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Abstract: In the last decade, major efforts have been made to promote inquiry-based mathematics 

learning at the tertiary level. The Inquiry-Based Mathematics Education (IBME) movement has 

gained strong momentum among some mathematicians, attracting substantial funding from US 

government agencies. This resulted in the successful mobilization of regional consortia in many 

states, uniting over 800 mathematics education practitioners working to reform undergraduate 

education. Inquiry-based learning is characterized by the fundamental premise that learners should 

be allowed to learn ‗new to them‘ mathematics without being taught. This progressive idea is based 

on the assumption that it is best to advance learners to the level of experts by engaging learners in 

mathematical practices similar to those of practicing mathematicians: creating new definitions, 

conjectures and proofs - that way, learners are thought to develop ‗deep mathematical 

understanding‘. 

However, concerted efforts to radically reform mathematics education must be systematically 

scrutinized in view of available evidence and theoretical advances in the learning sciences. To that 

end, this scoping review sought to consolidate the extant research literature from cognitive science 

and educational psychology, offering a critical commentary on the effectiveness of inquiry-based 

learning. Our analysis of research articles and books pertaining to the topic revealed that the call for 

a major reform by the IBME advocates is not justified. Specifically, the general claim that students 

would learn better (and acquire superior conceptual understanding) if they were not taught is not 

supported by evidence. Neither is the general claim about the merits of IBME for addressing equity 

issues in mathematics classrooms.  

Keywords: explicit instruction, active learning, Inquiry-Based Learning (IBL), Inquiry-Based 

Mathematics Education (IBME), critical commentary  
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1. Introduction 

Recent literature in higher education overwhelmingly depicts traditional lectures as an inferior 

method of instruction, counterposing it with a desired student-centered model in which active 

learning approaches are viewed as superior [1‒4]. In the wake of the Covid-19 disruption to the 

sector, many tertiary institutions are considering mandating radical changes concerning instruction in 

response to repeated calls to abandon lectures altogether [1]. Many have already followed suit by 

replacing traditional lectures with flipped classrooms, given the meta-analytic evidence about the 

gained learning benefits [5]. Most evidence reported across numerous studies points to the extra 

benefit of active engagement during class compared to passive listening, which is often experienced 

in transmission-style lectures. 

However, under the banner of active learning, a new movement is gaining momentum in tertiary 

mathematics education – Inquiry-Based Mathematics Instruction [6,7]. In inquiry classrooms, 

students are challenged to ―reinvent or create mathematics that is new to them‖ ([6], p. 131). A 

compelling premise of the approach is that in doing so learners engage in mathematics practices just 

like research mathematicians, through constructing definitions, formulating theorems and proving 

them. The underlying assumption is that in this process learners ―develop deep mathematical 

understanding‖, coupled with a ―sense of ownership through creation and reinvention‖ ([6], p. 131). 

The role of the lecturer is reduced to a facilitator of learning. The proponents of Inquiry-Based 

Mathematics Instruction consider inquiry-based learning a branch of active learning, thereby 

claiming the benefits associated with active learning reported in the research literature [1]. The 

similarity drawn with the active learning approach is justified on the premise that students in inquiry 

classrooms are expected to be actively engaged while reinventing mathematics. An inquiry-based 

approach, however, is characterized by the specific types of activities that require learners to engage 

in discovery on their own as opposed to following an explicitly explained method with provided 

worked examples. Inquiry curricula are structured with ―a longer-term trajectory that sequences daily 

tasks to build toward big ideas‖ ([6], p. 131). An instructor designs task sequences to scaffold 

students‘ work on challenging problems so that students may prove a major theorem or (re)invent a 

mathematical definition or procedure over weeks of instruction. 

The popularity of Inquiry-Based Mathematics Instruction has been growing, particularly in the 

USA. The Educational Advancement Foundation and its successor, Mathematics Learning by 

Inquiry, have played a foundational role in building the Inquiry-Based Learning (IBL) community 

and enabling evaluation research in the IBL Mathematics Centers [8]. A large grant from the National 

Science Foundation supported the growth of The Academy of Inquiry-Based Learning with a 5-year 

$2.8 million Collaborative Research Project, called Professional Development and Uptake through 

Collaborative Teams (PRODUCT), which started in 2015. The project funded a series of four-day 

intensive workshops bringing together over 300 mathematics faculty over the five-year period. A call 

for contributions for a special issue on ‗Teaching inquiry‘ in Problems, Resources, and Issues in 

Mathematics Undergraduate Studies (PRIMUS) journal resulted in too many submissions to fit into a 

single issue, necessitating a second issue in order to publish 19 articles in total at the start of 

2017 [9,10]. A follow-up special issue, titled ―Bringing Inquiry to the First Two Years of College 

Mathematics‖, was published in the same year (Issue 7), comprising a collection of articles 

promoting inquiry-based instruction in various settings, starting from pre-calculus [11]. In the same 

year, a Special Interest Group (SIG) on Inquiry-Based Learning was formed under the umbrella of 

the Mathematical Association of America (http://sigmaa.maa.org/ibl/). One of the aims of the group 

is ―to promote the proliferation of IBL in Mathematics through conversation and professional 

http://sigmaa.maa.org/ibl/
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development‖. The SIG has been efficient in providing mini-workshops and organizing symposia at 

conferences. For example, in 2018, at the Joint Mathematics Meetings of the American Mathematical 

Society, the SIG symposia on IBL comprised 50 talks over five half-days [6]. An establishment of 

purposeful fora to exchange ideas on IBL resulted in the annual National Inquiry-Based Learning 

and Teaching conferences, which started in 2018.  

As a result of the coalescence of various initiatives supported by generous funding, the IBL 

community has grown into a large network of practitioners with centers based in different states 

across the USA [6]. Currently, a large project funded by the NSF provides targeted support for the 

development and support of the regional communities as part of the Communities for Mathematics 

Inquiry in Teaching Network (COMMIT Network) (https://www.comathinquiry.org/nsf-project). One 

of the goals of the project is to determine which initiatives are most effective in enabling sustained 

adoption of IBL in undergraduate mathematics education. So far, the project has successfully 

mobilized regional consortia in many states, uniting over 800 mathematics education practitioners 

working towards achieving a shared goal to improve mathematics education at the post-secondary 

level and enable success for all students. 

In achieving this goal, however, concerted efforts to radically reform mathematics education 

must be systematically scrutinized in view of available evidence and theoretical advances in learning 

sciences. A nuanced, evidence-based approach to the umbrella term ‗active learning‘ is required in 

order to discern the characteristics of learning activities that are more effective than others. To that 

end, the present study sought to consolidate the extant research literature from cognitive science and 

educational psychology, offering a critical commentary on the effectiveness of inquiry-based 

learning. 

2. Critical Commentary on Inquiry-Based Learning 

According to the key proponents, the goal of Inquiry-Based Learning is to transform students 

from consumers to producers of mathematics (as stated in the call for the MAA Contributed Paper 

Session on Inquiry-Based Learning and Teaching at the Joint Mathematics Meetings, 2020 

https://www.jointmathematicsmeetings.org/meetings/national/jmm2020/2245_maacp-descrip). This 

progressive idea is based on the assumption that it is possible to advance learners to the level of 

experts via a shortcut of sorts by engaging learners in ―mathematical practices similar to those of 

practicing mathematicians: conjecturing and proving, defining, creating and using algorithms, and 

modelling‖ ([6], p. 131). However seductive, this idea of discovery learning (or inquiry-based 

learning) has repeatedly been shown to be ineffective [12‒18]. Despite the evidence available from 

numerous properly controlled, rigorously conducted experiments, many educational researchers 

remain strong advocates for the method due to the pivotal confusion – there is plenty of scientific 

evidence in support of ‗active pedagogies‘ that are characterized by a learning environment in which 

students are attentively and actively engaged in their own learning. However, even though the so-

called inquiry-based learning is considered a type of active learning, the scientific evidence on the 

benefits of active learning does not generalize to this very distinctive method. Until now, however, 

these approaches have advanced in the field of undergraduate mathematics education in parallel, with 

inadequate cross-referencing. 

The current form of discovery/inquiry pedagogies can be traced back to the ideas of Jean-Jacque 

Rousseau, which reached us through many influential educators such as John Dewey, Jean Piaget, 

and Seymour Papert, to name a few [15]. For Rousseau and his successors, the unquestionable 

postulate is that it is always better to let the learners discover and construct the knowledge by 

https://www.comathinquiry.org/nsf-project
https://www.jointmathematicsmeetings.org/meetings/national/jmm2020/2245_maacp-descrip
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themselves regardless of the time they spend tinkering and exploring. Rousseau optimistically 

believed that this time is never wasted. Quite the opposite; he assumed that this exploration would 

produce better-equipped minds capable of solving real problems rather than passively regurgitating 

received content knowledge to yield ready-made solutions acquired through rote learning [19]. 

―Teach your students to observe the phenomena of nature,‖ says Rousseau, ―and you will soon rouse 

his curiosity; but if you want his curiosity to grow, do not be in too great a hurry to satisfy it. Lay the 

problems before him and let him solve them himself‖, as cited in Dehaene ([15], p. 182). 

The theoretical tenets of discovery/inquiry methods are rather compelling. However, a large body 

of research, accumulated over several decades, has demonstrated that its pedagogical value is 

unsatisfactory [14,15]. The resounding failures of discovery learning replicated in so many studies 

prompted Richard Mayer, an American cognitive scientist, to write a review titled, ―Should there be 

a three-strikes rule against pure discovery learning?‖ [20]. In this review, he analyzed the evidence 

from studies conducted from the 1950s to the late 1980s to compare pure discovery learning 

(unguided problem-based instruction) with guided forms of instruction. In conclusion, he made the 

following striking observation: in each decade since the 1950s, ―after empirical studies provided 

solid evidence that the then-popular unguided approach did not work, a similar approach soon 

popped up under a different name with the cycle repeating itself‖ ([21], p. 6). Each new wave was 

driven by strong advocates who seemed unaware, at best, and dismissive, at worst, of previous 

evidence demonstrating that unguided approaches had not been validated. Such lamentable series of 

cycles produced discovery learning [22], which was superseded by experiential learning [23,24], 

which gave way to problem-based and inquiry learning [25,26], which were later joined by 

constructivist instructional techniques [27]. In summary, Mayer pointed out that the ―debate about 

discovery has been replayed many times in education, but each time, the research evidence has 

favored a guided approach to learning‖ ([20], p. 18). 

Given the mounting evidence of the ineffectiveness of discovery learning and its successive 

reincarnations [14], why is the approach still so prevalent and institutionalized in many educational 

settings, including initial teacher training colleges and university education departments, albeit only 

in those with a focus on sociological research? Historically, this is likely to be explained by the 

profound impact of one of the most influential and highly acclaimed cognitive psychologists, Jerome 

Bruner, who was undoubtedly swayed by the progressive ideas traceable back to Rousseau. In 

introducing the term ‗discovery learning‘ in 1961 [28], Bruner wondered hypothetically about ―the 

degree that one is able to approach learning as a task of discovery something rather than ‗learning 

about‘ it‖ and whether there will be a tendency for the learner ―to carry out his learning activities 

with the autonomy of self-reward or, more properly by reward that is discovery itself‖ ([29], p.17). 

Summarizing his thoughts, he stated that ―the very attitudes and activities that characterize ‗figuring 

out‘ or ‗discovering‘ things for oneself also seems to have the effect of making material more readily 

accessible in memory‖ ([29], p. 24). This assumption was perfectly rational given the rudimentary 

state of development of cognitive psychology as a scientific discipline at the time. Therefore, it is 

unsurprising that the impact of Bruner‘s ideas was amplified through his scholarship as one of the 

founders of cognitive psychology. As a natural consequence, within two to three decades, this idea 

became dominant in educational spheres, seemingly unquestioned by the majority of education 

researchers. Furthermore, with the assurance of credibility rooted in cognitive psychology and the 

rapid growth of education faculty predominantly concerned with sociological aspects of education 

until recently, the situation persisted and remained largely unchallenged, especially in Anglosphere 

countries. In other words, one of the major reasons why so many educators mistakenly believe that 

minimally guided instruction is best for novice learners seems to be because they believe it is based 
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on solid evidence from cognitive science. 

However, as our understanding of human cognitive architecture progressed through the advances 

in learning sciences over the last six decades, it has become increasingly clear that discovery/inquiry 

learning is less effective than other methods [14]. Bruner‘s problematic theoretical justification was 

furthermore challenged by the accumulation of data from randomized, controlled trials, as well as 

from correlational studies strengthening the case against the inquiry learning perspective [14]. We 

next briefly outline the current understanding of the key aspects of Human Cognitive Architecture 

relevant to instructional issues in the context of critical commentary on the merits of 

discovery/inquiry learning. 

2.1. Human cognitive architecture 

Our understanding of the mechanisms involved in learning has advanced substantially over the 

last few decades. Much research has been done to conceptualize those mechanisms by means of 

mathematical modelling and experiential testing of those models [30]. Diagrammatic representations 

of Human Cognitive Architecture [31,32] can vary among researchers, but a modal model, which 

purposefully omits the complexity and simplifies the component relationships, can serve to explain 

the current state of research relevant to our context. A common way to represent human cognitive 

architecture is by using three memory systems: sensory memory, working memory and long-term 

memory. Figure 1, adapted from [33], depicts a modal model of human cognitive architecture, 

illustrating the main components and their interactions based on [30,34,35]. Sensory memory allows 

for the incoming sensory information (such as what we see, hear, touch, smell etc.) to be stored 

sufficiently long for the selected components to be transferred to working memory. Even after the 

stimuli have ceased, impressions of sensory information could be retained in sensory memory for 

short periods of time, provided they are selected for further processing in the working memory by the 

mechanism of attention [15]. 

 

 

Figure 1. A modal model of Human Cognitive Architecture 
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Working memory is the domain where all conscious thoughts occur: if you are aware of 

something, it means this information is being processed in working memory. It has been known for 

some time that working memory has two critical limitations. First, the duration for which the 

information can be stored there is very short; almost all of the information is lost after 20 seconds 

without rehearsal [14,36]. Thus, if you are working on novel information, you need to either write it 

down or keep rehearsing it until it is no longer needed. Moreover, there is now evidence that working 

memory depletes as a result of extensive mental effort before recovering after resting [37].  

Second, working memory is extremely limited in capacity. It has been known since the mid-

1950s that working memory can only hold about seven items of information (plus or minus 

two) [38]. However, only about three to four items of information can be processed at a time while 

mentally combining, comparing, or manipulating the items in some way [39]. As an example, on 

average, we can remember about seven random digits, but if asked to reorder them from, say, highest 

to lowest, the successful completion of the task would be challenging unless the number of digits is 

reduced. 

In educational settings, the process of learning happens through working memory. There are two 

ways information can enter working memory. First, by focusing attention on particular incoming 

sensory information, one might consciously process a stimulus from sensory memory. According to 

Clark and Paivio‘s dual-coding theory [40] and Baddeley and Hitch‘s model of working 

memory [41], working memory has two systems: verbal/auditory processing takes place in the so-

called phonological loop, whereas visual processing takes place within the visuospatial sketchpad 

(e.g., [42]). The two systems are complementary, meaning that if processing can be split between the 

two systems, then the total working memory capacity could increase. Therefore, if a teacher presents 

instructional information by splitting it between visual and verbal modalities, then a learner‘s 

processing is more efficient (e.g., [35,43]). This is, indeed, a customary instructional practice in 

mathematics teaching, where the explanations are usually presented by visual aids (such as written 

text with symbols or diagrams) with accompanying verbal narrations.  

The second way information can get into working memory is from the third memory system, 

long-term memory. Long-term memory is a central component in human cognitive architecture; it 

represents a repository of an enormous network of complex units of closely linked snippets of 

information, called schemas (Figure 1). We now know that our sense of self comes from that 

enormous amount of information stored in long-term memory [14]. Schemas are formed as outcomes 

of information processing in working memory. It is well-evidenced that experts have more 

comprehensive and better-organized schemas than novices, which results in improved fluency and 

accuracy in their performance. The surprising revelation that long-term memory plays a cardinal role 

in human cognition came from studies of chess players. It was long assumed that chess is a game of 

thinking and problem-solving. This turned out to be a fallacy: chess is a competition between the 

complexities of grandmasters' schemas stored in their long-term memory. Properly designed 

experiments, controlling for differences in working memory, showed that chess grandmasters have 

developed well-organized schemas that allow them to readily identify a myriad of board 

configurations [44,45]. Those configurations are learned by studying previous games for many years. 

Chess grandmasters play well at a fast pace because all they are doing is recalling the winning 

configurations - not figuring out the moves [21,45]. Similar results have been observed and validated 

in a wide range of educationally relevant areas from mathematics, computer science, physics, and 

social sciences [14,46‒50]. 

Hence, the main reason experts outperform novices is because of the superior quality of their 

schemas that organize a sizable body of knowledge and index it by a large number of patterns that, 
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on recognition, guide the expert in a fraction of a second to the relevant parts [47]. These schemas 

constitute long-term memory and, when required, are retrieved and integrated into working 

memory [44]. As far as we know, at present, long-term memory appears to have no practical capacity 

limits and, thus, is used to overcome the temporal limitations of working memory. If you have stored 

a schema in long-term memory, you can then repeatedly reintegrate it into working memory, 

transcending the 20-second limit. Furthermore, long-term memory also functions as a bypass for 

dealing with the capacity limits of working memory. As stated before, only about three to four items 

of information can be processed in working memory at a time. However, if snippets of information 

are organized into a coherent schema and stored in long-term memory, then the whole schema can be 

brought into working memory as one item of information to be manipulated and integrated with 

other units of information. This way, the capacity of working memory is not exceeded, whereas it 

could be the case if the same knowledge had not been consolidated into a schema, for instance, if it is 

organized as disjoint schemas. For example, imagine someone tells you their cell phone number is 

0149 1625 3649 and asks you to send them a message straight away. It could be challenging to hold 

this number in working memory while undertaking other tasks, such as pulling out your phone from 

your pocket, opening a messaging app etc. However, the same task would be straightforward if they 

told you that their phone number was a sequence of numbers squared from 0 to 7. In this case, the 

same information would have been organized into a coherent schema in your mind, thereby 

drastically reducing your working memory load [33]. 

2.2. Inquiry-based learning from the perspective of cognitive science 

Advances in cognitive science have substantially altered our understanding of the role of long-

term memory in human cognition over the last few decades. A large body of knowledge has 

developed since Atkinson and Shiffrin‘s [30] publication ―Human memory: A proposed system and 

its control processes‖ in 1968, resulting in the development of an enormous research field, with 

13,604 subsequent publications citing Atkinson and Shiffrin‘s work (retrieved 30 May 2022). 

However, the ideas and drivers of the movement that carried inquiry-based learning into the 21st 

century were predicated on the now-debunked assumptions about long-term memory. It is no longer 

viewed as a passive repository of discrete, isolated fragments of information that permit us to repeat 

what we have rote-learned [12]. And its influence on complex cognitive processes such as critical 

thinking and problem-solving is no longer viewed as subsidiary. Instead, long-term memory is now 

considered the central, principal structure of human cognition. Everything we see, hear, and think 

about is dependent on and influenced by our long-term memory. Numerous studies based on De 

Groot‘s (1945/1965) work on chess expertise, undertaken in the 1970‒80s, have served as a major 

pivot for the reconceptualization of the field around the role of long-term memory. The finding that 

expert chess players are markedly better than novices at reproducing briefly seen board 

configurations taken from real games, but do not differ in reproducing random board configurations, 

suggested that expert problem solvers derive their skill by drawing on an extensive network of 

schemas stored in their long-term memory, which readily enable selection and application of the best 

procedures for solving problems [12]. 

The fact that the differences in the schemas in long-term memory could be used to fully explain 

problem-solving ability brought to the fore the importance of long-term memory in human cognition. 

We are skilful in something because our long-term memory contains a large network of organized 

schemas of snippets of information concerning the area. Those schemas enable us to quickly 

recognize the conditions of a situation and realize, often unconsciously, what to do and when to do it. 
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Evolution has equipped us with the ability to store a vast amount of information in long-term 

memory, without which we would be struggling to complete even simple acts such as crossing a 

street. The schemas comprising long-term memory inform us how to avoid being hit by oncoming 

traffic - a skill many other animals are unable to encode in their long-term memories. Evolution is 

responsible for our ability to become competent in complex activities such as playing chess or doing 

mathematics through long-term practice and memorizing a countless number of ‗problem states‘ and 

the best moves to make when encountering those states [12,21,50].  

Since establishing the central role of long-term memory, educational psychologists and 

neuroscientists have devoted a great deal of attention to understanding how we learn most 

effectively. It is well-understood that in educational contexts learning is not just an additive process 

of storying new snippets of information into memory, as in a computer [34]. Rather, learning is 

dependent on two major factors: (1) what is presented and how and (2) the cognitive processing that 

the learner is actively engaged in during learning. Thus, learning is viewed as a generative activity. 

This conception of learning is a natural theoretical advance built on the coalescence of cognitive 

revolution and constructivist ideas about the importance of meaning-making while learning. This 

well-evidenced theory envisions effective learning to comprise three stages: (1) learners actively 

select the relevant aspects of incoming information by paying attention, (2) which is followed by 

organizing this information into a coherent cognitive structure in working memory, and (3) 

integrating cognitive structures with relevant prior knowledge activated from long-term memory (see 

Figure 1) [34]. Hence, the effectiveness of a learner‘s cognitive processing plays a pivotal role in 

generative learning. This does not mean that effective learning must necessarily involve a 

behaviorally active component. There is a functional difference between behaviorally active 

engagement and cognitively active engagement – these are two different variables. In fact, research 

shows that behaviorally active engagement does not necessarily lead to effective learning [20], 

whereas behaviorally passive engagement, such as viewing a power-point presentation, can lead to 

active learning, provided the passive instruction is designed well (reducing extraneous processing, 

managing essential processing, and fostering generative processing [51]). The conflation of the 

functional roles of these two types of active engagement in the learning process is known as the 

―constructivist teaching fallacy‖, which occurs when a teacher assumes that active learning is caused 

by active instructional methods and passive learning is caused by passive methods of 

instruction [20].  

It appears that the proponents of pedagogical approaches under the umbrella of inquiry-based 

learning have fallen for the ―constructivist teaching fallacy‖. Or they may only be aware of the 

outdated model of the human mind, according to which minimal guidance problem-solving through 

inquiry is the most effective way to gain expertise. In other words, it appears that the advocates for 

inquiry-based learning miss to account for the role of long-term memory in learning and also neglect 

to employ a nuanced consideration of active (cognitive) engagement involved in learning processes. 

This is evidenced by their commonly used negative connotations in arguing against the ―traditional, 

fact-oriented, teacher-centered model‖ of instruction [51] and erecting a false dichotomy between 

learning for knowing versus learning for conceptual understanding. We will return to this point in the 

next section. 

First, we need to clarify the terms. By inquiry-based learning in undergraduate mathematics we 

mean a specific approach when instructors expect students to discover ‗new to them‘ mathematics by 

asking them to formulate definitions and theorems, identify algorithms and prove theorems. 

Instructors act as facilitators by providing an organized instructional sequence of tasks that students 

are expected to complete during class (sometimes over many sessions), usually as part of a group. 
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Group discussions are strongly encouraged [6]. However, we want to distinguish this from assigning 

a non-routine task (for which no analogous worked example is provided) at the end of a topic to 

facilitate student inquiry to consolidate the learned material that was adequately explained (or 

modelled) by an instructor (e.g., challenging questions used by Lara Alcock [52]). In fact, we 

contend this would be a beneficial activity, according to the generative account of learning. This is 

because it may well be the case that learners would have developed relevant schemas in their long-

term memory as a result of teacher explanations, worked examples and solving/proving/working on 

similar problems assigned to them, but their schemas might still be disjoint. Such inquiry tasks could 

successfully facilitate the unification of those schemas into one high-quality schema, thus improving 

the organization of structure in the long-term memory. This could result in a positive change in long-

term memory, reflecting improved understanding. However, we will argue that this could only be 

effective if a learner has already acquired sufficient schemas in their long-term memory about the 

topic. 

Next, we will present a critical commentary pertaining to the three major claims often made by 

inquiry-learning proponents that: (1) students learn mathematics better when they are not taught 

(explanations of new material should be minimized or absent; students are to engage in 

doing/discovering mathematics by themselves mimicking mathematicians); (2) inquiry-based 

learning results in quality learning outcomes (superior conceptual understanding, which enables the 

transfer of learning to new situations), and (3) inquiry-based classrooms are more beneficial for 

addressing equity issues than conventional classrooms. 

2.3. Novice students do not learn better when they are not taught 

The overarching sentiment that teaching is not an act of goodness seemed to be rooted in the 

amalgamation of the enduring traditions of the progressive education movement based on the ideas 

traceable back to Rousseau and the ultra-progressive sociopolitical ideas that started to dominate 

educational scholarship at the turn of the 20th century. An act of teaching has been construed as an 

expression of repressive power imbalance. For example, in a publication by the Australian 

Association for Research in Education, teaching (direct instruction) has been criticized because ―it 

places the teacher and child in a rigid relationship where the teacher is always the one with the power 

and knowledge with limited allowance or recognition of individual and cultural difference‖ ([53], p. 

2). Very often, the righteousness of this proclamation has been asserted through invoking value 

statements introducing research such as ―This paper sought to look at the mathematics teachers‘ 

effort to shift from the traditional teacher-centered classroom instruction to a democratic student-

centered classroom.‖ ([54], p. 1). The implication is that a teacher-centered classroom is simply 

undemocratic and does not align with our value system. 

It appears that in a perplexing twist of confusion between different meanings of the word 

―progressive‖, the idea that a teacher should be a non-authoritative facilitator of learning has been 

propelled by well-meaning, empathetic educators on the premise of progressive political agendas. 

However, as has been pointed out by Greg Ashman in his book [55], progressive education is not 

progressive politics. Rather, progressive education is a teaching philosophy with the core assumption 

that learners need to be accommodated in a naturalistic way of learning through following their 

interests. This philosophical position is not inconsistent with any point on the political spectrum. 

Interestingly, noting that many left-leaning educators feel obliged to adopt such progressive ideas as 

default, progressive education was once the chosen philosophy of Giovanni Gentile, Mussolini‘s 

education minister. Unsurprisingly, as a natural counterpoint, it drew fierce criticism from the 
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Marxist philosopher Antonio Gramsci [55,56], underscoring the individualistic focus of progressive 

education, which is usually associated with the political right. Indeed, things tend to get very 

convoluted when political ideologies get entangled with philosophical positions in education, which, 

in turn, manifest in reform agendas in the classrooms. Unfortunately, it appears that this confusion 

deeply permeated academic and bureaucratic educational circles in the last few decades, particularly 

in the Anglosphere. The idea of a teacher providing explicit instruction to learners is a deeply 

offensive, regressive idea to many [55]. Perhaps, such a pervasive stance afforded justification for 

many not to question or seek evidence on the effectiveness of the progressive pedagogical 

approaches. 

Within the education research community, the issue has come to a head with the influential 

publication by Kirschner, Sweller and Clark, titled ―Why Minimal Guidance During Instruction Does 

Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and 

Inquiry-Based Teaching‖ in 2006. They presented a strong case against discovery methods of 

instruction by summarizing ―empirical studies over the past half-century that consistently indicate 

that minimally guided instruction is less effective and less efficient than instructional approaches that 

place a strong emphasis on guidance of the student learning process‖ ([12], p. 75). In the following 

year, a live debate was held at the 2007 annual convention of the American Educational Research 

Association, which continued in a book, ―Constructivism Instruction: Success or Failure?‖ edited by 

the organizers of the debate, Sigmund Tobias and Thomas Duffy [51]. Many prominent scholars on 

both sides of the debate of the controversy on the success or failure of constructivist instruction 

contributed a chapter to this volume. After completing their chapters, authors on both sides 

responded to questions from two scholars on the other side of the debate, with several iterations of 

questions and responses in some cases. This 376-page volume presented a comprehensive overview 

of the existing research, evidence, and arguments presented for both sides of the debate. In 

conclusion, Sigmund Tobias stated: ―A careful reading and re-reading of all the chapters in this book, 

and the related literature, has indicated to me that there is stimulating rhetoric for the constructivist 

position, but relatively little research supporting it. Indeed, the constructivists seem to suffer from 

denial with regard to information processing‖ ([51], p. 346). Specifically for mathematics education, 

he stated: ―In my assessment, the preponderance of evidence shows the ineffectiveness of minimally 

guided methods for promoting mathematical understanding‖ ([51] p. 285). 

This conclusion was based solely on the available evidence to date and the explanation afforded 

by the information processing theories based on Human Cognitive Architecture. In order to reap 

benefits from inquiry-based learning, a learner needs to select, organize, and integrate high-level 

information in a task-appropriate way, which is quite demanding for novice learners. Research has 

identified that inquiry/discovery learning relies on an extensive search through problem-solving 

space and that such a process is likely to tax learners‘ limited working-memory capacity and thus is 

unlikely to result in efficient learning for novices [57,58]. An extensive body of expert-novice 

research has shown that novices cannot recognize what is relevant to a problem or problem solution 

and also struggle to recognize what is novel in a specific situation. In other words, what you know 

determines what you recognize [51]. Moreover, research has shown that, left to their own devices, 

novices tend to focus on surface features instead of structural features of problems when solving 

problems and selecting further problems for study and solution [59]. In summary, according to 

cognitive load theory, the exploration of complex phenomena by novices with minimal guidance is 

likely to impose heavy loads on working memory, thus resulting in detrimental learning outcomes 

[12,14,57,60‒62]. 

Furthermore, in inquiry-based learning of novel information, learners would need to efficiently 
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monitor and control their own processes of attention to relevant information [12,15,63]. This would 

require learners to have well-developed metacognitive skills, which is an unwarranted assumption to 

be made about all learners [64]. In summary, from a theoretical perspective, learning by 

inquiry/discovery would necessitate a greater number of mental operations and require better 

executive control of attention compared to learning under a more directive approach (when an expert 

explanation is provided). For example, suppose a lecturer offers an explanation using both 

auditory/verbal and visual channels to reduce the processing load of the working memory (refer to 

Figure 1). In this case, the explanation would help focus learners‘ attention on the incoming 

information so that the learner can be actively (cognitively) engaged in selecting the relevant 

information for further processing in working memory. In other words, learners are enabled to 

process this information in the working memory actively and integrate it with the existing schemas 

activated from the long-term memory to be re-encoded in a modified, extended way. Thus, a 

provision of an expert explanation is conducive to an efficient way of learning novel information. 

 This explanation gained further empirical support when two meta-analytic studies were 

published in 2011 by Alfieri et al. [64]. The first one meta-analyzed the findings of the existing 

studies that directly tested for differences between an explicit instruction condition and a condition in 

which unassisted discovery learning occurred. Unassisted discovery learning condition was 

operationally defined as being provided with no guidance or feedback during the learning task (also 

known as pure discovery/inquiry learning). The inclusion criterion was strict only to include articles 

reporting on comparable conditions that consistently differed in the type of instruction. Studies 

comparing fundamentally different or equivocated conditions prior to testing were not included. 

Qualitative studies were also excluded from the meta-analysis due to the limitations in providing 

generalizable results.  

In total, 580 comparisons from 108 studies were included in the meta-analysis (some studies 

reported multiple experiments). Utilizing the random effects analysis, the 108 studies had a mean 

effect size of d = –0.38 (95% CI [–.50, –.25]), demonstrating that explicit teaching was more 

beneficial to learning than unassisted discovery (with small but meaningful effect size, p < .001). 

Moderation analysis indicated that the type of publication moderated the findings, with the articles in 

first-tier journals (d = –0.67) reporting larger effect sizes in favor of explicit instruction than articles 

in second-tier publications (d = –0.24). Effect sizes from book chapters were the smallest reported: d 

= –0.12. Furthermore, participants in unassisted discovery fared worse than participants in all four 

comparison conditions comprising explicit instruction: direct teaching (d = –0.29), feedback (d = –

0.46), worked examples (d = –0.63), and explanations provided (d = –0.28). Therefore, the findings 

indicated that explicit-instructional conditions lead to greater learning than unassisted-discovery 

conditions. Moreover, there were no significant differences between the mean effect sizes of the 

three categories of unassisted-discovery conditions: unassisted tasks, tasks requiring invention, and 

tasks involving collaboration with a naive peer were all found to be equally detrimental to learning.  

The second meta-analysis by the same authors [64], employed a different perspective, with the 

focus of comparison being the enhanced discovery approach which comprised three categories: 

elicited explanations (e.g., self-explanation prompts), guided discovery (some instruction) and 

generation (similar to the invention), which were compared to other instructional methods (covering 

the entire spectrum from unassisted discovery to direct teaching). A total of 360 comparisons from 56 

studies indicated that the type of enhanced-discovery condition moderated the findings: elicited 

explanation (d = 0.36) and guided discovery (d = 0.50) favored enhanced discovery, whereas 

generation (d = –0.15) favored other instructional methods. The latter finding was unexpected given 

the known benefits reported as the generation effect [65]. For instance, given pairs of synonyms, 
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experiment participants will remember a word better if they explicitly have to generate missing 

information, as in the case of ―FAST: R_P_D‖ versus reading ―FAST: RAPID‖. The generation effect 

is often used as a kernel of an argument in the discovery/inquiry literature. However, Alfieri et al. 

found that generation is not an optimal form of enhanced discovery. ―The generation conditions 

required learners to generate rules, strategies, or images or to answer questions about the 

information‖ ([64], p. 12) – tasks largely similar to the activities used in Inquiry-Based Mathematics 

Instruction classrooms [6].  

It is fair to say that this meta-analytic study has put an end to a long debate. The evidence is that 

the unassisted form of discovery is inferior to any other type of instruction and that the addition of 

scaffolding and guidance (such as expert explanations and self-explanation prompts) leads to better 

outcomes. The big idea of discovery pedagogy nurtured by the followers of Rousseau and 

embellished during the 20
th

 century by the virtuous progressive educationalists has been decisively 

discredited by the mounting experimental evidence. In their defence, the idea that learners should be 

able to construct their own understandings of academic disciplines with minimal assistance because 

they do so on a daily basis in the context of everyday activities is highly compelling. And if it turned 

out to be true, it would have most definitely revolutionized education and optimized learning for all 

involved. That said, it made perfect sense for the idea to be properly developed and put to the test. 

Unfortunately, it did not work. A possible explanation is offered by the theory of evolutional 

psychology [66], which distinguishes evolutionary-primary knowledge (how to walk, talk, eat, and 

solve problems) that we acquire almost effortlessly by being emerged in a social environment and 

secondary (academic) knowledge that we have not evolved to acquire so easily. From the 

evolutionarily perspective, the content and context of formal education are extraordinary [67] and 

thus require more explicit assistance to arrive at accurate knowledge constructions, understandings, 

and solutions [13]. 

 Given the evidence from numerous properly controlled experiments and a theoretical 

explanation of the inferiority of the discovery pedagogy, a large majority of educational researchers 

who are familiar with educational psychology have moved on. However, the remaining proponents 

of the pure discovery/inquiry method seemed to be unaware of the past existence and the closure of 

one of the major educational debates. Currently, the main open questions debated pertain to the type 

of explicit assistance (e.g., quality of explanations) [68‒71], scaffolds (e.g., self-explanation 

prompts) [72‒76], and their optimal sequence in combination with practice problems to enable 

effective learning [77]. 

In terms of explicit assistance, the effectiveness of instructional explanations is now back in the 

research foci, with some studies attempting to conceptualize their explanatoriness [71] and identify 

features making them most effective [68]. Comparing the quality of explanations provided by 

mathematicians (with lower pedagogical content knowledge but high content knowledge) and 

mathematics teachers (with high pedagogical content knowledge but lower content knowledge) about 

an extremum problem intended for high school students, Lachner and Nückles [78] concluded that 

the explanations were principally different. The teachers mainly described the solution steps as an 

algorithm for finding extreme values of a function (product-orientation). However, in addition to 

demonstrating the solution steps, the mathematicians provided clarifying information explaining why 

a certain step in the solution was necessary (process-orientation). In the follow-up study, the 

researchers investigated the effectiveness of these explanations on eighty high-school students who 

were randomly split into three groups, receiving: (1) product-oriented explanations, (2) process-

oriented explanations, or (3) no explanations (discovery group). Consistent with other research, they 

found that students who were not provided with an explanation showed the lowest learning gains. 
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Moreover, students who learned with a process-oriented explanation performed significantly better 

than students who learned with a product-oriented explanation on an application test. The latter 

finding was replicated and extended in a 2019 study [69] in which the impact of different 

explanations was assessed in a randomized sample of 129 students receiving either principle-oriented 

or procedure-oriented explanations on four mathematical topics. Students who were given principle-

oriented explanations substantially outperformed students given procedure-oriented explanations on 

the application test (with similar problems) and the transfer test (with dissimilar problems). 

Overall, the evidence from experimental psychology research does not support one of the main 

claims made by the Inquiry-Based Mathematics Education proponents that students learn better when 

they are not explicitly taught. The benefit of being taught by an expert is explained by cognitive 

science since experts‘ well-integrated and highly sophisticated knowledge [15,79,80] helps to 

produce explanations that can serve novice students as powerful cognitive scaffolds for their thinking 

and learning processes [81]. Research on expertise showed that experts mainly organize their 

knowledge around abstract principles of a domain, whereas novices‘ knowledge structures are often 

lacking integrative organization [78‒80]. Therefore, a globally cohesive expert explanation, which 

focuses on principles, helps novices to mentally organize the presented information into a coherent 

schema, thus enabling them to integrate the information into their prior knowledge. As long as a 

learner is paying attention to the suitable explanation [15], it is predicted that the learner would be 

actively (cognitively) engaged in generative processing, resulting in effective and efficient learning. 

2.4. Inquiry-based learning is not the most effective way to generate conceptual understanding 

Advocates of inquiry-based learning concur with Piaget‘s assertion that ‗‗each time one 

prematurely teaches a child something he could have discovered for himself, that child is kept from 

inventing it and consequently from understanding it completely‘‘ ([82], p. 715). Moreover, they argue 

that those who acquire knowledge without explicit instruction are more likely to apply and extend 

that knowledge [83,84]. Proponents of Inquiry-Based Mathematics Education (IBME) at the tertiary 

level assert that instead of receiving an explanation from an expert, students should be engaged in 

tasks similar to those of practicing mathematicians: defining, conjecturing, proving, creating and 

using algorithms, and modeling. In doing so, IBME advocates claim, ―students not only develop 

deep mathematical understanding, but they also develop a sense of ownership through creation and 

reinvention‖ ([6], p. 131). The central theme is that inquiry-based learning is more effective for 

developing deep conceptual understanding than explicit instruction. 

What is conceptual understanding? An understanding of a mathematical concept is formed when 

a learner has encoded a large schema relating the concept with other preexisting schemas of related 

concepts and their relationships. The bigger the schema, the better the understanding. Experts have 

large, highly-integrated, and organized schemas connecting many subschemas in one conceptual 

interpretation, which could be referred to as ‗understanding‘. Efforts to conceptualize and measure 

conceptual understanding comprise an active area of research in mathematics education. A major 

challenge is to measure knowledge of a given concept with acceptable validity and reliability [85]. 

However, a widely accepted proxy for measuring conceptual understanding is to examine a learner‘s 

performance on transfer problems – a set of non-routine questions about a concept/procedure that 

were neither previously presented as worked examples nor assigned as practice exercises. 

A pivotal study examining the effect of different instructional methods on transfer was conducted 

by Klahr and Nigam [86] in the context of the control-of-variables strategy (CVS). To master CVS, 

elementary school children needed to learn how to create experiments in which a single contrast is 
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made between experimental conditions and logically understand the inherent indeterminacy of 

confounded experiments. In other words, acquiring CVS is a crucial step in developing scientific 

reasoning, enabling children to design unconfounded experiments from which valid causal inferences 

can be drawn. In their experimental study (N = 112) with random assignment to two groups, the 

researchers replicated previous studies showing that direct instruction was clearly superior to 

discovery learning in facilitating children‘s acquisition of CVS [87,88]. Direct instruction resulted in 

significantly more masters of CVS than discovery learning (77% in the direct-instruction condition 

vs 23% in the discovery learning condition). Importantly, the superiority of direct instruction 

remained after restricting the analysis to only low-performing students, with 69% of the 35 in the 

direct-instruction condition becoming masters, compared with only 15% of the 41 children in the 

discovery condition with equally low initial scores. However, the most important result of the study 

demonstrated that the learners who became masters via direct instruction were as skilled at the 

transfer task (evaluating science-fair posters) as were discovery-learning masters and experts. 

Additionally, learners who did not become masters did equally poorly on the poster-evaluation 

transfer task regardless of the instruction condition. Hence, the overall result is rather prominent: the 

focused, explicit, and didactic training in the direct-instruction condition resulted in a large majority 

(77%) of learners becoming CVS masters who were as proficient as relatively few (23%) discovery-

learning masters when subsequently asked to demonstrate conceptual understanding in an authentic 

environment, offering scientific judgments. The researchers concluded with a call ―to reexamine the 

long-standing claim that the limitations of direct instruction, as well as the advantages of discovery 

methods, will invariably manifest themselves in tasks requiring broad transfer to authentic contexts 

(e.g., ‗‗learning under external reinforcement… produces either very little change in logical thinking 

or a striking momentary change with no real comprehension‘‘—Piaget, 1970, p. 714)‖ ([86], p. 666). 

The effect on transfer in mathematics contexts was investigated by Lachner, Weinhuber, and 

Nückles in the 2019 study, mentioned above [69]. In a randomized sample of 129 students learning 

to solve extreme value real-world problems, students who were given principle-oriented explanations 

substantially outperformed students given procedure-oriented explanations on the transfer test. The 

researcher offered a theoretical explanation based on the findings of related studies comparing expert 

and advanced-student explanations and their impact on novice medical students [80]. They found 

that the experts‘ explanations were more integrated than advanced-student explanations. Qualitative 

analysis of the explanations' constituent elements (concepts) and their connections to others (similar 

to concept mapping) revealed that experts‘ elements were more thoroughly interconnected, yet they 

contained fewer details than the advanced students‘ explanations. They also found that the experts‘ 

explanations resulted in superior novices‘ learning outcomes when the novices were given transfer 

tasks that required a reinterpretation rather than a straightforward application of the previously 

acquired knowledge. In the next study, using a detailed analysis of how students engaged with the 

explanations, they observed that novices studying an expert‘s explanation tended to follow a deep-

processing approach, whereas novices with an advanced student‘s explanations processed the 

explanations in a shallow way. Novices studying an expert‘s explanation were enacting self-

explanation loops more frequently. In contrast, this deep-processing sequence was almost completely 

absent in the group of novices learning with an advanced student‘s explanation. The conclusion of 

this research is that the extent to which explanations were conducive to novices‘ acquisition of 

transferable knowledge is heavily dependent on the instructor‘s level of domain expertise. This is 

because experts‘ explanations tend to be globally cohesive, directing learners‘ attention to key 

concepts and principles, thus enabling the realization of a deep-processing approach to learning. 

On the other side of the debate, there are a number of publications alluding to benefits afforded 
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by discovery/inquiry-based approaches that stress the potential positive impact on the transfer of 

learning. However, at the time of the 2007 AERA debate and its subsequent continuation in the book 

―Constructivism instruction: success of failure?‖, none of them were deemed to provide a conclusive 

evidence base because those studies did not employ suitable methodologies to allow for such 

conclusions [51]. 

Since then, the value of explicit instruction for enabling efficient learning of novel information as 

part of a learning episode has been widely accepted. As a result, the research debate has shifted to 

questions about optimal sequencing within a learning episode. At the top of current debates is an 

important question: whether or not a problem-solving activity (by learners) is beneficial prior to an 

explicit explanation provided by an expert. An approach termed ‗productive failure‘ has become 

popular with practitioners and researchers in which learners first struggle to solve a problem on their 

own before being provided with an explicit explanation on how to solve the problem [89]. 

Kapur [90] suggested that problem-solving first may activate and differentiate learners‘ prior 

knowledge, thereby increasing their awareness of the gaps in their prior knowledge. That way, 

learners might be better able to attend to the critical features of the explanation provided. Moreover, 

Kapur suggested that learners involved in problem-solving first may be more motivated and engaged. 

Additionally, other researchers hypothesized that ―requiring learners to generate their own problem 

solutions prior to explicit guidance may strengthen the stimulus-response relation in memory in a 

similar way as has been proposed in order to account for the ‗generation effect‘ [65,91,92]‖ ([77], p. 

230). To test this plausible hypothesis, Ashman, Kalyuga and Sweller [77] conducted a fully 

randomized, controlled experiment in which learners were randomly assigned to one of two 

conditions: (1) a problem-solving–lecture sequence and (2) a lecture–problem-solving sequence. 

They found that learners in the lecture–problem-solving condition (explicit instruction first) scored 

significantly higher on an application test and a transfer test than learners in the problem-solving-

lecture condition (problem-solving first). Mean test scores were almost 50% higher for the lecture–

problem-solving sequence for both tests. Hence, they concluded, for learning where element 

interactivity is high, explicit instruction should precede problem-solving. 

Although some evidence base exists in support of ‗productive failure‘, Ashman et al. [77] 

identified element interactivity (complexity of a concept in terms of its connections to and 

dependence on other concepts) as an explanatory variable for the presence or absence of a problem-

solving first advantage. This is in line with the expertise reversal effect, which is now considered a 

variant of the more general element interactivity effect [93]. That is, to learn high element 

interactivity information, studying worked examples is more beneficial than problem-solving. 

However, with the increase in expertise, the element interactivity of the information decreases (as an 

outcome of learning); hence the advantage of worked examples reduces and eventually 

reverses [94,95]. In a tertiary mathematics context, most novel concepts and procedures are arguably 

information with a high level of element interactivity. Therefore, it follows that in order to support 

conceptual understanding and transfer, a learning episode should begin with explicit teaching 

(providing explanations) before shifting to more problem-based instructional methods. 

2.5. Inquiry-based classrooms are not more beneficial in addressing equity issues than 

conventional classrooms 

In line with the progressive education ideas, inquiry-based mathematics classrooms have been 

portrayed as a panacea for all equity issues [96]. The main assumption is that inquiry classrooms are 

equitable environments where educators can ―face specific concerns about whose voices are 
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privileged or excluded in mathematics‖ and ―recognize similar issues of identity, agency and power 

in their own higher education settings‖ ([6], p. 140). The concept of ‗personal empowerment‘ as a 

form of transformative learning has been introduced in mathematics education literature [97]. It is 

meant to encapsulate the enhancing elements of inquiry-based mathematics learning through 

consideration of self-empowerment, cognitive empowerment, and social empowerment. Using semi-

structured interviews with undergraduate students, researchers argue that participation in inquiry-

based learning could be strongly transformative for individual students. They assert that ―not only do 

these courses enhance students‘ thinking and problem-solving skills but they also significantly 

promote self-perceptions, agency and self-regulatory activity, and social skills‖ ([97], p. 316). 

However, evidence from properly controlled randomized experiments to support such claims is 

missing. 

Within undergraduate mathematics education literature on inquiry-based learning, one of the 

most cited studies by Laursen et al., [98] published in one of the top journals, the Journal for 

Research in Mathematics Education (JRME), in 2014, claimed that inquiry-based classes level the 

playing field for women by offering learning experiences of equal benefit to men and women. This 

conclusion was reached based on the analysis of self-reported learning gains reported by students 

from 42 mathematics sections taught in inquiry-based format, which were compared to conventional 

courses taught at four US universities with established centers for Inquiry-Based Learning. Apart 

from the apparent limitation of relying on self-reported learning gains data, the researcher did not 

compare learning outcomes by altering only one variable at a time (to control for confounding 

variables). Rather, inquiry-based sections were taught by enthusiastic educators with a buy-in for the 

cause, which would have unavoidably affected the outcomes. Moreover, a serious methodological 

flaw was that participants were not randomly assigned to different conditions, which could have 

resulted in self-selection with biased characteristics. Despite the limitations, the authors concluded 

that non-inquiry-based courses ―do selective disservice to women‖ ([98], p. 415). 

This problematic conclusion was exposed by a series of recent studies which contradicted 

Laursen et al.‘s [98] claims. Johnson et al. [99] examined the relationship between gender and 

student learning outcomes in inquiry-oriented abstract algebra. Using hierarchical linear modeling, 

content assessment data were analyzed from 522 students, which identified a gender performance 

difference. Men outperformed women in the inquiry-oriented classes, whereas no such gender 

difference was detected in conventional classes. This finding was corroborated by the latest study by 

Reinholz et al. [100], which was also published in JRME, titled ―When Active Learning Is 

Inequitable: Women‘s Participation Predicts Gender Inequities in Mathematics‖. The authors state 

that contrary to the conventional wisdom that inquiry-based learning promotes equity, ―across a 

sample of 20 undergraduate mathematics classrooms, we found evidence of greater gender inequity 

in favor of men in the inquiry-oriented instructional environments‖ ([100], p. 218). In contrast, no 

significant performance differences were found between genders in the non-inquiry comparison 

samples. Using a weighted regression analysis, the researchers explained the findings by identifying 

a significant link between women‘s participation rates during classroom discussions and gendered 

performance differences. The findings uncovered that women tend to be more affected by social 

aspects of learning than men, which, in turn, translates into tangible effects on learning 

outcomes [100]. 

Overall, from a cognitive theory perspective, inquiry-based mathematics classrooms are 

predicted to be less effective for learners with low prior knowledge, which is often a characteristic of 

learners from underrepresented groups. As mentioned previously in the Human Cognitive 

Architecture section, when processing novel information (and only when processing novel 
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information), working memory has two major constraints: it is extremely limited in both capacity 

and duration. However, these limitations disappear if the information is accessed from long-term 

memory [32]. Taken together, these two facts provide a compelling argument explaining why 

partially or minimally guided instruction is generally ineffective for novices, despite often being 

effective for experts. In other words, novices' only resource when given a novel mathematical task is 

their seriously constrained working memory [21]. In contrast, experts have both their working 

memory and all the relevant knowledge and skills stored in long-term memory, which are readily 

accessible for processing in working memory.  

Hence, inquiry learning or any instructional activity that unnecessarily increases working 

memory load will inevitably have deleterious consequences [12]. This theoretical explanation is 

supported by a large number of properly controlled experiments reported in the research literature in 

the last 60 years [12,14,57,60‒62,101]. In summary, cognitive theory and experimental empirical 

evidence present a serious challenge to the claim often made by advocates of inquiry-based learning 

that minimal guidance instruction is beneficial for addressing equity issues. 

3. Conclusions 

In this commentary, we leveled our criticism at a particular instructional practice, often termed 

inquiry- or discovery-based learning, which is characterized by the fundamental premise that learners 

should be allowed to learn ‗new to them‘ mathematics without being taught [6]. This manifests in a 

change of the lecturer‘s role to be a ‗facilitator of learning‘ instead. The role of an inquiry-oriented 

instructor is to set up inquiry tasks that learners are expected to complete in order to discover new-to-

them knowledge, often as a part of small group activity. In the last decade, major efforts have been 

devoted to promoting the adoption of inquiry-based mathematics learning at an undergraduate level. 

The movement, Inquiry-Based Mathematics Education (IBME), has gained momentum with 

hundreds of participating mathematicians and attracted substantial funding from US government 

agencies. 

However, given the preponderance of evidence summarized in this commentary from 

experimental research and the theoretical accounts explaining how efficiency in learning is best 

achieved, we conclude that the call for a major reform from the IBME advocates is not justified. 

Specifically, the general claim that students would learn better (and acquire superior conceptual 

understanding) if they were not taught is not supported by evidence. Neither is the general claim 

about the merits of IBME for addressing equity issues in mathematics classrooms. In summary, the 

claim that students should be allowed to discover mathematics for themselves akin to professional 

mathematicians conflicts with a large body of research supported by experimental evidence. 

Therefore, inquiry-based education should not be promoted for general adoption in mathematics 

undergraduate education without further research. 

Our recommendation, instead, is to consider ways to promote active (cognitive) engagement of 

learners to improve conventional mathematics education format (delivered face-to-face or online). 

The provision of explanations by an expert could be supplemented by prompts for students to engage 

in self-explanations during a learning episode [52]. This could be achieved in many different ways. 

For example, quizzes with self-explanation prompts, targeted questions from a lecturer to promote 

self-explanations, or short small group tasks could be used as part of or in the conclusion of an 

instructional explanation during a lecturing episode. Research has shown that such activities are 

likely to engage learners in generative learning and are intended to prime appropriate cognitive 

processing during a lecture, such as paying attention to the relevant information, mentally organizing 
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it, and then integrating it with the learners‘ prior knowledge [15,34].  

More research investigating various ways to improve conventional mathematics lectures (face-to-

face or online videos) by incorporating prompts for active (cognitive) engagement of learners as part 

of the explanation sequences would be extremely worthwhile. In addition, given the meta-analytic 

evidence of learning benefits in active learning classrooms [5], serious consideration should be given 

to flipping the classroom [102]. Given the evidence of emerging trends in student behavior, with 

more and more students choosing to view recorded lectures instead of attending live lectures [103], it 

seems reasonable to use the class time for something else. The lecture content can be viewed by 

students before class so that face-to-face time could be spent on whole-class interactive discussions 

of the viewed content with a lecturer, followed by problem-solving in small groups. This mode of 

delivery has been extensively researched in recent years, with an emerging consensus on its 

utility [102]. 
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