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Abstract: Spare-view CT imaging is advantageous to decrease the radiation exposure, acquisition 

time and computational cost, but suffers from severe streak noise in reconstruction if the classical 

filter back projection method is employed. Although a few compressed sensing based algorithms 

have recently been proposed to remedy the insufficiency of projections and have achieved 

remarkable improvement in reconstruction quality, they face computational challenges for large-scale 

CT images (e.g., larger than 2000×2000 pixels). In this paper, we present a fast non-uniform Fourier 

transform based reconstruction method, targeting at under-sampling high resolution Synchrotron-

based micro-CT imaging. The proposed method manipulates the Fourier slice theorem to avoid the 

involvement of large-scale system matrices, and the reconstruction process is performed in the 

Fourier domain. With a total variation penalty term, the proposed method can be formulated into an 

unconstrained minimization problem, which is able to be efficiently solved by the limited-memory 

BFGS algorithm. Moreover, direct non-uniform Fourier transform is computationally costly, so the 

developed NUFFT algorithm is adopted to approximate it with little loss of quality. Numerical 

simulation is implemented to compare the proposed method with some other competing approaches, 

and then real data obtained from the Australia Synchrotron facility are tested to demonstrate the 

practical applications of the proposed approach. In short, the significance of the proposed approach 

includes (1) that it can handle high-resolution CT images with millions of  pixels while several other 

contemporary methods fail; (2) that it can achieve much better reconstruction quality than other 

methods when the projections are insufficient. 

Keywords: non-uniform Fourier transform, sparse-view CT imaging, Fourier slice theorem, 

regularization 
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1. Introduction  

With rapidly increasing interest in investigating micro-scale internal structures of diverse objects 

in a nondestructive way, i.e., cells and macromolecules and their basic arrays, synchrotron-based 

micro-computed tomography (micro-CT) has been extensively applied to biomedical sciences and 

materials engineering [1–4]. The distinct synchrotron radiation (SR) offers a greater range of 

capabilities including higher spatial resolution, better phase contrast, elementally sensitive and high-

speed data collection for observing dynamic processes in three-dimensions [5]. However, high-

resolution micro-CT imaging usually demands a huge number of projections (more than 1000 views) 

for robust reconstruction under the condition of the Shannon-Nyquist sampling theorem [5].  

On the other hand, sparse-view micro-CT imaging has been receiving lots of requirements from 

practical applications due to the following significant factors. First, a lower number of projections 

naturally minimize the accumulated exposure radiation to the living specimens, which is strongly 

desired in medical imaging [1]. Second, a short acquisition time owing to a small number of 

projections reduces the potential motion artefacts, as well as favors time-sensitive studies [5–7]. 

Besides, the reduced projection data decreases the computational cost and reconstruction time, 

enabling the reconstruction feasible for desktop computers or small workstations with limited 

capacity. However, insufficient projections result in severe streak artefacts in the reconstructed 

images when conventional reconstruction methods such as filtered back projection (FBP) are 

adopted [8].  

Therefore, efficient reconstruction algorithms become crucial for sparse-view micro-CT 

imaging [9]. In earlier stage, several iterative algorithms [10–12] were proposed and outperformed 

FBP when the projections are incomplete. However, they suffer from expensive computational 

demand even for moderate-size CT imaging [7]. In the past decade, along with the advent of a few 

seminal works of [13–15], compressed sensing (CS) has received lots of attentions in signal 

processing including CT imaging reconstruction. CS can recover a satisfactory reconstruction from 

much fewer projections than required by the Shannon-Nyquist sampling theorem, by making use of 

the sparsity priors of an image. Specifically, the numerical results in [8] demonstrated that in a 

noiseless environment CS-based reconstruction methods might recover the exact image from 

approximately one tenth of the number of projections needed in FBP. Inspired by the CS theorem, a 

few CS-based algorithms have been proposed for sparse-view CT reconstructions. Examples include 

[7, 16–19]. Some of them have been applied to real moderate-size CT imaging. But none of them 

have been used to Synchrotron-based micro-CT imaging. All these algorithms need to involve a 

system matrix which represents the projection transform. The system matrix is linearly proportional 

to the product of the image size and the number of projections. The Synchrotron-based Micro-CT 

imaging commonly acquires hundreds of projections and produces a large image with millions of 

pixels. Hence, the resulting system matrix is extremely huge and impractical for workstations with 

limited capacity.  

Yet, the classical Fourier slice theorem puts forward another straightforward way for CT 

reconstruction. If the projections are examined in the Fourier domain, the reconstruction can be 

solved directly in a 2-dimensioanl manner [20]. The huge system matrix is then avoided. 

Unfortunately, the projections are sampled radially while the Fourier transform needs to perform on a 

Cartesian grid [21]. So far, there are two outstanding ways to tackle such a problem: the pseudo-

polar Fourier transform (PPFT) [22] and the non-uniform fast Fourier transform (NUFFT) [23–27]. 

PPFT has already been applied to medium-scale sparse-view CT reconstruction in [8, 28]. NUFFT 
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has been proposed for the reconstruction of fully sampled CT imaging as well [29, 30].  

In this paper, we proposed a non-uniform Fourier transform based method for sparse-view 

synchrotron-based micro-CT reconstruction. There are two significances. First, since we target at 

high spatial resolution micro-CT reconstruction, computational efficiency becomes critical as well as 

image quality. Second, if the projections are inadequate, an optimization solution will be preferable. 

Direct non-uniform Fourier transform is computationally costly. So, we choose the optimized 

NUFFT algorithm [24], which performs better than PPFT [22] in both computational cost and 

accuracy based on our study. The total variation (TV) demonstrates excellent performance in 

representing medical images in a sparse manner [18] and is chosen as the penalty term. Thus, the 

proposed approach comes to minimize the TV of the image subject to the constraint that the 

estimated image satisfies the Fourier slice theorem within a specified noise tolerance of the available 

projection data and that the pixel values are real numbers. We then formulated the proposed approach 

into an unconstrained minimization problem. It faces two major challenges: 1) there are probably 

millions of variables, so the algorithm is desired to be memory-efficient and fast in convergence; 2) 

the Hessian matrix for the objective function is difficult to solve. Consequently, the Limited-memory 

Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) [31] optimization method is adopted. 

However, we utilized the back-tracking linear search instead of the recommended Wolfe conditions 

to find the optimal step size to accelerate the algorithm. Accordingly, a large step size is initialized 

empirically. Both numerical simulations and real data are tested to demonstrate the proposed 

algorithm. The real data set was obtained from the Australian Synchrotron facility. All the 

reconstruction algorithms were run on a common laptop computer. In simulations, a Shepp-Logan 

phantom with 256 × 256 pixels is used as the target image, and three other representative algorithms 

are performed to compare with the proposed approach. In real data test in which the target images are 

larger than 2000 × 2000 pixels, since two of the algorithms fails due to memory issues, only FBP is 

compared to the proposed approach. The Australia synchrotron facility only provides parallel x-ray 

beams, so only parallel projection is taken into consideration in this paper. But, if the projection data 

is rebinned from fan beam to parallel beam geometry [32], the proposed algorithm will be applied as 

well. 

2. Theory and method 

 

Figure 1. Parallel beam geometry: a detector measures an integral of attenuation along the line at 

angle   and distance   to the iso-center 
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The synchrotron-based micro-CT imaging system provides parallel projection, and both the 

parallel x-ray lines and the detectors are equally spaced. In principle, each projection of an object at a 

given angle is seen as a set of line integrals. Each line integral denotes the total attenuation of the 

beam of x-rays along a straight-line path through the object and then measured by the detector (see 

Figure 1). Different issues (or materials) at different positions each have a different attenuation 

coefficient. As a result, a CT image comprises a gray scale representation of the attenuation 

coefficient in Hounsfield units for each pixel. Since each detector records an integral of attenuation 

along a projection line, reconstruction is necessary to obtain the underlying CT image. Many 

algorithms have been developed, but in this paper we focus on those techniques which can handle the 

insufficiency of projections. 

2.1. Reconstruction algorithms in space domain 

In the Cartesian system (   -axes) of Figure 1, arbitrary line at angle   and position   can be 

expressed as 

               .         (1) 

Let        denote the attenuation coefficient at point      , and then the  -view projection 

along such a line can be expressed by the line integral 

                                       (2) 

where   denote the 2-dimensional (2D) Dirac delta function, which is also known as Radon 

transform.  

In real applications, the attenuation coefficients are digitized into the pixel-based representations. 

Each pixel represents a tiny grid with side length   in the Cartesian system, and   represents the 

spatial resolution of the micro-CT system. Suppose a weight coefficient     denote the intersection 

length between the projection line and the pixel (   ), and then (2) is rewritten into discrete form as 

                 
 
   

 
            (3) 

where      denotes the pixel value and the target image is made up of     pixels. The weight 

coefficient gauges how much scale each pixel contributes to each projection in terms of attenuation. 

It is noted that      could be zero when the corresponding x-ray line and pixel do not intersect. 

Furthermore, the Radon transform can be expressed in a matrix-vector product: 

               (4) 

where   is conventionally named system matrix derived from the above weight coefficients,   

denote the vectorized target image and   is the vectorized projection data.  

Using (4) as a constraint, many CS-based algorithms [7, 16–18] have been developed to solve the 

following optimization problem: 

                                           (5) 

where      denotes the  -norm,   denote the sparse transform and   denotes the noise tolerance.  

These algorithms have achieved superior performance over BFP in reconstructing the underlying 

CT image from sparse-view projections. However, the size of   is of order         where  ,  ,   

respectively denote the number of projections, detectors and the image length in each dimension, and 
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usually    . Thus, when   is larger than 1000, the size of   is likely to reach more than a 

terabyte. Such a huge matrix certainly imposes an extremely high demand on memory and 

computational cost. 

2.2. Reconstruction algorithm in Fourier domain 

On the other hand, a few algorithms based on Fourier transform were proposed to reduce the 

computation time [29] or improve the image quality for sparse-view projections [8]. To better 

understand those techniques, the Fourier slice theorem is briefly reviewed in this subsection, and a 

detailed explanation refers to [20]. The Fourier slice theorem states that the 1-dimensional (1D) 

Fourier transform of a parallel projection of an object        obtained at angle   equals a line in a 2-

dimensional Fourier transform of         taken at the same angle.  

First, we consider a simple case that a projection of        is taken parallel to the   axis. Thus, 

we have     and      By substituting them into (1) and (2), we obtain 

                          (6) 

Then, taking a 1D Fourier transform with respect to   on both sides of (6), we obtain 

                                         .    (7) 

On the other hand, a 2D Fourier transform is performed on        directly, and then only the line 

at     (corresponding to    ) is evaluated, 

                                                      (8) 

(7) equals (8) if we set    . Then, the Fourier slice theorem is proven for    .  

Now, the case of     is taken into consideration. Let us rotate the coordinate system 

counterclockwise by angle   such that one of the axes,   , is parallel to the line path of the projection 

at  -view. Let           represent the object        in the rotated system, where the two coordinate 

systems can be converted to each other by 

 
  

     
        
         

  
 
           (9) 

Similarly, we get     . Then the projection        is simply the integral of           along the 

  -axis: 

                             (10) 

Then, a 1D Fourier transform is performed on (10) over variable   , and we get 

                        
             (11) 

By differentiating (9), we have 

        

   

  

   

  

   

  

   

  

       
        
         

          (12) 

Then, substituting (9) and (12) into (11), we obtain 

                                           (13) 
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On the other hand, the direct 2-D Fourier transform of        is  

                                      (14) 

If we let         and        , we can obtain 

                   .         (15) 

The left hand of (15) denotes a straight line in the 2D Fourier space passing through the origin and 

simultaneously forming an angle   with respect to the   axis; and the right hand indicates a 1D 

Fourier representation of the projection at  -view. So, the proof of the Fourier slice theorem is 

completed.  

The Fourier slice theorem provides a potential way to reconstruct the CT image directly in the 

Fourier domain as: the entire 2D Fourier space will be filled up if enough projections are collected 

over the rang from 0 to  ; once its Fourier representation is obtained, the target image can be directly 

reconstructed by the inverse Fourier transform. However, (12) shows that the Fourier samples 

obtained from the 1D Fourier transform of the projections are distributed in the polar system. In 

other words, the sampling frequencies are non-uniform from the perspective of the Cartesian system. 

The popular 2D FFT requires to be performed on uniform frequencies in the Cartesian system and 

cannot be applied to it directly. Therefore, the implementations of non-uniform 2D Fourier transform 

and its inverse play a key role for Fourier-based reconstruction algorithms. 

3. Fast non-uniform Fourier transform based approach 

3.1. 2D non-uniform DFT for CT imaging 

 

Figure 2. Sampling distribution in Fourier space based on the Fourier slice theorem 

In digital image processing, the pixels are uniformly sampled along a row or column of a raster 

image, which is typically in the Cartesian system. The conventional discrete Fourier transform (DFT) 

converts a finite list of equally spaced samples of a function into the list of coefficients of a finite 

combination of complex sinusoids with ordered frequencies. The sampling frequencies of the output 

sinusoids are integer multiples of a fundamental frequency, whose corresponding period is the spatial 

interval of the pixels. The 2D uniform DFT is denoted as 

                 
   
    

   
       

  

 
      

  

 
       (16) 
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where           are uniform frequencies. And   can be exactly recovered by the inverse 

DFT (IDFT) as 

         
 

  
           

   
   
     

  

 
     

  

 
         (17) 

Furthermore, the FFT algorithm has been developed to compute (16) and (17) in an efficient way. It 

can reduce the arithmetical operations from       to          and largely speed up the 

computational speed for large-scale functions. 

However, the proof of the Fourier slice theorem shows that the Fourier samples from the CT 

projections lie on the polar system rather than the Cartesian system (Figure 2). In other words, the 

sampling frequencies are non-uniform in the Cartesian system. So, FFT cannot be applied directly. 

One must consider a case where the samples are regularly sampled in the space domain but 

irregularly taken in the frequency domain. Accordingly, the 2D non-uniform DFT (NDFT) is defined 

as follows: 

                 
   
    

   
       

  

 
           

  

 
           (18) 

where              and              (       ,        ) denote the sampling 

frequencies in the Cartesian coordinates, which are real numbers. (18) can be converted in terms of 

the form of matrix-vector product into 

     

where the NDFT is characterized by   and   is the Fourier representation of  . It is noted that   

only depends on the choice of the sampling point, and could be singular [33]. In a similar way to (17), 

the inverse non-uniform DFT (INDFT) is defined as 

          
 

  
           

   
 
     

  

 
          

  

 
            (19) 

Figure 2 reveals that the sampling frequencies for CT imaging over-covers at the low frequency 

part but lacks coverage at the high frequency part. Thus, some high-frequency information is 

inevitably missing during transform. Due to the same reason, the INDFT of (19) cannot recover the 

exact  . Besides, the computational complexity of (18) without optimization is        where   

denotes the number of views, which is undesirably slow for large-scale images.  

In view of the above drawbacks of direct NDFT, a few algorithms have been developed to 

approximate it, such as PPFT and NUFFT. PPFT utilises the fractional Fourier transform to 

approximate a pseudo-polar system based Fourier transform, but suffers from a high complexity of 

          [22]. NUFFT adheres to the Cartesian system such that the efficient fast Fourier 

transform (FFT) can be incorporated to obtain a set of Fourier samples with uniform frequencies, and 

then evaluates each target Fourier sample at non-uniform frequency by interpolation with a few 

neighbouring Fourier samples. By contrast, the optimized NUFFT algorithm has a complexity of  

         where      is the number of fundamental sampling frequencies of FFT [24]. The 

recent advance in the NUFFT literature even achieved     with slight sacrifice of image 

quality [26]. NUFFT outperforms PPFT in terms of computational cost and is adopted in the 

proposed method. 

Because direct INDFT of (16) cannot recover the target image and simultaneously has the same 

high computational complexity as NDFT, an alternative way is to solve the following linear least 
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squares problem [24],  

                          (20) 

When the measurements are sufficient, (20) can solve a    faithful to  . Otherwise, one must add a 

penalty function to attain an optimal solution. Most optimization algorithms may involve an adjoint 

operator, e.g.,    where   denotes Hermitian transpose, which is also provided by the NUFFT 

algorithm. 

3.2. Problem formulation 

 

Figure 3. An example of the Fourier slice theorem for CT imaging 

By concluding section 3.1, the Fourier slice theorem for CT imaging can be specified as 

                   (21) 

where   denotes the 2D NDFT,   denotes 1D FFT along each projection, and   denotes the Radon 

transform. An example is demonstrated in Figure 3. The target image is a standard Shepp-Logan 

phantom of 256  256 pixels. The projections are taken by Radon transform with 128 views. Then, 

the result shows that the Fourier samples obtained by 1D FFT on the projection data are nearly the 

same as the ones from direct NDFT on the target image. In real applications, the projection data is 

taken by the Micro-CT system and denoted by  , then we have 

                  (22) 

Unfortunately, the reconstruction from direct INDFT is time-consuming and low-quality. 

Provided that        is the Fourier representation of projections and then   is constant, we 

reformulate (20) into a constraint with a noise tolerance  : 

                     (23) 

where   represents a generalized linear transform function which could be NDFT, PPFT or a system 
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matrix, and its adjoint operate is denoted by  . Because it better preserves the edge information, TV 

is one of the popular sparse transforms for image signals, 

                     
 
              

 

       (24) 

By adding a TV-based penalty term to the constraint, our proposed method becomes to solve the 

following unconstrained minimization problem, 

                   
                (25) 

where   is the penalty parameters. Given   be the vector form and   denotes the matrix form of the 

TV operator (see [34]), (22) can be rewritten as 

                   
              (26) 

It is noted that   is a very sparse matrix, so it remains computationally efficient even for large scale 

problems.  

3.3. Framework of proposed algorithm 

Although (26) is convex and differentiable, solving it faces a computational obstacle. The target 

images for micro-CT imaging usually consist of millions of pixels, so a few optimization algorithms 

might be computationally intractable. Besides, the calculation of the Hessian matrix of (26) is 

difficult when   is a linear function rather than a matrix. So, we select the Limited-memory BFGS 

(L-BFGS) method [31] to solve (26). L-BFGS can avoid the pursuit of the Hessian matrix by 

calculating one approximation to it. Besides, L-BFGS has a good convergence speed and requires a 

limited amount of computer memory. 

The objective function is denoted by 

              
                (27) 

The gradient of the objective function is important to the L-BFGS algorithm.  The gradient of (24) is 

                        
     

      
   

      (28) 

where   is a scalar to remove the singularity of the TV, but should be small enough to preserve the 

shape of the gradient function [35]. In practice,   was set to      . The      operator constrains the 

gradient to be consistent with the image signal which must be real. In order to avoid the involvement 

of large-scale matrix-vector product, we do the 2D NDFT (or     ) and the TV (or   ) both in a 2-

D manner that the operations are performed along one dimension after another.   is a quite sparse 

matrix, so it has little impact on memory and computational cost even for large-scale problems. Yet, 

it is still recommended to pre-compute     to speed up the algorithm.   needs be tuned manually to 

achieve the best performance. 

The proposed method is then assembled as in Algorithm 1 in Figure 4. The noise tolerance   is 

set to     . maxIteration denotes the allowed maximum iterations, which is set to 100 for medium-

size images and 20 for large-scale ones. In the algorithm,    and    separately record the position 

difference and the gradient difference at iteration  , but at most   latest values are preserved for 
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calculating an approximation to the Hessian matrix. The bigger  , the better the approximation 

obtained, but the more memory the algorithm consumes. So, we select         for medium-size 

images and        for large-size images. The loss of quality due to smaller maxIteration or   is 

negligible. The remaining parameters are tuned empirically. 

 

 

Figure 4. Pseudo code implementation for proposed algorithm 

4. Experimental results 

In this section, both numerical simulations and real data are tested. All the programs are 

implemented with MATLAB and run on a Toshiba Laptop with Intel Core-i5-2520M CPU and 8GB 

memory. Numerical simulations are used to compare the proposed method with three other 

competing algorithms: the classical filter back projection (FBP), and another two recent approaches 

which are the space based algorithm adapted from Zhu et al. [7] and the PPFT based algorithm 

adapted from Hashemi et al. [8]. Because the latter two algorithms face computation memory 

challenges on our test bed, a medium-size Shepp-Logan phantom of 256  256 pixels are chosen as 

the target image, and the bin number is assumed to be 256. The simulated projections are obtained by 

standard Radon transform at specific angles uniformly distributed over 180°. The real data were 
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taken from the Australian Synchrotron facility which provides parallel projections. The image size is 

larger than 2000  2000 pixels. It is too large for the algorithms of Zhu et al. and Hashemi et al. to 

deal with, so only FBP is performed to compare with the proposed method. The raw projection data 

totally contain 1800 views at 0.1° steps. When sparse-view test cases are executed, a few views with 

equal interval are selected. 

 

Figure 5. Performance comparison with different number of views 
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Figure 6. Visual comparison for different algorithms with 60 views, 90 views, 180 views 

In radiology, signal to noise ratio (SNR) is a common criterion that measures the level of a 

desired signal to the level of background noise in a particular image, which results in a grainy 

appearance. The SNR is calculated as 

            
     

 

       
   

The Root Mean Square Error (RMSE) is another frequently used measure of the residual between 

the ground truth and the reconstruction, defined as the square root of the mean squared error: 

      
       

 

  
  

Besides, the structural similarity (SSIM) index [36] is widely used to measure the similarity 

between two images, which has proven to be better consistent with human subjective evaluation. 

These three criteria are selected to evaluate the reconstruction quality from quantitative perspective. 

The bigger the SNR or SSIM is, the better quality the reconstruction has, but the RMSE evaluates in 

an opposite way. Computational complexity is significant for large-scale CT imaging, so the 

reconstruction time is compared as well. 
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Table 1. Reconstruction with 60 projections 

Methods SNR RMSE SSIM Time (s) 

FBP 9.76 0.080 0.851 0.25 

Zhu et al. 9.83 0.079 0.922 7.62 

Hashemi et al. 2.31 0.188 0.686 10.33 

Proposed 10.95 0.069 0.911 5.07 

 

Table 2. Reconstruction with 90 projections 

Methods SNR RMSE SSIM Time (s) 

FBP 10.80 0.071 0.916 0.38 

Zhu et al. 10.41 0.074 0.946 9.16 

Hashemi et al. 3.60 0.162 0.760 9.70 

Proposed 12.23 0.060 0.936 5.74 

 

Table 3. Reconstruction with 180 projections 

Methods SNR RMSE SSIM Time (s) 

FBP 11.22 0.067 0.946 0.74 

Zhu et al. 10.47 0.073 0.949 15.71 

Hashemi et al. 10.23 0.075 0.934 9.67 

Proposed 13.43 0.052 0.950 7.79 

 

The numerical simulation results are shown in Figure 5, 6 and Table 1–3. Figure 5 (a, b and c) 

illustrates the trend of reconstruction quality with different number of views. The quality 

performances for all the algorithms are improving with the increase of views. However, for a specific 

number of views, the proposed method has the best performance in terms of SNR and RMSE, and 

the second-best performance in terms of SSIM, although the gain decreases with increasing views. A 

related visual comparison is shown in Figure 6, and a corresponding quantitative assessment is 

shown in Table-1. When the projections are insufficient, lots of streak artifacts and grainy noise are 

observed in the reconstructions of FBP and Hashemi et al. while the methods of Zhu et al. and ours 

produce much clearer results owing to the regularization.  



134 

 

STEM Education  Volume 2, Issue 2, 121–139 

 

Figure 7. Reconstruction with 180 projections: FBP (left) vs Proposed method (right) 

 

Regarding reconstruction time, FBP performs the best and the proposed method outperforms the 

other two methods. The reason is that FBP is a linear method whereas the Hashemi et al. and Zhu et 

al. methods and ours involve solving an optimization problem which needs a lot of computational 

cost. The computational time of the Zhu et al. method increases exponentially with the amount of 

projection data, which approximately follows its computational complexity of        . The 

methods of Hashemi et al and ours process the data in a 2D manner, such that the computational 

complexity is much reduced. However, the Hashemi et al. method needs a larger-support 

interpolation, and thus has a higher complexity than ours. The experiment results in Figure 5 and 

Table-1 roughly testify the theoretical analysis.   
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Figure 8. Reconstruction with 1800 projections: FBP (left) vs Proposed method (right) 

To better demonstrate the practice of the proposed method, two different specimens were tested. 

One specimen is an adult mouse head, and the other is an adult mouse chest. The specimen is held in 

a falcon tube with thickness of 5 mm. The two target images are respectively 2020 × 2020 pixels and 

2496 × 2496 pixels. The sparse-view case was examined. The sparse case adopts 180 views (see 

Figure 7), occupying 10% of the total views. One can estimate that the acquisition time and storage 

space would decrease accordingly at a similar proportion. In some studies, researchers may hope to 

examine more micro-scale details if sufficient projections are provided. Therefore, a third test case is 

executed as all the 1800  projections (see Figure 8) are completely utilized. The reconstructed images 

are shown in Figures 7 and 8. 

First, the sparse-view test results are compared. For 180 views, the proposed method recovers 

nearly all the desired structure. A few interesting regions are enumerated in Figure 7. The lungs, 

lesser airway, furs, and most soft tissues are evident. Lots of high frequency textures of the sinuses 

are distinguishable. However, those fine details fail to recognize in the reconstructions via FBP. 

Besides, it is noted that the performance improvement of the proposed method over FBP is much 

better in real applications than in numerical simulations. In fact, the noise is inevitable in real 

applications. FBP is a linear method and not robust to noise while the proposed method can take 

advantage of the regularization to greatly reduce the noise effect. In conclusion, the proposed method 

is much superior to FBP for sparse-view reconstruction. 

Then, the reconstructions with total projections are compared. Both FBP and the proposed 
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method recover all the desired textures. But lots of tiny grainy noise still exists in the FBP 

reconstructions, making the fine structures in the tissues blurry. Owing to the sufficient 

measurements, the reconstructions of the proposed method present high-contrast contents so that a 

few fine-scale details in the tissues are visible, e.g., the soft tissues near the backbone in Figure 8.  

Finally, it is worthwhile to mention the reconstruction time. The proposed method is able to 

reconstruct the target images with full projections in around 3 minutes on a laptop computer, though 

FBP costs less than 30 seconds. The proposed method is still potential to recover the CT image in 

real-time once a powerful workstation is utilized. 

5. Conclusions 

A fast non-uniform Fourier transform based approach is studied in this paper, targeting at high-

resolution Synchrotron-based micro-CT reconstruction. The non-uniform Fourier transform enables 

the proposed method to reconstruct the target image based on the Fourier slice theorem and to avoid 

the involvement of a huge system matrix. As a result, the proposed method can handle high-

resolution CT images consisting of millions of pixels, which are difficult for many conventional and 

recent methods due to high memory demand. To remedy the insufficiency of projections and 

simultaneously improve the robustness to noise, the TV-based penalty is incorporated into the 

proposed optimization framework. Real data from the Australian Synchrotron facility are tested to 

present a practical demonstration of the proposed method. The results show that the proposed 

method can recover a satisfactory image with 180 views, but its quality is comparable to the 

reconstructions via the classical FBP with 1800 views. Therefore, the proposed method is significant 

to sparse-view high-resolution CT imaging. 
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