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Abstract: Newton’s method is a popular numeric approach due to its simplicity and quadratic 

convergence to solve nonlinear equations that cannot be solved with exact solutions. However, the 

initial point chosen to activate the iteration of Newton’s method may cause difficulties in slower 

convergence, stagnation, and divergence of the iterative process. The common advice to deal with 

these special cases was to choose another inner point to repeat the process again or use a graph of the 

nonlinear equation (function) to choose a new initial point. Based on the recent experiences in teaching 

preservice secondary-school mathematics teachers, this classroom note presents a simple and practical 

strategy to avoid many of the difficulties encountered in using Newton’s method during solving 

nonlinear equations. Instead of plotting the graph of an equation to help choose the initial point, the 

practical strategy is to use the middle point of the range as the initial point to start the iterative process 

of Newton’s method. By solving ten different nonlinear equations using Newton’s method initiated 

from the endpoints and the middle point respectively, the results show that choosing the middle point 

of a defined range to initiate the iterative process for Newton’s method seems a general and practical 

strategy to avoid the difficulties encountered in using the method to solve nonlinear equations with 

faster convergence in most cases. 

Keywords: nonlinear equation, Newton’s method, numeric iteration, convergence and divergence, 

initial point, middle point 

 

1. Introduction  

In real-world applications, a great number of nonlinear equations cannot be solved with exact 

solutions. The common strategy to solve such complicated problems is to obtain its approximate 

solution using an appropriate procedure known as ‘numeric approach’ or ‘numeric computation’. 
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There are many different established numeric methods for solving various nonlinear equations. 

Newton’s method is a popular approach among the numeric methods due to its simplicity and quadratic 

convergence. Hence, it has been widely presented in many mathematics textbooks [1–6] and books of 

numeric computation [7–9].  

According to [10], Newton's method was originally presented as an immature form by Newton as 

a special case of the method in the 1670s, which was actually different from the current method. After 

a number of attempts by other mathematicians since then, Joseph Raphson found a simplified 

expression for this method in 1690, from which Thomas Simpson formulated the method as an iterative 

process to solve general nonlinear equations using the derivative of a function. This iterative process 

became the current formula of Newton’s method, sometimes also called the Newton-Raphson method, 

but Simpson was missed in the brand of the modern method he formulated. 

Despite the simplicity of Newton’s method in iterative numeric computation through computer or 

calculator programs with a general quadratic convergence [9], a number of difficulties have been 

noticed over the years. For example, there is no guarantee that the solution (or root) for the nonlinear 

equation is unique in a given range [a, b] even the process is certain to be convergent. A chosen initial 

point, usually a or b, does not ensure the process converging to the root for special cases where the 

derivative at the initial point is zero. In other instances, the process fails in progression where the 

derivative at the initial point does not exist.  

Given the diverse causes behind the difficulties, there has been no concrete strategy proposed to 

effectively deal with the difficulties mentioned in most mathematics textbooks. For instance, the 

‘normal cases’ were used to demonstrate the iterative process for Newton’s method in [4,7] to avoid 

addressing any of the difficult situations. For the circumstances where the derivative at the initial point 

is zero or does not exist, a new initial point should be chosen as suggested in [1,2,8,9], but no concrete 

strategies were offered for how to choose the new initial point. Using graphs was suggested to choose 

a new initial point in [3,5] when encountering divergence in the iterative process or the derivative at 

the initial point is zero or does not exist. This works but also means a halt in automatic processing of 

iteration when the execution is through a computer program.  

In this note, based on the classroom experience in teaching solving nonlinear equations using 

Newton’s method to preservice secondary-school mathematics teachers at Central Queensland 

University (CQU) of Australia in recent years, a practical strategy for choosing the initial point to the 

iterative process for both the normal and special cases is shared with the mathematics teaching and 

learning communities around the world. 

2. Fundamentals of Newton’s method 

Solving an equation f(x) = 0 within [a, b] is equivalent to finding the point x = xr ( [a, b]) where 

f(x) intersects the x-axis (Figure 1). Such a point x = xr is called the root for f(x) = 0 if it exists. It is not 

easy to judge if any root exists for a general equation f(x) = 0, but in a situation where f(a) and f(b) 

have opposite signs, such point (or points) indeed exists. This is because for a continuous and 

differentiable function f(x) defined within [a, b], the curve of the function must cross the x-axis at least 

once so that f(a) and f(b) have opposite signs. 

Newton’s method uses a sequence of x-intercepts of the tangent lines from an initial point x0 

(usually either a or b) to approximate the root for equation f(x) = 0 within [a, b]. Suppose the initial 

point to be x0 = b (Figure 1). The tangent line on f(x) at (x0, f(x0)) crosses the x-axis at x1 and the tangent 

of this line is the derivative of f(x) at x0 = b, i.e.,  
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0 0 0

0 0 1 1 0
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( ) ( ) ( )
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f x f x f x
f x x x x x

x x f x f x
 = − = = −

 −
⎯⎯→ ⎯⎯→  

This means that x1 can be determined by the values of x, y and y at the initial point x0. The new 

point x1, closer to xr compared to x0, can be used to find a new x-intercept x2 in a similar way as follows 

1 1 1

1 1 2 2 1

1 2 1 1

( ) ( ) ( )
( )

( ) ( )
.

f x f x f x
f x x x x x

x x f x f x
 = − = = −

 −
⎯⎯→ ⎯⎯→  

Obviously x2 is even closer to xr compared to x1. Repeating this process will take the consecutive 

x-intercepts approaching the root of the equation. This iterative procedure is captured by the following 

recurrent relation, called Newton’s method: 

1

( )
, 0,1, 2,3,...

( )

i

i i

i

f x
x x i

f x
+
= − =


              (1) 

 

Figure 1. Process of approaching the root x = xr for equation f(x) = 0 by Newton’s method 

 

The iteration terminates when the difference of two consecutive x-intercepts is smaller than a pre-

set error limit, i.e., 1i ix x+ −   , which indicates how close the approximate value of xi is to the root xr. 

If such condition is met after the ith iteration, an acceptable approximate solution is found for f(x) = 0, 

i.e., xr  xi+1. Note that i begins from 0. 

3. Solving nonlinear equations by Newton’s method: Examples 

This section presents different examples of nonlinear equations solved using Newton’s method to 

demonstrate some difficulties in using this method.  

 

Example 1: Solve equation 
1

( ) ln 0f x x
x

= − =  in [1, 3] using Newton’s method with  = 0.001.  

Since f(a) = f(1) = 1 and f(b) = f(3) = 1/3 – ln3  –0.7653, Newton’s method can be used to solve this 

nonlinear equation. 
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Formula (1) becomes 

1

2

1 ln

( ) (1 ln )

1( ) 1
.

i i

i i i i i

i i i i

ii i

i

x x

f x x x x x
x x x x

xf x x

x

+

−

−
= − = − = +

+ +
−

 

Let x0 = a = 1. 

0 0 0

0 1 1 0

0

(1 ln ) 1 (1 1 ln1) 1
1 1 1.5

1 1 1 2
.

x x x
x x x

x
+

−  − 
= = + = + = + =

+ +
 

Since 1 0
1.5 1 0.5 0.001,x x− = − =  =  let x1 = 1.5. 

1 1 1

2 1

1

(1 ln ) 1.5 (1 1.5 ln1.5)
1.5 1.7351

1 1 1.5
.

x x x
x x

x

−  − 
= + = + 

+ +
 

Since 2 1
1.7351 1.5 0.2351 0.001,x x− = − =  =  let x2 = 1.7351. 

2 2 2

3 2

2

(1 ln ) 1.7351 (1 1.7351 ln1.7351)
1.7351 1.7629

1 1 1.7351
.

x x x
x x

x

−  − 
= + = + 

+ +
 

Since 3 2
1.7629 1.7351 0.0278 0.001,x x− = − =  =  let x3 = 1.7629. 

3 3 3

4 3

3

(1 ln ) 1.7629 (1 1.7629 ln1.7629)
1.7629 1.7631

1 1 1.7629
.

x x x
x x

x

−  − 
= + = + 

+ +
 

Since 4 3
1.7631 1.7629 0.0002 0.001,x x− = − =  =  the approximate solution is x  x4 = 1.7631. 

The iterative process above can also be realized using Excel as a table shown below. 

 

i xi xi+1 | xi+1 – xi | | xi+1 – xi | <  

0 1 1.5 0.5 N 

1 1.5 1.7351 0.2351 N 

2 1.7351 1.7629 0.0278 N 

3 1.7629 1.7632 0.0003 Y 

x  x4 = 1.7632 

 

Of course, if choosing x0 = b = 3, the similar iterative process should lead to the same solution for 

this case as shown in the table below. Note this choice takes one more iteration to reach the same root. 

This is a ‘normal case’ where choosing any of the two end points ensures convergence of iteration to 

the same root where the curve of f(x) crosses the x-axis showing in Figure 2. 
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i xi xi+1 | xi+1 – xi | | xi+1 – xi | <  

0 3.0000 1.2781 1.7219 N 

1 1.2781 1.6632 0.3851 N 

2 1.6632 1.7593 0.0961 N 

3 1.7593 1.7632 0.0039 N 

4 1.7632 1.7632 0.0000 Y 

x  x5 = 1.7632 

 

 

Figure 2. The root crossing the x-axis for equation f(x) = 0 in Example 1 

 

Example 2: Solve equation 
3

2 2 2x x x− + = +  in [0, 1] using Newton’s method with  = 0.001.  

We first rearrange 
3

2 2 2x x x− + = +  to 
3

( ) 2 2 2.f x x x x= − + − +  Solving the equation becomes 

solving equation 
3

( ) 2 2 2 0.f x x x x= − + − + =  Since ( ) (0) 2 2 0.5858f a f= = −   and 

( ) (1) 1 2 2 3 0.7321f b f= = − + −  − , Newton’s method can be used to solve this nonlinear equation. 

3 3
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Formula (1) becomes 
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1 2
2
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Let x0 = a = 0. The iterative process using the formula above is tabulated in the following table.  

 

i xi xi+1 | xi+1 – xi | | xi+1 – xi | <  

0 0 0.2489 0.2489 N 

1 0.2489 0.2573 0.0084 N 

2 0.2573 0.2573 0.0000 Y 

x  x3 = 0.2573 
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If choosing x0 = b = 1, however, the similar iterative process produces a different solution of x = 

1.3713 outside of the range [0, 1] after 6 iterations showing in the table below. If we plot f(x) beyond 

the range [0, 1], it shows that x = 1.3713 is another root of this equation (Figure 3). This is an ‘abnormal 

case’ or a special case for using Newton’s method. This non-uniqueness is simply because the right 

end x = b = 1 is located closer to the root on its right and sharing the same ascending tendency in 

tangent to the right side of the curve. That is, the tangent of the left section is negative and approaches 

to root x = 0.2573 whereas the tangent of the right section is positive and approaches to the other root 

x = 1.3713.  

 

i xi xi+1 | xi+1 – xi | | xi+1 – xi | <  

0 1.00000 2.02914 1.02914 N 

1 2.02914 1.60459 0.42454 N 

2 1.60459 1.41715 0.18745 N 

3 1.41715 1.37367 0.04347 N 

4 1.37367 1.37132 0.00236 N 

5 1.37132 1.37131 0.00001 Y 

x  x6 = 1.3713 

 

 

Figure 3. Two roots crossing the x-axis for equation f(x) = 0 in Example 2 

 

Example 3: Solve equation cos 0x x− =  in [0, 1] with  = 0.001 using Newton’s method.  

Since f(a) = cos 0 0 1− =  and f(b) = cos (1) 1 0.5403 1 0.4597
r

−  − = − , Newton’s method can be used 

to solve this nonlinear equation. 

( ) cos ( ) cos
i i i

f x x x f x x x= − = −⎯⎯→  

2 sin 11 1 1
( ) sin (sin ) ( ) (sin )

2 2 2 2

i i

i i

i i

x x
f x x x f x x

x x x x

+
 = − − = − + = − + = −⎯⎯→  

We can see the derivative at the left end x = a = 0 does not exist. Still using Formula (1), 
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1
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x x x x
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− −
= − = − = +
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Let x0 = a = 0. 

0 0 0

1 0 0 0

0 0

2 (cos ) 0

12 sin 1
.

x x x
x x x x

x x

−
= + = + =

+
 

This means that the iteration does not progress if choosing the left endpoint as the initial point where 

(0)f   does not exist. 

However, by choosing the right endpoint as the initial point, i.e., x0 = b = 1, the iteration converges 

to x  x5 = 0.6419 showing in the table below. Note that the input value for trigonometric functions 

should be in radians. 

 

i xi xi+1 | xi+1 – xi | | xi+1 – xi | <  

0 1.0000 0.6935 0.30647 N 

1 0.6935 0.6537 0.03986 N 

2 0.6537 0.6446 0.00905 N 

3 0.6446 0.6424 0.00219 N 

4 0.6424 0.6419 0.00054 Y 

x  x5 = 0.6419 

 

Example 4: Solve equation 
2

( ) sin 0f x x x= − =  in [0.5, 1] using Newton’s method with  = 0.001.  

Since f(a) = f(0.5) = 0.25 – sinr0.5  0.25 – 0.4794 = –0.2294 and f(b) = f(1) = 1 – sinr1  1 – 0.8415 

= 0.1585, Newton’s method can be used to solve this nonlinear equation. 

 

2 2

2
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( ) ( sin ) 2 cos ( ) 2 cos

i i i

i i i

f x x x f x x x

f x x x x x f x x x

= − = −

  = − = − = −

⎯⎯→

⎯⎯→
 

Formula (1) becomes 
2

1

( ) sin

( ) 2 cos
.i i i

i i i

i i i

f x x x
x x x

f x x x
+

−
= − = −

 −
 

Letting x0 = b = 1, it takes 3 iterations to find an acceptable root x  x3 = 0.8767 shown in the table 

below.  

 

i xi xi+1 | xi+1 – xi | | xi+1 – xi | <  

0 1 0.89140 0.10860 N 

1 0.89140 0.87698 0.01442 N 

2 0.87698 0.87673 0.00025 Y 

x  x3 = 0.8767 
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The same solution can be reached by choosing x0 = a = 0.5. However, the convergence of the 

process would be much slower by taking 6 iterations to find the first acceptable root x  x6 = 0.8767 

shown in the table below. It can be clearly seen in the plot of this function (Figure 4) that the left 

endpoint x0 = a = 0.5 is near a local minimum on the curve where the tangent line is almost horizontal 

(green line) and its x-intercept is far beyond the right endpoint b = 1. In contrast, the tangent line from 

the right endpoint (blue line) x0 = b = 1 has a larger value for the gradient (or the derivative of the 

function), leading to an x-intercept closer to the root. Hence, it reaches the root faster than beginning 

from the left endpoint. 

 

i xi xi+1 | xi+1 – xi | | xi+1 – xi | <  

0 0.50000 2.37412 1.87412 N 

1 2.37412 1.47028 0.90385 N 

2 1.47028 1.05948 0.41080 N 

3 1.05948 0.90583 0.15365 N 

4 0.90583 0.87771 0.02811 N 

5 0.87771 0.87673 0.00098 Y 

x  x6 = 0.8767 

 

 
Figure 4. The graph of the function in range [0.5, 1] in Example 4 (red) and the tangent line crossing 

the right endpoint (1, 0.1585) in blue and that crossing point (0.5, –0.2294) in green 
 

This example is still a normal case for using Newton’s method. However, it demonstrates that the 

speed of convergence in iteration heavily depends on the choice of the initial point. 
 

Example 5: Solve equation 
1

sin 0
1

x
x

− =
+

 in [0, 1.5] with  = 0.001 using Newton’s method.  

Since 
1

( ) (0) sin 0 1
0 1

f a f= = − = −
+

 and 
1

( ) (1.5) sin 1.5 0.5975
1.5 1

r
f b f= = − 

+
, Newton’s method 

can be used to solve this nonlinear equation. 

2 2

1 1
( ) sin ( ) sin

1 1

1 1
( ) cos ( ) cos

( 1) ( 1)

i i

i

i i

i

f x x f x x
x x

f x x f x x
x x

= − = −
+ +

 = + = +
+ +

⎯⎯→

⎯⎯→

 

By formula (1) and choosing x0 = a = 0, it takes 4 iterations to find the first acceptable root x  x4 = 

0.6508 shown in the table below.  
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i xi xi+1 | xi+1 – xi | | xi+1 – xi | <  

0 0.0000 0.5000 0.50000 N 

1 0.5000 0.6416 0.14163 N 

2 0.6416 0.6507 0.00908 N 

3 0.6507 0.6508 0.00004 Y 

x  x4 = 0.6508 

 

Choosing x0 = b = 1.5, however, the process does not converge. Each iteration produced x-intercept 

outside the confined range [0, 1.5] shown in the table below.  

 

i xi xi+1 | xi+1 – xi | | xi+1 – xi | <  

0 1.5000 -1.0895 2.58950 N 

1 -1.0895 -1.1716 0.08210 N 

2 -1.1716 -1.3144 0.14284 N 

3 -1.3144 -1.5279 0.21345 N 

 

Observing the curve of this function (red line) and the tangent line crossing the right end (1.5, 

0.5975) shown as the blue line in Figure 5, its initial x-intercept projects to the negative half outside 

of the range, further away from the solution around x = 0.65. The divergence of the iterative process 

is caused by the small gradient of the tangent line at the right endpoint. If choosing another inner point, 

for instance x0 = 1, the gradient of the line crossing this point is larger (green line) and the process will 

converge to the same root after 4 iterations shown in the table below. 

 

Figure 5. The graph of the function in range [0, 1.5] in Example 5 (red) and the tangent line crossing 

the right endpoint (1.5 0.5975) in blue and that crossing point (1, 0.3415) in green 

 

i xi xi+1 | xi+1 – xi | | xi+1 – xi | <  

0 1.0000 0.5679 0.43208 N 

1 0.5679 0.6479 0.07994 N 

2 0.6479 0.6507 0.00289 N 

3 0.6507 0.6508 0.00000 Y 

x  x4 = 0.6508 
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4. A practical strategy to improve performance of Newton’s method 

The examples presented in Section 3 were all from the worked samples and exercises in the tailored 

textbook, Essentials and Examples of Applied Mathematics (2nd ed) [6], for the preservice secondary-

school mathematics teachers at CQU. Many of the problems with Newton’s method were gradually 

exposed by either the teacher (also the author of the textbook) or students since 2020. The advice 

provided to students for dealing with those special issues was initially the same as the general 

suggestions made in other books, such as ‘choosing the other endpoint if one endpoint did not work’ 

or ‘choosing a new point close to the endpoint if the end point did not work’, or ‘using a graph of the 

function to help choose the initial point’.  

However, a conversation on the matters of using Newton’s method with one talented student in 

2022 triggered further thinking about a general but practical strategy for dealing with such matters in 

using Newton’s method. The student simply augured that any other method could be equally effective 

to find the acceptable root if we choose the initial point close enough to the ‘true root’ on the graph 

of the nonlinear equation or function within the range. If so, why should we still stick with Newton’s 

method with the assistance of a graph? 

There are still difficulties in proving if a general rule exists as a specific guide to the users when 

encountering some of the difficulties in using Newton’s method. Instead, a practical strategy is shared 

below to guide students and other users to choose the initial point to avoid encountering the difficulties 

exposed in Section 3 with Newton’s method without plotting the nonlinear equation or function. This 

strategy is stated as follows: 
 

By meeting the condition that the continuous and differentiable nonlinear function f(x) 

within the range [a, b] has values at the two endpoints with opposite signs, it is 

recommended to choose the middle point of the range as the initial point to start the 

iterative process of Newton’s method, i.e., x0 = (a + b)/2.  
 
The check of the values at the two endpoints with opposite signs ensures existence of at least one 

root within the given range [a, b] for a continuous and differentiable function. Of course, the smaller 

the range, the better the chance to find a unique root within the range. For example, in Example 2, only 

one root x = 0.2573 would be found if the range is defined as [0, 0.5]. 

Strictly proving the correctness of this simple strategy is beyond the author’s capability. However, 

ten problems, including the five questions presented in Section 3, have been solved by Newton’s 

method using this strategy with a smaller error limit  = 0.0001, along with the results from starting 

the process at the two endpoints as comparisons in the performances of Newton’s method for solving 

these questions. The performance data in term of the number of iterations for all questions are 

summarized in Table 1. All the questions, the iterative processes and outcomes are detailed in 

Appendix A. 

 

Table 1. Number of iterations to reach the first acceptable root using different initial points 

x0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 

a 5 3 * 7 4 5 5 5 * 4 

b 5 # 7 4 + 4 4 4 4 5 

(a + b)/2 4 4 7 4 3 2 3 4 3 3 

#: Reached a different root shown in Example 2; *: Not progressing as the derivative was not defined at the 

point; +: Divergent as shown in Example 5. 
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5. Discussion and conclusion 

A few observations can be made from the data in Table 1. First, by choosing the middle point as 

the initial point, the iterative process of solving the ten nonlinear equations by Newton’s method 

converged to the desired root within the range without the assistance of the graph of a function. Using 

the middle point to initiate the process, there is no difficult to find the desired root within the range for 

the four special cases where an endpoint did not work as expected for Newton’s method. 

Second, in most cases, beginning with the middle point reaches the desired root with fewer 

iterations, or no slower than beginning from any of the two endpoints. This is because the middle point 

should be closer to the root than the endpoints in most cases, which in turn leads to reaching the root 

with fewer iterations. However, in cases where the solution is located near any of the two endpoints, 

like Example 2 where the root x = 0.2573 is near the left endpoint x = 0 and far away from the right 

endpoint x = 1.5, using the middle point as the initial point may be slightly slower than using the near 

endpoint in approaching the root. 

Hence, choosing the middle point of a defined range to initiate the iterative process for Newton’s 

method seems a general and practical strategy to avoid the difficulties encountered in using the method 

to solve nonlinear equations. However, more work needs to be done to prove how far this strategy 

could be extended in dealing with various special cases in using Newton’s method in the future.  
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Appendix A 

The ten nonlinear equations to which Newton’s method was applied. The error limit is  = 0.0001 

for all questions. 
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1. Solve equation 
1

( ) ln 0f x x
x

= − = in [1, 3]. 

i xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | 

0 1.00000 1.50000 0.50000 3.00000 1.27812 1.72188 2.00000 1.74247 0.25753 

1 1.50000 1.73508 0.23508 1.27812 1.66320 0.38508 1.74247 1.76306 0.02059 

2 1.73508 1.76292 0.02783 1.66320 1.75929 0.09609 1.76306 1.76322 0.00017 

3 1.76292 1.76322 0.00031 1.75929 1.76322 0.00393 1.76322 1.76322 0.00000 

4 1.76322 1.76322 0.00000 1.76322 1.76322 0.00001    

2. Solve equation 3 2 2 2x x x− + = +  in [0, 1]. 

i xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | 

0 0.00000 0.24889 0.24889 1.00000 2.02914 1.02914 0.50000 0.20877 0.29123 

1 0.24889 0.25728 0.00838 2.02914 1.60459 0.42454 0.20877 0.25654 0.04777 

2 0.25728 0.25730 0.00003 1.60459 1.41715 0.18745 0.25654 0.25730 0.00076 

3    1.41715 1.37367 0.04347 0.25730 0.25730 0.00000 

4    1.37367 1.37132 0.00236    

5    1.37132 1.37131 0.00001    

3. Solve equation cos 0x x− =  in [0, 1].  

i xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | 

0 0.00000 0.00000 0.00000 1.00000 0.69353 0.30647 0.50000 0.59986 0.09986 

 1       0.69353 0.65367 0.03986 0.59986 0.63080 0.03093 

 2       0.65367 0.64462 0.00905 0.63080 0.63898 0.00818 

 3       0.64462 0.64243 0.00219 0.63898 0.64104 0.00206 

 4       0.64243 0.64189 0.00054 0.64104 0.64155 0.00051 

 5       0.64189 0.64176 0.00013 0.64155 0.64167 0.00013 

6       0.64176 0.64173 0.00003 0.64167 0.64170 0.00003 

4. Solve equation 2( ) sin 0f x x x= − =  in [0.5, 1]. 

i xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | 

0 0.50000 2.37412 1.87412 1.00000 0.89140 0.10860 0.75000 0.90507 0.15507 

1 2.37412 1.47028 0.90385 0.89140 0.87698 0.01441 0.90507 0.87766 0.02740 

2 1.47028 1.05948 0.41080 0.87698 0.87673 0.00026 0.87766 0.87673 0.00094 

3 1.05948 0.90583 0.15365 0.87673 0.87673 0.00000 0.87673 0.87673 0.00000 

4 0.90583 0.87771 0.02811       

5 0.87771 0.87673 0.00098       

6 0.87673 0.87673 0.00000       
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5. Solve equation 
1

sin 0
1

x
x

− =
+

 in [0, 1.5].  

i xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | 

0 0.00000 0.50000 0.50000 1.50000 -1.08950 2.58950 0.75000 0.64585 0.10415 

1 0.50000 0.64163 0.14163 -1.08950 -1.17160 0.08210 0.64585 0.65074 0.00489 

2 0.64163 0.65071 0.00908 -1.17160 -1.31444 0.14284 0.65074 0.65075 0.00001 

3 0.65071 0.65075 0.00004 -1.31444 -1.52789 0.21345    

6. Solve equation 3 0xe x− − =  in [1, 2]. 

i xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | 

0 1.00000 1.74593 0.74593 2.00000 1.62607 0.37393 1.50000 1.50526 0.00526 

1 1.74593 1.53768 0.20825 1.62607 1.51397 0.11210 1.50526 1.50524 0.00002 

2 1.53768 1.50590 0.03177 1.51397 1.50529 0.00868 
   

3 1.50590 1.50524 0.00066 1.50529 1.50524 0.00005 
   

4 1.50524 1.50524 0.00000 
      

7. Solve equation 3 24 7 0x x x− + − =  in [3.5, 4.5].  

i xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | 

0 3.50000 4.48718 0.98718 4.50000 4.20388 0.29612 4.00000 4.17647 0.17647 

1 4.48718 4.20112 0.28606 4.20388 4.16430 0.03959 4.17647 4.16369 0.01278 

2 4.20112 4.16421 0.03691 4.16430 4.16362 0.00068 4.16369 4.16362 0.00007 

3 4.16421 4.16362 0.00059 4.16362 4.16362 0.00000 
   

4 4.16362 4.16362 0.00000   
     

8. Solve equation 2 1xxe x= +  in [0, 1].  

i xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | 

0 0.00000 1.00000 1.00000 1.00000 0.79099 0.20901 0.50000 0.78894 0.28894 

1 1.00000 0.79099 0.20901 0.79099 0.74077 0.05022 0.78894 0.74060 0.04835 

2 0.79099 0.74077 0.05022 0.74077 0.73844 0.00233 0.74060 0.73844 0.00216 

3 0.74077 0.73844 0.00233 0.73844 0.73843 0.00000 0.73844 0.73843 0.00000 

4 0.73844 0.73843 0.00000 
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9. Solve equation 3 1
0

1
x

x
− =

+
 in [0, 1].  

i xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | 

0 0.00000 0.00000 0.00000 1.00000 0.42582 0.57418 0.50000 0.52845 0.02845 

1    0.42582 0.52228 0.09646 0.52845 0.52895 0.00050 

2    0.52228 0.52892 0.00664 0.52895 0.52895 0.00000 

3    0.52892 0.52895 0.00003 
   

10. Solve equation 2sin 1 2cosx x+ =  in [0, π/2].  

i xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | xi xi+1 | xi+1 – xi | 

0 0.00000 0.50000 0.50000 1.57080 0.07080 1.50000 0.78540 0.43184 0.35355 

1 0.50000 0.42495 0.07505 0.07080 0.47030 0.39950 0.43184 0.42404 0.00780 

2 0.42495 0.42403 0.00092 0.47030 0.42440 0.04590 0.42404 0.42403 0.00001 

3 0.42403 0.42403 0.00000 0.42440 0.42403 0.00037 
   

4    
0.42403 0.42403 0.00000 
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