students‘ performance in various forms of assessment using 

linear regression analysis. The results showed that the ―Ratio method‖ was an optimal rubric for 

assessing students‘ performance. The Ratio method assigns a numerical score equal to the inverse 

ratio of the number of concepts to the number of relationships connecting them. For example, the 

score for the concept map in Figure 2 is obtained by the inverse ratio of the number of concepts = 12 

and the number of relationships between them = 15. Hence the score is equal to 15/12 = 1.25. 

According to this method, for a fixed number of concepts, higher scores are indicative of high-level 

elaboration manifesting through more cross-links identified between the group of related concepts. 

At the low level, fewer relations would be used in a map, mostly of generality/specificity type. In 

practice, the Ratio method would necessitate the use of a fixed lower bound for the number of 

concepts used in a map, which would depend on the minimal number of related concepts specified 

by an instructor in relation to the topic content.  

3.4. Data collection 

3.4.1. Questionnaire 

In addition to coursework marks, the data for this research was collected through an online 

survey software, Qualtrics, which recorded participants‘ responses. An ethics approval was granted 

by the University of Auckland Human Participants Ethics Committee on 25 February, 2021 for three 

years (reference Number UAHPEC21976). 

The questionnaire was given out at the end of the semester and included nine items/questions. 

The first seven items asked students to rate the extent to which they agreed with the statement about 

the Knowledge Organisers (e.g., ―I found the knowledge-organiser activity valuable‖, ―The 

knowledge-organisers made me confused‖, ―I would like to see similar activities in other 

mathematics courses‖, ―I feel that it was not a good use of my time‖). The full list of Items 1-7 is 

provided in the Appendix. A Likert 5-point scale was used for Items 1 to 7, and descriptive statistics 

were obtained. The statements alternated between positive (Items 1, 3, 5, 6, 7) and negative (Items 2, 

4). Hence, before finding the average of each student‘s response on the questionnaire, the scores on 

the negative statements were inversed (by subtracting the raw score from 6).  

Additionally, the next item (Item 8) asked students: ―On average, how much time did it take you 

to complete a single knowledge-organiser?‖, with 1- less than 10 minutes; 2 - 10-30 minutes; 3 - 30-

50 minutes and 4 - more than 50 minutes given as possible responses. 

The last question on the survey was: ―What was the most beneficial aspect of the knowledge-

organiser for you, if any?‖, an open-ended question that allowed the students to freely express their 

opinions about the Knowledge Organisers. Student responses to this question were analysed 

qualitatively. 

3.4.2. Concept map scores 

Concept map scores were obtained using the Ratio method described in the ‗Innovation: 

Knowledge Organisers‘ (section 3.3). They were used in the quantitative analysis in order to test for 

associations between student performance on the Knowledge Organisers and their perceptions and 

the time spent on-task.  



115 

 

STEM Education  Volume 3, Issue 2, 103–129 

3.5. Data analysis 

The study employed a mixed-methods approach to data analysis, combining the complementary 

power of quantitative and qualitative analyses [64]. 

3.5.1. Qualitative analysis 

The responses to the open-ended question, ―What was the most beneficial aspect of the 

knowledge-organiser for you, if any?‖ were analysed using an inductive thematic analysis [65]. The 

second author, who has experience in postgraduate level research, had collected all the responses, 

read and re-read them to familiarise themselves with the dataset. In this process, keywords or key 

ideas were sought in each response. Then, the responses were first sorted into two major categories 

depending on whether the statement about the Knowledge Organisers was positive or negative. Next, 

within the two major categories, the subcategories were determined based on the particular aspect the 

students found favouring or disfavouring the Knowledge Organisers. In ensuring an objective 

process, the categorisation of the second author was compared with that of the first author, who is an 

experienced researcher. The two authors reviewed the decisions, and the responses‘ subcategories 

were confirmed after some adjustments. 

3.5.2. Quantitative analysis 

Quantitative analyses were conducted to investigate: (1) the descriptive statistics, (2) the 

relationship between student perceptions and the concept map scores, and (3) the relationship 

between the time spent to complete a Knowledge Organiser and the concept map scores. Spearman‘s 

correlation and point-biserial correlation tests were carried out to address (2) and (3), respectively. 

4. Results 

To answer RQ1, the responses to the questionnaire on Knowledge Organisers were analysed. 

4.1. Item 1 – Item 7 

The descriptive statistics of the responses to the first seven items of the questionnaire (listed in 

Figure 6) are presented in Table 1. 

 

Table 1. Descriptive statistics on student perceptions (Items 1-7). 

 Item 

Statistics 1 2 3 4 5 6 7 

Mean 3.09 3.18 3.25 3.02 3 2.80 3.14 

Median 3 3 3 3 3 3 3 

Mode 3 3 3 3 3 3 3 

Standard deviation 1.05 1.01 1.01 1.02 1.04 1.07 1.00 

Kurtosis -0.47 -0.70 -0.09 -0.51 -0.41 -0.66 -0.29 

Skewness -0.18 0.13 -0.41 0.23 -0.15 0.02 -0.31 
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A total of 251 students provided responses to the first seven items. As reported in Table 1, all 

means are within the range of 2.80 to 3.25, with the standard deviations between 1.00 and 1.07. The 

median and the mode of Item 1 to Item 7 are all 3.  

4.2. Item 8 – self-reported time-on-task 

The frequency statistics of the responses to Item 8 (―On average, how much time did it take you 

to complete a single knowledge-organiser?‖) are presented in Table 2. 

 

Table 2. Frequency of each category in response to Item 8 (completion time). 

  Category  

 Less than 10 

minutes 

10-30 minutes 30-50 minutes More than 50 

minutes 

Total 

Frequency 26 109 84 33 252 

 

The mean of Item 8 responses was 2.49, with a standard deviation of 0.85. Of the students who 

participated in this study, 43.25% responded that the Knowledge Organisers took between 10-30 

minutes to complete, and 33.33% responded that the task took between 30-50 minutes. The fact that 

over 75% of students spent between 10-50 minutes provided reassurance that the majority of students 

engaged with the task meaningfully, with only a small proportion spending unreasonably little time 

on the task. 

4.3. Question 9: Open-ended question 

Unlike other questions in the survey, Question 9 (―What was the most beneficial aspect of the 

Knowledge Organiser for you, if any?‖) was an open-ended question soliciting student feedback on 

the new task. Student responses were analysed qualitatively using an inductive thematic analysis [65], 

as described in Data Analysis (section 3.5).  

The frequency statistics of the responses are shown in Table 3. 

 

Table 3. Frequency counts of responses for each major category. 

 Category  

 Positive Negative Disregarded as non-

informative 

Total 

Frequency 114 31 5 150 

 

Unlike the previous items in the questionnaire, this question had the lowest response rate, with 

only 150 students providing a comment. However, of those who had responded, a high proportion of 

the students (over 75%) stated a beneficial aspect of the Knowledge Organisers. 

In determining the categories and the subcategories of the responses, following the methodology 

employed, common keywords or key ideas were used as a guideline in comparing and finding 

similarities between student responses. For the responses that discussed multiple aspects, it was 

decided that they would be allocated to the subcategory of the aspect for which they emphasised the 

most. Hence, each student response was mapped onto no more than one subcategory. 
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Figure 3 presents a thematic map of this qualitative analysis, which was developed according to 

the methodology described in Data Analysis (section 3.5). For illustration purposes, the size of each 

oval representing a subcategory is proportional to the number of responses belonging to that 

subcategory. The number of responses represented by each oval ranges from 1 to 25. 

 

 
 

Figure 3. Thematic map of qualitative analysis. 

 

The two categories (positive and negative perceptions) and the subcategories of the responses 

with representative quotes are presented in Table 4 and Table 5, respectively.  

 

Table 4. A summary of the positive comments with representative quotes. 

Positive Comments 

Subcategory Count Representative Quotes 

Connection/ 

Relation 

25  It can help me sort out some knowledge points that cannot be clarified in the 

course book and find out the relationship between them. 

 I found the knowledge organiser for vector spaces really useful. Finding 

links between all the concepts (which I didn‘t do for series) was very 

valuable. 

 Zooming out, to see all connections and aspects of a given topic. 

 Forcing myself to identify the connections between certain concepts. 

Revision 

 

17  Taking time to read through the notes to see related concepts. 

Helpful for 

Understanding 

17  Forced me to understand all concepts surrounding the concept in question. 

 Understanding what we learned and how it related to other concepts. 
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Because the diagram is useful to visualise understanding. 

Summary/ 

Conciseness 

14  All concepts in a single, concise place. 

 The use of a single page to organise the notes for one subject kept it concise 

and easy to read. 

Improvement in 

learning 

8  Broaden my horizon. 

 A comprehensive way to learn the knowledge. 

Recall/ 

Retrieval 

6  Recalling the content from lectures and presenting in an easy to read way for 

my study. 

Definition & 

Example/Non-

example 

6  The non-examples made me more clear about what the concepts should 

relate to and should not. 

 It made me consider examples and non examples outside of the course 

content, which I found challenging to think about and come up with. 

Impetus for thinking 4  It forced me to study the concept rather than just memorise a formula. 

 I found it difficult going through and connecting all the ideas together, but it 

meant I had to spend a lot of time thinking about the topics. This might have 

improved my knowledge on the topics but only marginally. 

Identifying Holes 4  Organising it helps me revise my knowledge and lets me know what I need 

to work more on. 

 Understand what I knew well and what I didn‘t. 

Visual aspect 4  Seeing a visual outlay of a concept 

Elaboration/ 

Concept map 

3  

Structure of 

Knowledge 

3  Structure the knowledge 

Problem Solving 

Skills 

3  

Total 114  

 

Table 5. A summary of the negative comments with representative quotes. 

Negative Comments 

 Subcategory Count Quotes 

None 20  None. 

 I don‘t think there is any. 

Not beneficial 4  I don‘t think they were beneficial. 

 There wasn‘t much of an effect with me so it felt like it was not useful. 

Being forced to 

follow a provided 

learning strategy 

3  Each student has their own way of studying. Making the knowledge-

organisers is not effective for me. 

 I usually do my own knowledge-organiser. However, by following a specific 

format it doesn‘t help me understand the concept. But I have to spend extra 

time making up to get the mark. 

Waste of time 2  They were a waste of time and should be optional. 

Difficult 1  Sometime difficult for non-example. 

Dislike 1  I don‘t really like it. 

Total 31  
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Notably, out of 145 responses, only six referred to the use of examples/non-examples as part of 

their Knowledge Organiser tasks, with the majority of positive comments explicitly pointing out 

aspects of the concept mapping activity. This is in line with the expectations requiring 

disproportionally more effort in constructing a concept map than providing an example/non-example. 

These results will be analysed further in the Discussion section.  

4.4. Statistical tests 

In order to answer RQ2, we conducted a point-biserial correlation test between the concept map 

score (obtained through the Ratio method) and the student perceptions classified as either positive or 

negative according to their responses to Question 9 (N = 143). Unless otherwise stated, data are 

mean ± standard deviation. Analyses were done to ensure that there were no outliers, the data were 

normally distributed, and the homogeneity of variances existed. A statistically significant correlation 

was obtained between the concept map scores and the student perceptions, rpb(141) = .242, p = .004, 

with positive perceptions resulting in higher concept map scores compared to negative perceptions, 

M = .77 (SD = .52) vs. M = .46 (SD = .51). However, the perceptions accounted for only 5.86% of 

the variability in the concept map scores. 

To answer RQ3, we used Spearman‘s rank-order correlation test to inspect the relationship 

between the concept map score obtained using the Ratio method and the response to Item 8 on the 

questionnaire, which asked about the time spent to complete a single Knowledge Organiser (N = 

249). The monotonicity of the relationship was validated prior to the analysis. As expected, the 

results of this analysis revealed a positive correlation between concept map scores and the time 

students spent on completing the Knowledge Organisers, rs(247) = .147, p = .021. 

5. Discussion 

To address RQ1, we first note that the descriptive statistics for Items 1–8 are neutral overall 

(Table 1). Hence, not much can be inferred from these values. However, it is important to point out a 

misalignment in the results of the quantitative analysis (Items 1–7) and the qualitative analysis 

(Question 9). This could be because 251 students have responded to Item 1 – Item 7, whereas only 

150 students have responded to Question 9. Hence, it is possible that the students who did not find 

the Knowledge Organisers beneficial would have simply chosen not to answer Question 9. Perhaps, 

this is a very plausible explanation for why the results from Items 1–7 tend to be neutral, whereas the 

positive opinions are much more prevalent in the data from Question 9 (114 positives vs 31 

negatives). 

In answering RQ1, an important result to note in the qualitative analysis is the five major 

subcategories identified in the analysis capturing themes in positive opinions expressed by students 

regarding their perceptions of the Knowledge Organisers. The subcategories are Connection/Relation, 

Revision, Helpful for Understanding, Summary/Conciseness and Improvement in Learning. 

Analysed through the lens of Human Cognitive Architecture and mathematics cognition theory, it is 

clear that these categories are aligned with various stages in developing and forming schemas. In 

order to develop a schema, the information must be attended to first (revised and understood), and 

then the connections between various aspects of information must be sought (related and connected). 

Importantly, the conciseness of the Knowledge Organisers‘ format reduces the burden of organising 
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complex information and thereby could support working memory function by reducing its limitations. 

This, in turn, would make it more explicit (or ‗pre-packaged‘) to be stored in the long-term memory 

as a branch of a complex network connecting various units of cognitive structure. Students‘ 

representative quotes about the Knowledge Organisers such as ―It can help me sort out some 

knowledge points that cannot be clarified in the course book and find out the relationship between 

them‖, ―Zooming out, to see all connections and aspects of a given topic‖, ―Forcing myself to 

identify the connections between certain concepts‖, and ―Understanding what we learned and how it 

related to other concepts. Because the diagram is useful to visualise understanding‖, demonstrate that 

the students were able to perceive and pinpoint the key mechanism afforded by the Knowledge 

Organisers that could make their learning more effective. However, this can not be considered as a 

groundbreaking, surprising result. 

Regarding RQ2 and RQ3, we observed that students‘ performance on concept mapping is 

positively correlated with both their perceptions of Knowledge Organisers and the time spent 

completing the tasks. However, correlation does not imply causation. One possibility is that students 

with positive dispositions towards the Knowledge Organisers had the extra drive and motivation to 

spend more time on the Knowledge Organisers, thereby achieving a higher mark. On the other hand, 

students who generally get good grades tend to be more diligent in completing all course assessments 

with enhanced effort. Hence, another possibility is that in the process of engaging with the 

Knowledge Organisers‘ tasks on a weekly basis, the students could have developed their appreciation 

of this activity, identifying the benefits and, thus, developing positive perceptions of the tasks as a 

result. Either way, it seems that a deliberate attempt to increase the time students spend on the task is 

worthwhile. We discuss the rationale for this and offer some concrete options below. 

The correlational evidence suggests that the students with negative perceptions had not engaged 

with the task in a meaningful way. This can be explained by the well-known Expectancy-Value 

Theory of achievement motivation developed by Wigfield and Eccles [66]. The theory posits that if a 

learner thinks a task is valuable for whatever reason, then the learner is likely to be motivated to 

succeed, thus putting more effort into learning. Since Knowledge Organisers are quite different from 

tasks that typically appear in mathematics education, it is probable that some students did not discern 

any value in completing these tasks, resulting in low engagement. 

Regarding RQ4, one of the major goals of this study was to ascertain the feasibility of 

incorporating Knowledge Organisers into a mathematics classroom by conducting an implementation 

and evaluation study to complement the findings reported in our previous paper [22]. Based on the 

results of this study, we obtained the following insights. The design of the assessment task was 

partially successful. Specifically, the template and the instructions provided to learners seemed to 

serve the designated purpose. The rubric for marking student concept mapping based on the Ratio 

method is objective and easy to use [63]. Our concern about students ‗gaming‘ the system by 

including many ‗wrong‘ concepts and connections has not materialised. Albeit, this possibility can 

not be ruled out from occurring in general. Thus, our recommendation is to include a qualitative 

aspect of assessing a concept map (partial marks for effort) to counterbalance sole reliance on a 

purely quantitative measure. 

However, we identified a severe limitation in the design of the overall innovation due to 

underestimating how novel and confusing concept mapping was for students at the start of the 

semester. As reported previously, after marking concept maps submitted in Week 3, extra 
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instructional resources were provided to learners urgently: a more detailed explanation of how to 

construct a high-quality concept map was made during class in Week 4, together with examples of 

concept maps of high- and low-quality. This measure seemed sufficient, as evidenced by marked 

improvements in student outputs. Therefore, based on the triangulation of the results from qualitative 

and quantitative analyses, we conclude that the feasibility of future implementation would depend on 

several factors.  

First, providing a quality explanation of the concept mapping activity at the start of the semester 

and emphasising its benefits is crucial. We found that provision and discussion of examples/non-

examples of the actual concept maps of mathematical concepts were needed for learners to make 

progress. It would have been better to be done before they attempted the tasks. Second, based on the 

interpretation of the data through the lens of Expectancy-Value Theory [66], our recommendation is 

to embed the Knowledge Organiser into high-stake assessments such as tests and the final exam and 

inform students about it. As suggested by the data analysis, this simple measure may improve 

learning outcomes through increased motivation and, thus, engagement as a result of students‘ 

improved perceptions about the value of these tasks. As the theory posits, the more learners value the 

task, the more they are motivated to engage and complete it. Arguably, if the students are aware that 

these novel Knowledge Organisers are there to help them master a skill that will be assessed on the 

exam, they would be more inclined to value the tasks and hence, invest more time and effort. This, in 

turn, may result in more efficient and effective learning, given our current understanding of Human 

Cognitive Architecture and preliminary results from previous studies. 

6. Final remarks 

The need to seek research-grounded solutions to improve practice has been emphasised in the 

mathematics education literature. A major concern has been flagged that classroom-based 

interventions in mathematics education are rarely undertaken and evaluated [33]. Contributing to the 

discipline in this vein, this exploratory case study reports on the design, development, 

implementation and evaluation of innovative tasks in a large classroom setting involving over 300 

students. By utilising a mixed-methods approach and triangulation of the findings from qualitative 

and quantitative analyses, we were able to discern critical aspects pertaining to the feasibility of 

implementation and evaluate learners‘ perceptions. A major flaw in the initial design of the 

innovation was revealed: underestimation of novelty for learners necessitating extra instructional 

guidance and resources at the start of the trial. Moreover, the analytical insights derived from this 

investigation identified another implementational limitation affecting less-motivated students who 

did not engage with the tasks meaningfully. Based on the results of the data analysis and their 

theoretical interpretations, we were able to formulate implications for practice. 

The design principle of our innovation is generalisable and transferable to other educational 

settings as a blueprint for an assessment structure and related instruction that could be utilised in 

mathematics education broadly. Stylianides and Stylianides [67] propose three dimensions of 

evaluation of classroom interventions: (1) how amenable it is to scaling up, (2) how practicable it is 

for curricular integration, and (3) how capable it is of producing long-lasting effects. Evaluated this 

way, our innovation can arguably be deemed effective for the first two criteria: the number of 

students utilising Knowledge Organisers is unlimited; it is practicable for incorporation into existing 

curricular structures at any level. However, ongoing research is needed to determine long-lasting 



122 

 

STEM Education  Volume 3, Issue 2, 103–129 

effects in the context of tertiary education.  

It is important to note that the idea of using a knowledge organiser has been introduced 

previously. Many studies have explored the use of various knowledge organisers, such as an advance 

organiser, a post-organiser, and knowledge of the behavioural objective in research dating back to the 

1970s [68,69]. However, not much has been done concerning the assessment of a global conceptual 

understanding using concept mapping. Future studies could investigate whether or not it is 

principally different from a local conceptual understanding in the sense of an example space (based 

on the variation theory [30,38]); and if so, its effectiveness needs to be compared with other learning 

activities in mathematics education in properly controlled settings. On a different note, an important 

line of inquiry may be investigating collaborative concept mapping activity as part of small-group 

problem-solving sessions to analyse how the global conceptual understanding of a group of related 

concepts could be networked and negotiated among learners. Moreover, further theoretical and 

empirical research can attempt to answer one of the key questions: whether a learner‘s ability to 

produce a high-quality Knowledge Organizer accurately reflects their local and global conceptual 

knowledge and understanding of mathematics. 

Appendix 

 
Figure 4. Guidelines for completing a Knowledge Organiser. 
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Figure 5. A completed Knowledge Organiser on Vector Space. 
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Figure 6. Questionnaire Items 1-7. 
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