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Abstract: The Laplace transform is a popular approach in solving ordinary differential equations 
(ODEs), particularly solving initial value problems (IVPs) of ODEs. Such stereotype may confuse 
students when they face a task of solving ODEs without explicit initial condition(s). In this paper, four 
case studies of solving ODEs by the Laplace transform are used to demonstrate that, firstly, how much 
influence of the stereotype of the Laplace transform was on student’s perception of utilizing this 
method to solve ODEs under different initial conditions; secondly, how the generalization of the 
Laplace transform for solving linear ODEs with generic initial conditions can not only break down the 
stereotype but also broaden the applicability of the Laplace transform for solving constant-coefficient 
linear ODEs. These case studies also show that the Laplace transform is even more robust for obtaining 
the specific solutions directly from the general solution once the initial values are assigned later. This 
implies that the generic initial conditions in the general solution obtained by the Laplace transform 
could be used as a point of control for some dynamic systems. 
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1. Introduction  

The Laplace transform, a family of integral transforms, is a popular approach in solving ordinary 
differential equations (ODEs) and applications in science and engineering [1-7]. By transferring a 
differential equation (DE) in the time domain to the s-domain of complex frequency (or the state space) 
by the Laplace transform, linear ODEs and systems of linear ODEs, particularly the constant-
coefficient linear ODEs, can be manipulated by algebraic operations in the s-domain for purposefully 
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oriented processing (or filtering in engineering terms) before transferring the manipulated formula in 
the s-domain back to the time domain. Furthermore, the Laplace transform is particularly useful in 
system control and automation owing to its ability to deal with piece-wise and periodic control 
functions [1,8-10], with which the traditional methods would be difficult to deal.  

In engineering, many dynamic systems are represented by differential equations to describe the 
real-world scenarios in the time domain. Engineers often modify or adjust some parameters of a system 
(or a DE) to obtain the desired outcome from the system. Such actions can be taken in the state space 
because of the relatively simpler algebraic operations or matric operations in the s-domain through the 
Laplace transform [10-12].  

For example, given the linear ODEs 
2

2 ( )d xm kx f t
dt

+ =  that describes the responses of a simple 

spring-mass system (on the left) to the external force (on the right), x can be regarded as the output 
from the system and f(t) can be regarded as the input to the system. In the time domain, this system is 
complicated because the input and output are linked together through a second-order ODE. However, 
in the s-domain, this linear ODE is transferred into an algebraic equation as  

( )
( ) ( ) ( )  ( )

( )
  X s

X s G s F s G s
F s

= =→ ,             (1) 

where ( ) [ ( )]X s L x t= , ( ) [ ( )]F s L f t=  and ( )G s  are the output, input and transfer function of this 

system in the s-domain. The transfer function G(s) defined by the ratio of the Laplace transform of the 
output X(s) to the Laplace transform of the input F(s) varies depending on individual ODEs or systems. 
In other words, each transfer function represents a different dynamic system. By modifying the transfer 
function, engineers can obtain the desired output using the known input. This relationship can be 
shown using a single block diagram in Figure 1 [1,9,10,13]. The solution or output in the time domain 
can be obtained by the inverse Laplace transform 

[ ] [ ]1 1( ) ( ) ( ) ( )x t L X s L G s F s− −= = .             (2) 

 

Figure 1. A system represented by a single block diagram in the state space 

This seems like a simple process for the Laplace transform. However, in engineering education, 
the Laplace transform has been regarded as a highly difficult technique for the teachers to teach and 
for the students to learn [14,15]. Furthermore, in many advanced engineering mathematics textbooks, 
the Laplace transform is specified as a technique best suited for solving the initial value problem (IVP) 
of ODEs as it naturally embeds the initial values in the transfer process [1,10,13,16]. A very few 
textbooks [e.g., 17,18] introduced the Laplace transform through a generic example, but it was 
immediately followed by more IVP examples and applications. In a similar way, many academic 
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publications involving the Laplace transform were also full of solving IVPs of ODEs [3,19-21]. Such 
a focused presentation is indeed highlighted the advantage of the Laplace transform but this stereotype 
also confuses students when they face a task to solve ODEs without explicit initial condition(s), such 
being demonstrated by the student’s experience in the following sections in this article.   

In this paper, after outlining the differences between using the conventional method and the 
Laplace transform to solve a resistor-inductor (RL) circuit in Section 2, Section 3 presents two cases 
of solving ODEs using the Laplace transform demonstrated by undergraduate engineering students at 
a regional university in Australia. This aims to demonstrate how much influence of the stereotype of 
the Laplace transform on student’s perception of utilizing this method to solve ODEs under different 
conditions. In Section 4, the generalization of the Laplace transform for solving linear ODEs with 
generic initial values is presented using Case 1 and Case 2 appeared in Sections 2 and 3, and a new 
case of system of linear ODEs, aiming to not only break down the stereotype but also broaden the 
applicability of the Laplace transform for solving linear ODEs, practically the constant-coefficient 
linear ODEs. Brief discussion and conclusion are made in Section 5. 

At many regional universities, students enrolled in STEM programs are diverse in ages, 
mathematical abilities, study modes, time availabilities, and levels of commitment to their learning 
due to various reasons. Hence, many students prefer a full and detailed presentation of solving a 
mathematical problem, even some steps seem too basic and unnecessary for students studying at 
prestigious or metropolitan universities. Since all the cases here are prepared to serve the needs of the 
diverse student cohorts at many regional universities as the bottom line, the essence and the step-by-
step processes for solving a problem are all included to provide all detailed information to meet the 
needs of such students. 

2. Modelling a RL circuit with an explicit initial value by two different methods 

Let us begin with the case of modelling a RL circuit with an initial value by the conventional 
method and the Laplace transform, respectively. 

Case 1: A series RL circuit with source voltage or input 0( ) sinf t E tω=  and an initial value i(0) = 0 

ampere is shown in Figure 2, in which E0 and ω are the amplitude and angular frequency of the voltage 
supply, respectively. The current i(t) in the circuit is described by the first-order linear ODE  

0 sin
Edi R

i t
dt L L

ω+ = ,                (3) 

where R and L are the resistance and inductance, respectively. Solve this ODE for i(t) and model the 
electrical current in the circuit. 

2.1. The conventional method 

In the ODE (3), let a = R/L and b = E0/L. This ODE can be rewritten as 

sin
di

ai b t
dt

ω+ = .                 (4) 
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Figure 2. The series RL circuit with input 0( ) sinf t E E tω= =  

Since this is a first-order linear ODE in the standard form with P(t) = a and Q(t) = bsinωt, its 
general solution can be obtained using the explicit formula in [22] or [23]. Note the asterisk indicates 
that the details can be found in the Appendix of this article. 
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or 

( )0
2 2 2

( ) sin cos
R

t
L

E
i t ce R t L t

R L
ω ω ω

ω

−
= + −

+
.           (5) 

This is the general solution to the RL circuit. The first part is the response of the homogeneous 
ODE. This response ih approaches zero as t  ∞. The second part is the particular response ip to the 
input that varies with time.  

To find the specific solution satisfying the initial value i(0) = 0, substitute t = 0 and i(0) = 0 into 
the general solution (5). 

( ) ( )
0

0 0
2 2 2 2 2 2

0 0
2 2 2 2 2 2

0 sin 0 cos 0 0 0

0

    

    .

R
L

E E
ce R L c L
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c c
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ω ω
ω ω

− ×
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+ +
−

= + =
+ +

→

→
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Thus, the specific solution is 

0
2 2 2

( sin cos )
R

t
L

s

E
i Le R t L t

R L
ω ω ω ω

ω

−
= + −

+
.          (6) 

The separation between the general solution and the initial condition requires extra steps to get a 
specific solution for a given initial condition. However, such separation keeps the general solution as 
a universal module for the ODE regardless of what the initial condition(s) would be applied with 
respect to different circumstances. 
   Figure 3 shows the responses of the homogeneous solution ih, the particular solution ip and the 
combined solution is with time with R = 10 Ω, L = 5 H, ω = 2, and E0 = 10 V. It clearly shows that the 
current is dependent on the input after the initial period, in which the influence of the ih component 
fades out quickly. Therefore, the response ih correlating to the homogeneous ODE is called the 
transient current whereas the particular response correlating to the input in the inhomogeneous ODE 
(3) is called the steady-state current. 

 

Figure 3. Electric currents in the RL circuit with R = 10 Ω, L = 5 H, ω = 2, and E0 = 10 V 

2.2. The Laplace transform 

Apply the Laplace transform to both sides of the ODE (4)  

[ ] [sin ]
di

L aL i bL t
dt

ω+ = 
  

.              (7) 

Let I(s) = L[i]. This translates the ODE to its state space form 

 ( ) (0) ( ) [sin ]sI s i aI s bL tω− + =              (8) 

2 2 2 2

1
( ) ( ) ( ) ( ) ( ) ( )        b b
s a I s I s I s G s F s

s s a s
ω ω
ω ω

+ = = =
+ + +

→ → .  

Here the input, transfer function, and the output in the state space are 

2 2 2 2

1 1
( ) ,    ( ) ,    ( )

b b
F s G s I s

s s a s a s
ω ω
ω ω

= = =
+ + + +

.       
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The corresponding functions in the time domain can be found by the inverse Laplace transform. 

[ ] [ ]

[ ] [ ]

1 1 1 1
2 2

1 1

1
( ) ( ) sin ,    ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ).

atb
f t L F s L b t g t L G s L e
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ω
ω

ω
− − − − −

− −

= = = = = =
+ +

= = = ∗

   
        

Here ( ) ( )g t f t∗  is the convolution between the two functions. By convolution, the output in the time 

domain can be determined as follows. 
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←  

This is the same outcome as obtained by the traditional method. Since the initial condition i(0) = 
0 was embed in the equation (8) during the process, the result from the inverse Laplace transform is 
the specific solution satisfying this specific initial condition only. This process seems relatively simpler 
if students know the convolution well. Hence, many students may have a misunderstanding that the 
Laplace transform would be only applicable for solving ODEs with explicit initial condition(s), which 
is demonstrated by the student’s attempts to the questions in the next section.  

3. How students attempted to solve linear ODEs by the Laplace transform 

The two selected cases presented below are from undergraduate student’s assignments in the past 
several years at a regional university in Australia. Each case is from a different cohort and demonstrates 
student’s strengths and weaknesses in using the Laplace transform to solve ODEs under different 
conditions.  

3.1. Solving a second-order linear ODE with explicit initial conditions 

This case was part of a group assignment for 35 teams totalling 91 students in an advanced 
engineering mathematics course. The assigned question is a second-order linear ODE with two initial 
values. The question is presented below, followed by the step-by-step working with the Laplace 
transform. Student’s performances on solving this question are then analysed.   
 
Case 2: Solve the following ODE with the initial values by the Laplace transform and the convolution 
theorem. 
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9 2cos 3 ,   given   (0) (0) 0y y t y y′′ ′+ = = =             (9) 

Apply the Laplace transform to both sides of the ODE (9).  

[ ] 9 [ ] 2 [cos 3 ]L y L y L t′′ + = .               (10) 

Let Y(s) = L[y]. This translates the ODE to its state space form 

 2
2 2

2
( ) (0) (0) 9 ( )

3
s

s Y s sy y Y s
s

′− − + =
+

           (11) 

 2
2 2 2

2 1 2( 9) ( )     ( )     ( ) ( ) ( )
9 9 9

s ss Y s Y s Y s G s F s
s s s

+ = → = → =
+ + +

. 

These are equivalent to  

2 2 2 2 2 2 2 2

2 1 1 2
( ) ,    ( ) ,    ( )

3 3 3 3
s s

F s G s Y s
s s s s

= = =
+ + + +

.       

The corresponding functions in the time domain can be found by the inverse Laplace transform. 

[ ] [ ]1 1 1 1
2 2 2 2

2 1 1
( ) ( ) 2cos 3 ( ) ( ) sin 3

3 3 3
    s

f t L F s L t g t L G s L t
s s

− − − −= = = = = =
+ +

   →      
 

[ ] [ ]1 1( ) ( ) ( ) ( ) ( ) ( )y t L Y s L G s F s g t f t− −= = = ∗ .           (12) 

By convolution, the output in the time domain can be determined as follows. 
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∫ ∫

∫ ∫
1 1
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1
sin 3

3
t t= .                  (13) 

[ ]1
 sin cos sin( ) sin( )

2
α β α β α β∗∗ = + + −  

The plot of this specific solution is shown in Figure 4, which indicates a periodic sine pattern 
amplified by time. 

Twenty-four out of the 35 teams solved this question correctly, i.e., correct in applying the Laplace 
transform, using the convolution theorem, and carrying out integrations during the entire process. One 
such example is shown in Figure 5. This team demonstrated not only a good understanding of the 
procedure of using the Laplace transform to solve the initial value ODE but also the efficacy of utilizing 
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the mathematical skills obtained from previous mathematics courses. 

 
Figure 4. Plot of the output for Case 2 with y(0) = 0 and y′(0) = 0 

 
Figure 5. An example of student’s work on solving the ODE in Case 2 by the Laplace transform 

For the eleven teams who presented incorrect or partly correct solutions to the question, two teams 
were completely wrong with applying the Laplace transform; six teams encountered problems in using 
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the convolution theorem; three teams made mistakes in integration during convolution. The student’s 
overall performances in solving this question are summarized in Table 1. With an overall correct rate 
of 69% (24/35), plus a few teams with partly correct solutions, student’s ability to solve ODEs with 
explicit initial values by the Laplace transform was reasonably satisfactory. 
 

Table 1. Summary of the performances in solving the ODE in Case 2 by students 
Mistake in Laplace transform Convolution Integration 
Incorrect 2 6 3 
Correct 24 24 24 

3.2. Solving a second-order linear ODE with generic initial conditions 

The second case was part of an individual assignment for 124 students in the same advanced 
engineering mathematics course in another year. The assigned question is also a second-order linear 
ODE with only one explicit initial condition. Students were asked to solve this question using the 
Laplace transform but convolution was not compulsory. Without providing the full explicit initial 
conditions, this case became a partly open question. Students would need their reasoning to start 
applying the Laplace transform.  

This question is presented below, followed by the step-by-step working with the Laplace transform 
for the preferred outcome. Student’s performances on solving this question are then analysed.   
 
Case 3: Use the Laplace transform to solve the following ODE  

2 1 (0) 1,  given  ty y e y′′ − = + = .             (14) 

Apply the Laplace transform to both sides of the ODE (14)  

[ ] 2[ ] [ 1]tL y L y L e′′ − = + .               (15) 

Let Y(s) = L[y] and assume 1(0)y v′ = . This translates the ODE to its state space form 

 2 1 1
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2
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s s
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−
            (16) 
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→
 

where 

1 2 02 2

1 1 1
( ) ,  ( ) ,  ( ) ,  ( )

1 2 1
s

G s F s F s G s
s s s s

= = = =
− − −

.       

The corresponding functions in the time domain can be found by the inverse Laplace transform. 
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By convolution, the output in the time domain can be determined as follows. 
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2 1 1(1 ) (7 3 )1
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3 2 6
t t tv v

e e e−+ −
= + + − .            (17) 

The consideration here is that the ‘system’ represented by the ODE would exhibit a certain pattern 
if all two initial values are given. By fixing one initial value and allowing the other to vary, the ‘system’ 
would become a dynamic system to some extent. For example, with y(0) = 1 already embed in the 

solution, by using –2, 0, 2 for 1(0)y v′ =  respectively, three different outputs can be obtained with the 

solution (17) and each displays a unique pattern as shown in Figure 6. Of course, more variations can 

be determined similarly by only varying the value for 1(0)y v′ =  in this solution, which cannot be 

achieved should both initial values be given in the beginning of solving this problem. 
Among the 124 students, only nineteen students (or 15% of all students) attempted this question, 

partly due to the assessment setting that allowed students to choose five out of the six questions in the 

assignment. All these nineteen students assumed (0) 0y′ =  , and eleven of them obtained correct 

solutions under this assumption (Table 2). Among the eight students who used convolution, six 
achieved the correct solution whereas five students out of the eleven students who used the 
conventional method of partial fractions also obtained the correct solution. Usually students who are 
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confident in their mathematics abilities tend to choose the convolution method for the inverse Laplace 
transform; hence it is not surprising to see more of them have achieved the correct outcome. 

 

Figure 6. Plots of the solution to Case 3 with fixed y(0) = 1 and different values for 1(0)y v′ =  

The more profound observation from this case is that no student attempted to use a generic value 

for 1(0)y v′ =  . Instead, they all believed that the omission of a known value for (0)y′   was an 

unnoticed mistake made by the teacher in setting up this assignment because from their knowledge the 
Laplace transform should be used only for initial value problems. Upon the explanation of the preferred 

solution and exhibition of different results and implications with different values for 1(0)y v′ =  shown 

in Figure 6, the students began to understand that the solution they obtained was only a special case 

for (0) 0y′ =   that was also covered in the solution (17) for 1(0) 0y v′ = =  . This case also made 

students rethink of the use of the Laplace transform as a general method for solving linear ODEs, both 
the general ODEs and the initial value ODEs with fully or partially known initial conditions.  

 
Table 2. Summary of attempts to solve Case 3 by 124 students 

 (0) 1y =  & (0) 0y′ =  (0) 1y =  & 1(0)y v′ =  

No attempt 105 105 
Convolution 8 (6) 0 
Partial fraction 11 (5) 0 
Correct solution 11 0 

Italic numbers indicate the correct solutions obtained by students 

4. Generalization of the Laplace transform for solving constant-coefficient linear ODEs 

To help students further their understanding of the capacity of the Laplace transform in solving 
ODEs with generic initial value(s), Case 1 and Case 2 presented in previous sections and a system of 
linear ODEs as Case 4 are solved by the Laplace transform for generalization in this section. 
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4.1. Solving the RL circuit in Case 1 with a generic initial value 

Assuming i(0) = v0, the equation (8) in the state space becomes  

 0( ) ( ) [sin ]sI s v aI s bL tω− + =              (18) 

0
02 2 2 2

0

1
( ) ( ) ( )

( ) ( ) ( ) ( ),

    vb b
s a I s v I s

s s a s s a
I s G s F s v G s

ω ω
ω ω

+ = + = +
+ + + +

= +

→
  

where  

2 2

1
( ) ,    ( )

b
F s G s

s s a
ω
ω

= =
+ +

.  

There is a new term 0 ( )v G s  whose inverse Laplace transform should be added to the existing solution, 

[ ] [ ] [ ]1 1 1
0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) .ati t L I s L G s F s L v G s g t f t v e− − − −= = + = ∗ +  

Therefore, the general output in the time domain is 

( )
0 02 2

( ) ( ) ( ) sin cosat at atb
i t g t f t v e e a t t v e

a
ω ω ω ω

ω
− − −= ∗ + = + − +

+
      

0
02 2 2

( sin cos )
R R

t t
L L

E
Le R t L t v e

R L
ω ω ω ω

ω

− −
= + − +

+
.       (19) 

 By assigning i(0) = 0 ampere, its specific solution is decided as  

0
2 2 2

( ) ( sin cos )
R

t
L

E
i t Le R t L t

R L
ω ω ω ω

ω

−
= + −

+
.          

This is the same as the solution (6). 
 By assigning i(0) = –10 amperes, the corresponding specific solution is decided as 

 0
2 2 2

( ) ( sin cos ) 10
R R

t t
L L

E
i t Le R t L t e

R L
ω ω ω ω

ω

− −
= + − −

+
.       (20) 

 By assigning i(0) = 10 amperes, the corresponding specific solution is decided as 

 0
2 2 2

( ) ( sin cos ) 10
R R

t t
L L

E
i t Le R t L t e

R L
ω ω ω ω

ω

− −
= + − +

+
.       (21) 

These three corresponding outputs are shown in Figure 7. The red curve represents the specific 
case with i(0) = 0 ampere, starting from the original till reaching the steady-state phase after the first 
period, the same as demonstrated in Figure 2. In the meantime, the solution (19) is more flexible in 
demonstrating the patterns resulted from other initial values. For example, with i(0) = –10 amperes, 
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the blue curve begins from the initial position at 10 units below the original till reaching the steady-
state phase after the first period. With i(0) = 10 amperes, the black curve begins from the initial position 
at 10 units above the original till reaching the steady-state phase after the first period. 

 
Figure 7. Electric currents of the RL circuit in Case 1 with R = 10 Ω, L = 5 H, ω = 2, and E0 = 10 V 

[v0 = i(0) for –10, 0, and 10 amperes, respectively] 

In this case, simply replacing v0 by the given initial value will produce the specific solution, 
without substituting the initial value into the general solution (5) obtained by the conventional method 
to define the unknown constant for the new cases.  

4.2. Solving the second-order ODE in Case 2 with generic initial conditions 

Assuming y(0) = v0 and 1(0)y v′ = , the second-order ODE in Case 2 in the state space becomes  

2 2
0 12 2 2 2

0 1
0 12 2 2 2

2 2
( ) (0) (0) 9 ( ) ( 9) ( )

3 3
1 2

( ) ( ) ( ) ( ) ( ) ( )
9 9 9 9

    

    

s s
s Y s sy y Y s s Y s sv v

s s
sv vs

Y s Y s G s F s G s v G s
s s s s

′− − + = + = + +
+ +

= + + = + +
+ + + +

→

→
   (22)  

where  
0

02 2 2 2 2 2

2 1
( ) ,    ( ) ,    ( )

3 3 3
svs

F s G s G s
s s s

= = =
+ + +

.      

The corresponding functions in the time domain can be found by the inverse Laplace transform. 

[ ] [ ]

[ ]

1 1 1 1
2 2 2 2

1 1 0
0 0 02 2

2 1 1
( ) ( ) 2cos 3 ,   ( ) ( ) sin 3

3 3 3
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   
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Considering the convolution outcome (13) in Section 3, the output in the time domain can be 
determined as follows. 
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1 1
0 1 0

0 1

1
( ) [ ( )] ( ) ( ) ( ) ( ) sin 3 cos 3 sin 3

3 3
1

cos 3 ( ) sin 3 .
3

v
y t L Y s g t f t g t v g t t t v t t

v t v t t

−= = ∗ + + = + +

= + +

     (23) 

 By assigning y(0) = 0 and (0) 0y′ =  to the solution (23), the corresponding specific solution is 

defined as  

1( ) sin 3
3

y t t t= .                   

This is the same as the solution (13) obtained in Section 3. 

 By assigning y(0) = –3 and (0) 3y′ = −  to the solution (23), the corresponding specific solution is 

defined as  

1( ) 3cos3 ( 3)sin 3
3

y t t t t= − + − .             (24) 

 By assigning y(0) = 5 and (0) 5y′ =  to solution (23), the corresponding specific solution is 

defined as  

1( ) 5cos3 ( 5)sin 3
3

y t t t t= + + .             (25) 

These three specific outputs are shown in Figure 8. The red curve represents the specific case with 

(0) (0) 0y y′= = , starting from the original with a periodic sine pattern amplified by time, the same as 

that demonstrated in Figure 4.  

 
Figure 8. Plots of the output of the ODE in Case 2 by Laplace transform with different initial values 

[Black: v0 = –3, v1 = –3; Red: v0 = 0, v1 = 0; Blue: v0 = 5, v1 = 5] 
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The black curve represents the pattern with y(0) = –3 and (0) 3y′ = −  which begins from the initial 

position at 3 units below the original with a cosine pattern. This is because in the solution (24) the sine 
component is much smaller than the cosine component in the early stage when t is small. With the 
increase in time, the sine component gradually surpasses the cosine component and eventually reaches 
the similar sine pattern with a slightly larger amplitude compared with the red curve.  

The blue curve represents the pattern with y(0) = 5 and (0) 5y′ =  which begins from the initial 

position at 5 units above the original with a cosine pattern. This is because in the solution (25) the sine 
component is smaller than the cosine component in the early stage when t is small. With the increase 
in time, the sine component strengthens quickly and soon dominates the pattern with a much larger 
amplitude compared with the red curve. 

In this case, simply replacing v0 and/or v1 for different initial conditions in the solution (23) will 
produce the anticipated specific solution without a need to substitute the initial values into the general 
solution determined by the conventional method to define the unknown constants for the new case. 
Therefore, the Laplace transform is a general method suitable to solve constant-coefficient linear 
ODEs not only with explicit initial values for the corresponding specific solution but also with generic 
initial values for the general solution. 

4.3. Solving a system of linear ODEs with generic initial conditions 

Case 4: Tank 1 (T1) and Tank 2 (T2) initially contain V litres of saline. In the beginning, the saline in 
T1 contains x0 kg of salt dissolved uniformly in T1 and the saline in T2 contains y0 kg of salt dissolved 
uniformly in T2. The liquid is circulated at a constant rate of q litre/min and stirred to keep the mixture 
uniform. Find the amount of salt x(t) in T1 and y(t) in T2 with time, respectively.  

 
Figure 9. The mixing problem for Case 4 

For T1, the rate of change in salt equals the amount of salt in the inflow from T2 by taking away 
the amount of salt in the outflow to T2, and so does for T2 (Figure 9), i.e., 

0 0

0 0

,  (0) ,  (0)

,  (0) ,  (0)
    

dx q q q q
y x x x x x y x x

dt V V V V
dy q q q q

x y y y y x y y y
dt V V V V

′= − = = − + =

′= − = = − =

 
  → 
 
  

.       (26) 

Let /k q V= . Apply the Laplace transform to both sides of the system (26)  

 

T1 (x) 

 

T2 (y) 
→ q litre/min 

 
 

← q litre/min 
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[ ] [ ] [ ]
[ ] [ ] [ ]

L x kL x kL y
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′ = −




.               (27) 

Let X(s) = L[x] and Y(s) = L[y]. This translates the ODEs to its state space form 
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The vertical addition of the two equations in the system (28) becomes 
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Substitute Y(s) into the first ODE in the system (28). 
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or  

 0 0 0
0 0 0

( )
( ) ( ) ( ) ( ) ( )

( 2 ) ( 2 )
x k x y

X s x G s k x y F s G s
s k s s k

+
= + = + +

+ +
,       (31)  

here 
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The corresponding functions in the time domain can be found by the inverse Laplace transform. 
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The outputs in the time domain can be determined as follows. 
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Substitute /k q V=  back. 
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This is the general solution to this mixing problem without specifying the initial values.  
Assume the volume for both tanks is 4000 liters and in the beginning 600 kg of salt are dissolved 

in T1 and only pure water is in T2, i.e., x0 = x(0) = 600 kg and y0 = y(0) = 0 kg. If the two circulating 
rates, q1 = 40 l/m and q2 = 100 l/m, are used in the mixing process, two sets of specific solutions can 
then be determined by the general solution (33) as follows.  
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q2 = 100 l/m: 
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.               (35) 

Figure 10 displays the progression of mixing for these two settings. Suppose the mixing is to 
achieve at least 99% (297–303 kg) of uniformity of salt in both tanks. The mixing process using the 
higher circulating rate of 100 l/m would reach this threshold in about 95 minutes, indicated by the red 
dot on the red curves. The lower circulating rate of 40 l/m would take more than 180 minutes to have 
a chance to achieve this standard as indicated by the blue curves in Figure 10.  

 

Figure 10. Plots of the mixing processes in the solutions (34) and (35) 
V = 4000 liters, x0 = 600 kg, y0 = 0 kg; blue curves: q1 = 40 l/m; red curves: q2 = 100 l/m 

If in the beginning 500 kg of salt are dissolved in T1 and 100 kg of salt are dissolved in T2, i.e., 
x0 = x(0) = 500 kg and y0 = y(0) = 100 kg. With the two circulating rates, q1 = 40 l/m and q2 = 100 l/m, 
two sets of new specific solutions can be determined by the general solution (33) as follows.  
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q1 = 40 l/m:  
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Figure 11. Plots of the mixing processes in the solutions (36) and (37) 

V = 4000 liters, x0 = 500 kg, y0 = 100 kg; blue curves: q1 = 40 l/m; red curves: q2 = 100 l/m 

Figure 11 displays the progression of mixing for these two settings. Suppose the mixing is to 
achieve at least 99% of uniformity of salt in both tanks. The mixing process using the higher circulating 
rate of 100 l/m would reach this threshold in about 85 minutes, indicated by the red dot on the red 
curves. This is faster than the case where all 600 kg of salt are dissolved in Tank 1 in the beginning. 
The lower circulating rate of 40 l/m would still take more than 180 minutes to have a chance to achieve 
this standard as indicated by the blue curves in Figure 11.  

This case also demonstrates that the Laplace transform is well capable of solving systems of linear 
ODEs with generic initial values. The general solutions from the Laplace transform are even simpler 
to produce specific solutions by simply replacing the generic initial values with the given numbers, 
without a need to substitute the initial values into the general solution to define the unknown constants 
for the new case through the conventional method. 

5. Discussion and conclusion 

All the cases have demonstrated that the Laplace transform is not only useful in solving linear 
ODEs with explicit initial values, but also powerful in solving constant-coefficient linear ODEs with 
generic initial conditions. The general solution obtained by the Laplace transform is even more robust 
for obtaining the specific solutions directly once the initial values are assigned. This is because the 
generic initial values, even being symbolic in the general solutions, are already embed into the process 
of problem solving by the Laplace transform, no need to go through the substitution process with the 
initial values to determine the unknown constants contained in the general solution resulted from the 
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conventional method. This implies that the generic initial conditions in the general solution obtained 
from the Laplace transform could be used as a point of control for some dynamic systems. 

However, a good understanding of the power of the Laplace transform for solving ODEs is 
different from the effective use of the powerful tool to solve the real problems. This is because the 
nature of the Laplace transform already leans to a more difficult path than the conventional way, 
particularly through convolution, experienced by both the teachers and students [14,15]. The 
challenging route is often compounded by the inefficient retention of the skills and knowledge students 
gained in previous mathematics courses, such as integration by parts, trigonometric relationships etc. 
[23-25]. Hence, a high level of efficacy of mathematical skills and techniques is still the necessity for 
a smooth progression in advanced mathematics studies, including the Laplace transform.  

Although four representative cases are closely examined in this study, more research should be 
done to explore the extra power and/or the limit that the Laplace transform may bring to solving other 
types of ODEs. For example, to what extent, the Laplace transform can deal with solving nonlinear 
ODEs with generic initial conditions? How will the piecewise functions as the input to linear ODEs 
with generic initial conditions affect the effectiveness of applying the Laplace transform as a general 
tool? How best the generic initial conditions in the general solution obtained through the Laplace 
transform can be integrated into the control of dynamic system? More questions are raised than solved, 
which should become the research questions for future studies.  
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Appendix 
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