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Abstract: Recently, Tisdell [48] developed some alternative pedagogical perspectives of 
multiplication strategies via cut-and-paste actions, underpinned via the principle of conservation of 
area. However, the ideas therein were limited to problems involving two factors that were close 
together, and so would not directly apply to a problem such as 17 ×  93.  The purpose of the present 
work is to establish what diagrammatic and dynamic perspectives could look like for these more 
complex classes of multiplication problems. My approach to explore this gap is through an analysis 
and discussion of case studies. I probe several multiplication problems in depth, and drill down to get 
at their complexity. Through this process, new techniques emerge that involve cut-and-paste and 
rescaling actions to enable a reimagination of the problem from diagrammatic and dynamic points of 
view. Furthermore, I provide some suggestions regarding how these ideas might be supplemented in 
the classroom through the employment of history that includes Leonardo Da Vinci’s use of 
conservation principles in his famous notebooks.  I thus establish a pedagogical framework that has 
the potential to support the learning and teaching of these extended problems from diagrammatic and 
dynamic perspectives. groups.  
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1. Introduction  

Opportunities to shine new light through the old windows of multiplication continue to fascinate 
the mathematics education community.  The significance, the scale of challenge, and the educational 
needs and benefits of such illumination are well recognized. For example, West [52] advocates for 
multiplicative skill and understanding to be essential parts of preparation for life in the mathematical 
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world of the 21st century.  In addition, Larsson [31] and Larsson, Pettersson and Andrews [32] takes 
the position that multiplicative understanding is a core component for elementary arithmetic 
instruction and that such understanding supports higher-level mathematical topics, including fractions, 
ratio, proportionality and functions.  

Multiplication forms one of the four basic mathematical operations and is learned as part of primary 
school education [38].   In countries such as the UK, US and Australia, students and teachers explore 
and develop more challenging aspects of multiplication in Year 4. For example, in England, students 
are expected to “multiply numbers up to 4 digits by a one- or two-digit number using a formal written 
method, including long multiplication for two-digit numbers” [14].  Furthermore, one of the 
standards in the US Common Core is for students to “Multiply a whole number of up to four digits by 
a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value 
and the properties of operations. Illustrate and explain the calculation by using equations, rectangular 
arrays, and/or area models.” [8]. Additionally, Australian students are called to “Develop efficient 
mental and written strategies and use appropriate digital technologies for multiplication…”  and 
“using known facts and strategies, such as commutativity, doubling and halving for multiplication…” 
[1] 

As we can see from the above examples, this deeper educational engagement with multiplication 
can involve problems that feature multi digit factors and mental techniques. There are a number of 
opportunities and challenges regarding this. For example, Izsk [25] identifies the research area of multi 
digit multiplication as an important but understudied domain, drawing on a range of studies, including 
that of Stigler, Lee, and Stevenson [42], who reported that only 54% of US fifth-grade students in 
“traditional” courses could solve 45 × 26 correctly. Beishuizen, Van Putten and Van Mulken [2] 
identifies mental arithmetic with two-digit numbers up to 100 as “a rather unexplored topic in research” 
and unmasks several gaps in our understanding therein. As such, advocates such as Beishuizen, Van 
Putten and Van Mulken [2] and McIntosh, Reys and Reys [35] call for “greater emphasis on mental 
computation with two-digit numbers up to 100, to stimulate the development of number sense and 
insightful flexible number operations” [2].  

Sanne, Straatemeier, Jansen et al [38] also support the significance of mental multiplication as a 
process of “insightful procedures” rather than the application of rote-memorized steps. Furthermore, 
countries that emphasize the uses of mental calculation in mathematics education have performed well 
in international comparisons [16].  Verschaffel, Greer and De Corte [51] recognize that understanding 
a variety of strategies for arithmetic is a major goal of primary mathematics education across the world.  
The importance of this variety is expounded by mathematics education reformers [23] with the aim of 
developing creative and flexible approaches to arithmetical problems. 

Recently, Tisdell [48] developed some alternative pedagogical perspectives of multiplication 
strategies via diagrammatic representations and dynamic rearrangements.  Multiplication problems 
were modelled via rectangles and their area.  By slicing and rearranging parts of these rectangles in 
strategic ways, Tisdell [48] afforded diagrammatic justifications of the underlying operations at work, 
and formed a dynamic process to carry out the multiplication itself. The strategies were underpinned 
via the principle of conservation of area.  

However, the ideas in [48] were limited to multiplication problems where the two factors involved 
were close together, and so problems involving numbers that were further apart were out of scope.  
Thus, “a problem such as 17 ×  93 would not appear to suit the particular algorithm” [48] and “there 
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is an opportunity to explore what other approaches might be applicable to this kind of problem.” [48]  
Motivated by the above discussion, the following research questions drive the current article: 
 
RQ1:  How can diagrammatic and dynamic pedagogies be established for multiplication 

strategies when the numbers involved are not close together? 
RQ2: What are the potential benefits and limitations of such pedagogies? 
RQ3:  How might these pedagogies be supplemented in a classroom setting? 
 
To explore the above questions, I draw on a range of methodologies, including: case study research, 

exemplification, critique and problematization. For those who may be unfamiliar with some of these 
terms, let me provide some background and clarity.   

Case study research is a well-known methodology in the social sciences that can also be viewed as 
a strategy, a design framework, and a research genre [13, p114].  Since my research questions above 
are of an “explore and explain” nature involving particular phenomena that are not well understood, it 
strongly aligns with the purpose of case study research [13, p114].  Exemplification as a methodology 
can be traced (at least) back to Aristotle [4]. It features an approach of unique sample selection where 
the examples under consideration exemplify the construct of interest in a highly developed manner [4].   

Problematization and critique are methods that challenge existing focalized viewpoints to create a 
dialogue that enables new perspectives, reflection and action to emerge [9, pp.155-156].  My style of 
critique within mathematics education positions itself as a counterpoint to what I regard as over-
simplistic thinking [47].  

Through exemplification, problematization and critique I probe several multiplication problems in 
depth herein, aiming to drill down to get at their complexity.  These procedures, logic and research 
design align with the above research questions, to enable “a disciplined, balanced enquiry, conducted 
in a critical spirit” [45, p24].  

This paper is organised in the following way.  In Section 2 I identify the gaps from [48] through 
critique and problematization.  In Section 3 I examine various examples of multiplication problems. 
Through case studies and exemplification, I reimagine these classes of problems from diagrammatic 
and dynamic perspectives to establish new and alternative strategies. Section 4 is dedicated to 
exploring the limitations of such perspectives. Section 5 develops some ideas for the classroom that 
can potentially supplement the mathematical ideas here by drawing on history. I make some 
conclusions within Section 6, and raise some open questions for further research. 

2. Problematizing an Example 

Tisdell [48] explored geometric perspectives of multiplication linked with the following algebraic 
identity  

(𝑎𝑎 +  𝑏𝑏)(𝑎𝑎 +  𝑐𝑐)  =  𝑎𝑎(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)  +  𝑏𝑏𝑐𝑐.        (1) 

In (1), 𝑎𝑎 is a natural number known as a comparison number (or a base number), and 𝑏𝑏 and 𝑐𝑐  
are integers so that 𝑎𝑎 +  𝑏𝑏  forms one factor and 𝑎𝑎 +  𝑐𝑐  forms the second factor in the 
multiplication.  Tisdell [48] discussed 13 × 12  where 𝑎𝑎  was chosen to be 10 , 𝑏𝑏  was 3  and 𝑐𝑐 
was 2.  The identity (1) would then become  

(10 + 3)(10 + 2)  =  10(13 + 2) +  32 =  150 +  6 =  156.   
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Tisdell [48] reimagined the multiplication from a diagrammatic and dynamic perspective, moving 

from the situation that can be represented by the area of a rectangle (i.e., the left side of the identity) 
to become the area of a polygon involving two other rectangles, each whose area was potentially easier 
to calculate (i.e., the right side of the identity).   

However, the ideas in [48] appear to be limited to multiplication problems where the two numbers 
involved are close together, that is, when 𝑏𝑏 and 𝑐𝑐 are “small”.  This then ensures the calculation 
𝑏𝑏 × 𝑐𝑐 is not too difficult.  Indeed, the examples discussed by Tisdell (2021) [48]  involved problems 
such as: 8 × 7; 13 × 12; and 9 × 14. Observe that each of these pairs lie close to a = 10 which is 
easier to multiply with, and more generally, a is known as a comparison number or base number that 
helps to simplify the calculations.  Problems involving 103 × 109  (both close to  𝑎𝑎 =  100 ) or 
23 × 26 (both close to 20 or 25) would also fit into the above framework.   

Allow me to scrutinize the example of 17 ×  93 within the context of (1). The challenge here is 
to choose a value of a such that the calculation bc is manageable, however this presents a serious 
challenge as the following discussion illustrates.  If we choose a value roughly in the middle, say 𝑎𝑎 =
50, then 𝑏𝑏 =  −34 and 𝑐𝑐 =  43 leads to 𝑏𝑏 ×  𝑐𝑐 =  −34 ×  43.  This is certainly not as simple as 
a multiplication involving single digits, but could be evaluated by running the process again to handle 
the calculation of 34 × 43 (say, with the choice 𝑎𝑎 =  40).  However, this lengthens the process by 
adding more steps.  

If we choose a value closer to one of the factors, say 17 with 𝑎𝑎 = 10, then 𝑏𝑏 = 7 and 𝑐𝑐 =
83.  Here 𝑏𝑏 is a single digit, but 𝑐𝑐 is not.  If we choose 𝑎𝑎 = 100 then 𝑏𝑏 =  −83 and 𝑐𝑐 = 7 and 
we run into the same problem regarding the difficulty of 𝑏𝑏 ×  𝑐𝑐.   

From a diagrammatic perspective, determining the area of the second rectangle with “sides” band 
𝑐𝑐 is not as simple as we might hope.  

We also note that 93 can be expressed as 3 × 31, however in this case we require additional 
steps to first navigate 17 ×  31 and then multiply this by 3. 

Arithmetical strategies do exist that can help learners to navigate the above problem.  For example, 
Santhamma [39, Ch 9ii], Handley [20, Ch 10; 21, Ch 7] and Doerfler [15, p13] have discussed the 
situation where the two factors in the multiplication are not close together.  They draw on the algebraic 
identity 

(𝑎𝑎𝑎𝑎 +  𝑏𝑏)(𝑎𝑎 +  𝑐𝑐)  =  𝑎𝑎(𝑎𝑎𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐𝑎𝑎)  +  𝑏𝑏𝑐𝑐      (2) 

where 𝑎𝑎 can be thought of as a natural number acting as a scaling factor.  Thus 𝑎𝑎𝑎𝑎 +  𝑏𝑏 is not 
necessarily close to 𝑎𝑎 +  𝑐𝑐.   

In the aforementioned texts, algebraic perspectives dominate the discussion of (2).  For example, 
Handley [20, pp235-236] justifies why his methods work by expanding the left hand side of the identity 
(2) via algebraic operations, and then recombining to the right hand side via regrouping and 
factorization methods.  Santhamma [39, Ch 9ii] takes a similar approach. In addition, Handley [21] 
and Doerfler [15] make repeated use of, and reference to, the algebraic identity (2), however they 
remain silent on any kind of justification.  These focalized algebraic viewpoints possess some 
mathematical advantages in that they are widely applicable, and they can facilitate justifications that 
are quite short and compact.   

However, there are a number of potential disadvantages of the above approaches when viewed 
from educational perspectives. Remaining silent on justifications for why the methods work 



174 

 

STEM Education  Volume 1, Issue 3, 170–185 

jeopardizes deeper learning by favouring skill over understanding. 
In addition, an over-reliance on algebraic perspectives risks excluding those learners who are 

unfamiliar with algebra, algebraic symbols, and the algebraic rules for manipulating these 
symbols.  Such algebraic perspectives are problematic for younger learners of arithmetic who are yet 
to encounter algebra.  In addition, those older learners who may be less algebraically-inclined also 
face challenges in accessing these algebraic justifications [48]. 

Furthermore, concentrating on algebra alone threatens learners missing or losing the connections 
between arithmetic, algebra and diagrams. Although the use of algebra may form a protective, 
comforting wall, it also encircles and potentially entraps those who focalise their ways of thinking. 
Even though algebra was divorced from the constraints of geometry by Al-Karaji and Diophantus [29], 
have we forgotten the connections, and have we come too far? When we speak of “the square of 
something”, does the symbol 𝑎𝑎2 immediately come to mind instead of a square itself, or both? 

Fostering the ability to think from more diagrammatical perspectives is important and has 
significant advantages.  For example, Brown [5] argues that pictures in mathematics are crucial, and 
“Trying to get along without them would be like trying to do theoretical physics without the benefit of 
experiments to test conjectures.” [5, p29]. Giaquinto [18] argues that visual images and diagrams can 
serve as a resource for discovery, justification and proof.  The famous mathematician Littlewood 
identifies his position and ways of working with pictures in helping him to see through the fog: “Some 
pictures are of course not rigorous, but I should say most are (and I use them whenever possible 
myself)....This is rigorous (and printable), in the sense that in translating into symbols no step occurs 
that is not both unequivocal and trivial. For myself I think like this wherever the subject matter permits.” 
[33, pp35-36].  In summary, pictures do have important roles to play in the learning and teaching of 
mathematics due to their ability to: illuminate, justify, defend, explain, explore and make us wiser. 

3. Case Studies 

Let me probe several case studies. Some new dynamic and diagrammatic processes will 
consequently emerge from this analysis.   

 
Example 1: Consider 12 ×  34.  

Drawing on (2) we could choose 𝑎𝑎 = 10 so that 𝑐𝑐 = 2, 𝑎𝑎 = 3, and 𝑏𝑏 = 4.  Thus,  

12 ×  34 =  10(34 +  2 ×  3) +  4 ×  2 =  10(40)  +  8 =  408. 

Let me reimagine this from diagrammatic perspectives. Students can represent the value 12 × 34 
through an area model involving an appropriate rectangle. This can be drawn by hand as shown in 
Figure 1a, or realized through manipulatives such as blocks, or via computer software.   

Let us aim to somehow transform the rectangle into a shape whose area will be the sum or 
difference of the area of two new rectangles, where the area of each of these new rectangles is easy to 
calculate.  

The base of the rectangle in Figure 1 is partitioned to form two rectangular sub-parts, one of which 
has a base of length 10, that is, we essentially “slice” off  𝑐𝑐 = 2, and our particular choice of base will 
correspond to our comparison number 𝑎𝑎 = 10  for this example.   Our diagram in Figure 1b 
represents the partitioning and distributive property 

12 ×  34 =  (10 +  2) 34 =  10 ×  34 +   2 ×  34.   



175 

 

STEM Education  Volume 1, Issue 3, 170–185 

 

 
Figure 1. Diagram for Example 1 

The vertical sides of the smaller rectangle in Figure 1b can be partitioned into tens and units, 
forming two smaller rectangles.  The dimensions of the rectangle involving the units will involve the 
values for 𝑏𝑏 and 𝑐𝑐. Our diagram in Figure 1c represents  

10 × 34 +   2 ×  34 =  10 ×  34 +  2 (30 +  4)  =  10 ×  34  +  2 ×  30 +  2 ×  4. 

If we examine the top right rectangle in Figure 1c, then we see the vertical sides have length 30 =
 3 × 10.  Thus, we may interpret the 3 as a scaling factor that acts on 10.    We can reform this 
rectangle by transferring this scale factor from the vertical sides to the horizontal sides, that is, this 
rectangle moves from a form of 2 × (3 × 10) to (2 ×  3) ×  10. Our diagram in Figure 4 represents 
the culmination of   

10 ×  34  +  2 ×  30 +  2 ×  4 =  10 ×  34 +  2  (10 ×  3) +  2 ×  4 
=  10 ×  34 +  10  (2 × 3) +  2 ×  4 =  10 ×  34 +  10 ×  6 +  2 ×  4. 

The height of this transformed rectangle in Figure 1d is now the same as the base of the biggest 
rectangle therein.  Thus, we can rotate, move and reconnect this rectangle as per Figure 1e. Thus, our 
diagram in Figure 1e represents  

10 ×  34 +  10 ×  6 +  2 ×  4 =  10 (34 +  6) +  2 ×  4. 

Finally, we can recombine two of the side-by-side rectangles so that the area of our original 
rectangle in Figure A1 will now be the sum of the area of two new rectangles, where the area of each 
of these new rectangles is easy to calculate. In Figure 1f we express  

10 ×  40 +  2 ×  4 =  400 +  8 =  408. 

If we bring everything together then we can see the following is captured by our sequence of 
diagrams: 

12 × 34 =  (10 +  2) 34 =  10 ×  34 +   2 × 34 
 =  10 ×  34 +  2 (30 +  4)  =  10 ×  34  +  2 ×  30 +  2 ×  4 
=  10 ×  34 +  2  (10 ×  3) +  2 ×  4 
=  10 ×   34 +  10 ×  6 +  2 ×  4 =  10 (34 +  6) +  2 ×  4 
=  10 ×  40 +  2 ×  4 =  400 +  8 =  408. 

Note that in my translation of pictures into the above symbols, no step occurs that is not both 
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unequivocal and trivial, and so this aligns with the position of Littlewood [33]. 
 

Example 2: Consider 8 × 29.   
In (2) we could choose 𝑎𝑎 = 10 so that 𝑐𝑐 =  −2, 𝑎𝑎 = 3 and 𝑏𝑏 =  −1.  Thus,  

8 × 29 =  10(29 −  2 ×  3) +  1 ×  2 =  10(23)  +  2 =  232. 

Once again, let me reimagine this from diagrammatic perspectives, with students starting with the 
initial area model represented in Figure 2a. 

 
Figure 2. Diagram for Example 2 

Once more, the idea is to transform the rectangle into a shape whose area will be the sum or 
difference of the area of two new rectangles, where the area of each of these new rectangles is easy to 
calculate.  However, I will do this in a different way to the previous example. 

Let us aim to construct a figure where the larger of the two rectangles has a base of 10.  This 
choice of base will correspond to our comparison number 𝑎𝑎 = 10 for this example.  Since the length 
of the base is 8 <  10  it is unclear how we can slide the horizontal sides as per the previous 
example.  However, we can slice the vertical sides of the rectangle, partitioning into two rectangular 
sub-parts, one with height 6 =  −𝑐𝑐𝑎𝑎 =  2 ×  3 where 𝑎𝑎 is our scaling factor.  

Our diagram in Figure 2b represents 

 8 ×  29 =  8  (23 +  (2 ×  3)). 

The upper rectangle in Figure 8 can be rotated and translated with its new position illustrated in 
Figure 2c. 

Our diagram in Figure 2c can be viewed as representing 

  8  �23 +  (2 ×  3)� =  8 ×  23 +    8  (2 × 3). 

The sub-rectangle on the right in Figure 2c can be transformed so that its base has a length of  
2.  To do this, students can transfer the scale factor of 𝑎𝑎 = 3 from the two horizontal sides to the two 
vertical sides. That is, this rectangle moves from a form of 8 × (2 ×  3)  to 2 × (8 ×  3) . Our 
diagram in Figure 2d represents the culmination of 

8 ×  23 +  8 (2 ×  3) =  8 ×  23 +  2 (8 ×  3) =  8 ×  23 +  2 ×  24. 

We can now partition the taller rectangle to “align” with the rectangle on its left.  In Figure 2e we 
have illustrated   
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8 × 23 +  2 ×  24 =  8 ×  23 +  2 (23 +  1) =  8 ×  23 +  2 ×  23 +  2 ×  1. 

Thus, recombining into two rectangles we have the situation in Figure 2f that can be captured by  

8  ×  23 +  2  ×  23 +  2 ×   1 =  (8 +  2)  23 +  2 ×  1 =  10  23 +  2  ×  1 
=  232.   

If we bring everything together then we can see the following sequence that is captured by our 
diagrams: 

8 ×  29 =  8 × (23 +  2 × 3) = 8 ×  23 +  8 × ( 2 ×  3)   
=  8 ×  23 +  2 (8 × 3)  =  8 ×  23 +  2 × 24 
=  8 ×  23 +  2 (23 +  1) 
= 8 × 23 +  2 × 23 +  2 ×  1 
=  (8 + 2) ×  23 +  2 ×  1 = 10 × 23 +  2 ×  1 
=  230 +  2 =  232. 

Example 3: Consider  17 ×  41.   

In (2) we could choose 𝑎𝑎 = 20 so that 𝑐𝑐 =  −3, 𝑎𝑎 = 2 and 𝑏𝑏 = 1.  Thus,  

17 ×  41 =  20(41 −  2 ×  3) −  1 ×  3 =  20(35)  − 6 = 700 − 6 =  694. 

Once again, let me reimagine this from diagrammatic perspectives, with students starting with the 
initial area model represented in Figure 3a. 
 

 
Figure 3. Diagram for Example 3 

Once again, the idea is to transform the rectangle into a shape whose area will be the sum or 
difference of the area of two new rectangles, where the area of each of these new rectangles is easy to 
calculate. In this particular case it will be a difference of two areas. 

Let us aim to construct a figure where the larger of the two rectangles has a base of 20.  This 
choice of base will correspond to our comparison number 𝑎𝑎 = 20 for this example.  Since the length 
of the base is 17 <  20 we can slice the vertical sides of the rectangle, partitioning them into two 
rectangular sub-parts, one with height 6 =  −𝑐𝑐𝑎𝑎 =  2 ×  3  where 𝑎𝑎  is our scaling factor. Our 
diagram in Figure 3b represents 17 ×  41 =  17 × (35 +  6). 
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The upper rectangle in Figure 3b can be rotated and translated with its new position illustrated in 
Figure 15. Our diagram in Figure 3c represents  

17 (35 +  6) = 17 × 35  +  (2 × 3)  17. 

The rectangle on the right in Figure 3c can be transformed so that its base has a length 3.  To do 
this, students can transfer the scale factor of 𝑎𝑎 = 3 from the two horizontal sides to the two vertical 
sides. That is, this rectangle moves from a form of (2 ×  3) ×   17 to 3 ×  (2 ×  17).  

Our diagram in Figure 3d represents 

17 ×   35 +   (2 ×  3) ×  17 =  17 ×  35 +  3  (2 ×  17) =  17 × 35 +  3 ×  34. 

We can now see that the desired area of the two rectangles in Fig 16 is the difference in areas of 
two other rectangles, with this captured via Figure 3e. In particular, Figure 3e captures the culmination 
of  

17 × 35 +  3 × 34 =  17 × 35 +  3 (35 −  1) =  (17 +  3)  35 −  3 ×  1 =  20 × 35 −  3 × 1. 

If we bring everything together then we can see the following sequence that is captured by our 
diagrams: 

 
17 ×  41 =  17 × (35 +  3 ×  2) = 17 × 35 +  17 × ( 3 × 2)   
 =  17 × 35 +  3 (17 × 2)  =  17 × 35 +  3 × 34  
=  17 × 35 +  3 (35 − 1) 
=  17 ×  35 +  3 ×  35 −  3 ×  1 

        =  (17 + 3) ×  35 −  3 × 1 =  20 × 35 −  3 ×  1 =  700 −  3 =  697. 

Alternatively, for this example we could choose a=10 so that  

17 ×  41 =  10 (41 +  4 ×   7) +  7 ×  1  

=  10 (41 +  28) +  7 =  10 ×  69 + 7 =  690 +  7 =  697. 

4. Discussion  

What are the advantages and limitations of the ideas in the previous section? 
Looking back at our previous examples, we can see that conservation of area forms a key, 

underlying principle.  Kospentanris, Spyrou and Lappas [30] draws on the idea that the actions of 
cutting -and-pasting to rearrange parts of a figure to produce another one with equal area may help the 
students to develop an understanding of the principle of conservation of area, forming a preliminary 
step in their process of mastering area measurement.  Thus, an advantage of the ideas herein is their 
potential to support this type of development by fostering an awareness of conservation of area and its 
links with basic area models derived from the original multiplication problem.   

However, the advantages of my ideas have the potential to reach further and wider. Note that the 
actions herein are not limited to cut-and-paste, but also involve a rescaling of rectangles; and the 
original problems are from arithmetic, not area measurement. In these senses the ideas herein also 
extend to building connections, awareness and understanding involving cutting-and-pasting actions, 
rescaling actions, conservation of area and multiplication problems from arithmetic (rather than a 
limitation to the measurement of area).   
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Conversely, the notions of conservation of area and rescaling of rectangles are non-trivial concepts 
for younger learners to grasp and apply, and so a reliance on these elements also form a potential 
limitation of the ideas and ways of working herein.  

If we compare the strategies in Example 1 with Example 2, then we see there are differences in 
the processes therein.  This illustrates that there is no universal strategy and that the rearrangements 
can be performed in multiple ways.  One of the benefits of this observation is that students have the 
freedom to consider their options and then choose which method suits them best. The importance of 
this flexibility in problem-solving and understanding at an individual learner level is supported by 
Tisdell [46].  On the flip-side, having multiple options may risk overwhelming students with too many 
choices and there may be insufficient direction regarding when to choose which strategy.  

If we reflect on the use of diagrams in my examples, then we see that the figures themselves can 
tell a story. On one hand, the cutting, scaling and rearrangements of the rectangles herein can be 
communicated, carried out and understood independently of the algebraic / arithmetical textual 
representations, and so in this sense it aligns with the suggestions of Casselman [7] and Tufte [49] 
regarding principles for making good illustrations in mathematics.  On the other hand, the pictures 
and arithmetical representations herein need not be independent of each other in the sense that they 
can be used together, when the situation allows it (for example, when learners may be more 
comfortable with algebraic aspects).  In particular, the operations involving my pictures are analogous 
to algebraic operations and so our use of pictures are rigorous, drawable and printable, “in the sense 
that in translating into symbols no step occurs that is not both unequivocal and trivial” and so align 
with the position of Littlewood [33] in having the potential to help learners to see through the fog. 

Drawing on the position of Casselman [7] that “it is rare for there to be too many illustrations in a 
mathematics paper”, I believe that it is rare for there to be too many diagrams in the learning and 
teaching of mathematics. Students and teachers can often understand more rapidly and conceptually 
what a certain part of the curriculum is about when illustrations are plentiful and meaningful. Students 
and teachers can skim the sequence of diagrams herein rather than reading the associated text in 
isolation.  Furthermore, students have the potential to draw plenty of pictures regarding the ideas and 
processes herein that involve the conservation of area and multiplication problems. Their pictures can 
be modified, redrawn and explored. My establishment of what diagrammatic and dynamic perspectives 
could look like for more complex classes of multiplication problems forms a framework for practice, 
skill and understanding.   

Naturally, I wish to avoid visual clutter and distraction through pictures, and the question of how 
many pictures are necessary for these kinds of strategies is dependent on the individual’s relationship 
between the problem and the methods under consideration.  For one learner, many pictures may be 
helpful in shining a light; whereas for others, one or two may suffice [46]. 

As mentioned earlier, students and teachers can draw the associated rectangles and rearranged 
polygons herein via various methods, such as pencil-and-paper or digital means. The question of 
variety in visualization methods in multiplication and conservation of area aligns with the position 
of Hanna and Sidoli [22] in the sense that “there is room for more effort aimed at better ways to use 
visualisation” in such contexts.  

The ideas discussed in the previous section herein can accommodate the original problem of 
93 ×  17  (choose, say, 𝑎𝑎 = 20  so that 𝑎𝑎 = 5 , 𝑏𝑏 =  −7  and 𝑐𝑐 =  −3 ; or choose 𝑎𝑎 = 10  so that 
𝑎𝑎 = 9, 𝑏𝑏 = 3 and 𝑐𝑐 = 7). However, it is not immediately apparent how the ideas could be applied to 
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a problem such as 67 ×  97 (where we now have both prime factors).  One of the challenges here is 
to choose 𝑎𝑎 and 𝑎𝑎 ≥ 1 in such a way to keep the calculation 𝑏𝑏 × 𝑐𝑐 under control (say, to single digit 
factors), which on the surface, does not seem possible. Thus, we see that although the strategies herein 
have the ability to solve problems that could not be successfully navigated before, they do not appear 
to be universally applicable. 

Multiplication problems that involve three factors can be linked with the volume of a rectangular 
prism.  These problems might be able to be reimagined as the sum or difference of the volumes of two 
new prisms, where the volume of each of these new prisms is easy to calculate. I acknowledge that 
these solids are harder to draw and lie outside the scope of the present article. 

5. Ideas for the Classroom 

In this section I offer some ideas for the classroom (8-12 year-olds) that teachers can draw on to 
supplement the previous multiplication concepts.  In particular, I propose some small, specific uses 
of history in the mathematics classroom, guided by an “illumination approach” [27] that incorporates 
“historical snippets” [50, pp. 208, 214]. In this style, these smaller supplements align with Jankvist’s 
analogy of educators adding “spices” to the mathematics education casserole [27]. 

Janquist [27] synthesises some of the classic arguments found in the literature that support the use 
of history as a tool for teaching mathematics, and includes its potential to act as an enabler of: 
motivation, excitement, interest and confidence-building in learners. Furthermore, Russ et al [37, p7] 
argue that if teachers employ historical approaches, then this potentially humanizes mathematics and 
can make it less frightening to learners.  In particular, my ideas are guided by the position of Marshall 
and Rich [34], and Furner and Brewer [17] who identified the need for specificity and examples 
regarding what history in mathematics education might look like.  

Spice #1: Conservation principles via Leonardo Da Vinci’s Notebooks  

Connolly (in [28]) describes Leonardo Da Vinci as the original Renaissance man. Over the past 
500 years, Leonardo’s profound and innovative contributions as an artist, sculptor, scientist, 
mathematician, architect and inventor have incited significant interest and admiration. Leonardo’s 
legacy is so famous that some younger learners may recognize his name and some of his works, such 
as the Mona Lisa. 

Leonardo’s use of conservation principles in mathematics is in a similar spirit to the earlier ideas 
seen in this work and can be found in his famous notebooks. For example, in Codex Foster I, his 
intention was to dedicate the ideas therein to “transformation of a body into another one without 
decrease or increase of the matter” [24, p316]. The two types of transformations that we have seen 
earlier in this paper are skilfully explored by Leonardo in his notebooks: the cut-and-paste action; and 
the continuous deformation process.   

For example, learners can explore Leonardo’s mode of thought regarding cut-and-paste actions 
through his work on conserving the area between a triangle and a scythe (falcate). Leonardo captures 
this kind of conservation in Codex Madrid II, folio 111v [11] via Figure 4. 

Leonardo’s accompanying text in Codex Madrid II is translated by Capra [6, p268] “I shall take 
away portion b from triangle ab, and I will return it at c. If I give back to a surface what I have taken 
away from it, the surface returns to its former state.”  Another similar line of thought from Leonardo 
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can be found in [12] that has been included in Figure 5. 
 

 

Figure 4. One example of conservation in Codex Madrid II captured by Leonardo 

 

Figure 5. Another example of conservation in Codex Madrid II captured by Leonardo 

In addition, Leonardo’s notebooks enable learners to discover his conservation of volume method 
where he melts wax to transform from one solid to another.  For example, on Codex Atlanticus folio 
820v, he writes [10]: “Take some amount of wax and with that make a square, on it should be made a 
4 side pyramid. What should be the height of the pyramid ? Transform the wax into a cube and take 2 
parts of wax, and make a cylinder with the same base and height, then take 2/3 of that and you will get 
the wax for the proposed Pyramid.” [24, p316] 

In recent years, many notebooks of Leonardo have been scanned and the images have become 
publicly available online via various libraries.  Using these scans as primary sources supporting 
history in mathematics education aligns with the position of Jahnke [26] by presenting ambitious and 
rewarding opportunities in the classroom. In line with the previous ‘spices’ analogy, the material from 
Leonardo’s notebooks needs to be chosen with great care to ensure they are appropriate for the 
classroom situation.  A few carefully chosen diagrams (such as those herein) blended with some 
anecdotes and stories could potentially play this role [40]. 

Spice #2: The lives and times of calculating prodigies  

Another strategy that can form a supplement for the classroom setting is a discussion of the lives, 
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times and achievements of lightning-fast calculators. Since the multiplication strategies herein can be 
built into mental strategies for multiplication, the connection with lightning-fast calculators is well-
aligned.  

Educators could refer to names, dates, famous works and events, time charts, biographies and 
famous problems, methods and so on (e.g., [43, 44]) of such lightning calculators.  For example, there 
are several interesting characters who have developed skill and accuracy in multiplying numbers 
mentally.  This includes: Yaashwin Sarawanan, who was the runner-up in the TV show of Asia's Got 
Talent in 2019; Scott Flansburg, who is dubbed “The Human Calculator” and is listed in the Guinness 
Book of World Records for speed of mental calculation; and Arthur Benjamin, who is a mathematics 
professor and well-known for his mental mathematics abilities with a strategy he calls “mathemagics” 
[3].  Furthermore, there are dozens of interesting stories of calculating prodigies in Smith’s book [41] 
(1983) that can be shared.  

Classroom discussions on The Mental Calculator World Cup [36] also provides an avenue for the 
“spices” to be added to the mathematics education casserole. 

6. Conclusion  

I am now in a position to respond to the original research questions posed in the Introduction. 
 
RQ1: How can diagrammatic and dynamic pedagogies be established for multiplication strategies 
when the numbers involved are not close together? 

Through an analysis of case studies, and drawing on the principle of conservation of area, new 
methods emerged herein that involved transforming a rectangle via cutting, rescaling and pasting into 
a shape whose area is the sum or difference of the area of two new rectangles, where the area of each 
of these new rectangles is easy to calculate. These actions can involve problems where the numbers 
are not close together and the rearrangement strategies are of a plural nature.  
 
RQ2: What are the potential benefits and limitations of such pedagogies? 

Part of the benefit in my ideas herein is in their potential to build connections, awareness and 
understanding of and multiplication problems from arithmetic via cutting-and-pasting actions, 
rescaling actions, conservation of area; and not being limited just to the measurement of area. 
Furthermore, my framework offers alternatives to the use of arithmetical text, so that learners and 
educators can utilize the sequence of diagrams herein rather than solely reading the associated text in 
isolation.  In addition, our results can be applied to navigate multiplication problems that were not 
previously tractable.  

However, the ideas herein do not appear to immediately apply to a problem such as 
67 × 97 due to the factors being “not far enough” apart, and so this remains an avenue that warrants 
further exploration. 
 
RQ3: How might these pedagogies be supplemented in a classroom setting? 

I offered some illumination strategies with which the ideas herein might be supplemented in the 
classroom. A use of history and iconic people has the potential to enable students to appreciate cultural 
aspects associated with the concepts, and to humanize the ideas.   
 



183 

 

STEM Education  Volume 1, Issue 3, 170–185 

References 

1. Assessment and Reporting Authority (ACARA), Australian Curriculum: Mathematics Year 4. 
2021. https://www.australiancurriculum.edu.au/f-10-curriculum/mathematics/     

2. Beishuizen, M., Van Putten, C. and Van Mulken, F., Mental arithmetic and strategy use with 
indirect number problems up to one hundred. Learning and Instruction, 1997, 7(1): 87-106. 
https://doi.org/10.1016/S0959-4752(96)00012-6  

3. Benjamin, A. and Shermer, M.B., Mathemagics: How to look like a genius without really 
trying. 1993, Chicago, IL: Contemporary Books. 

4. Bronk, K., The exemplar methodology: An approach to studying the leading edge of 
development. Psychology of Well-Being: Theory, Research and Practice, 2012, 2(1): 5. 
https://doi.org/10.1186/2211-1522-2-5  

5. Brown, J.R., Philosophy of mathematics: The world of proofs and pictures. 1999, New York: 
Routledge. 

6. Capra, F., The Science of Leonardo. 2007, New York, NY: DoubleDay Press. 
7. Casselman, B., Pictures and proofs. Notices of the AMS, 2000, 47: 1257–1266. 
8. Common Core State Standards Initiative, Grade 4, Number & Operations in Base Ten. 2021. 

http://www.corestandards.org/Math/Content/4/NBT/ 
9. Crotty, M., The foundations of social research: meaning and perspective in the research 

process. 1998, London: SAGE. 
10. Da Vinci, Leonardo, Codex Atlanticus. 1478-1519, Milan: Biblioteca Ambrosiana. 

https://www.codex-atlanticus.it/#/Detail?detail=820 
11. Da Vinci, Leonardo, Codex Madrid II. 1503-1505,  Madrid: Biblioteca Nacional. 

http://leonardo.bne.es/index.html  
12. Da Vinci, Leonardo, Studies of geometry. RCIN 919145, 1509, Windsor, UK: Royal Collection 

Trust. https://www.rct.uk/collection/search#/12/collection/919145/studies-of-geometry  
13. Day A. L., Case Study Research, in Research Methods & Methodologies in Education, 2nd ed. 

R. Coe, M. Waring, L.V. Hedges & J. Arthur Ed. 2017, pp. 114-121. Los Angeles, CA: SAGE. 
14. Department for Education, National curriculum in England: mathematics programmes of 

study. 2021. https://www.gov.uk/government/publications/national-curriculum-in-england-
mathematics-programmes-of-study/national-curriculum-in-england-mathematics-
programmes-of-study  

15. Doerfler, R.W., Dead Reckoning: Calculating Without Instruments. 1993, Houston TX: 
Gulf  Publishing Company. 

16. Dowker, A., Individual differences in arithmetic: Implications for psychology, neuroscience, 
and education. 2005, New York: Psychology Press. 

17. Furner, J.M. and Brewer, E.A., Associating mathematics to its history: Connecting the 
mathematics we teach to its past. Transformations, 2016, 2(2): Article 2. 
https://nsuworks.nova.edu/transformations/vol2/iss2/2  

18. Giaquinto, M., Visual thinking in mathematics. 2007, Oxford: Oxford Univ. Press.  
19. Goktepe, S. and Ozdemir, A., An example of using history of mathematics in classes. European 

Journal of Science and Mathematics Education, 2013, 1(3): 125-136. 
20. Handley, B., Speed mathematics: Secret skills for quick calculation. 2000, Hoboken, NJ: John 

Wiley & Sons. 

https://www.australiancurriculum.edu.au/f-10-curriculum/mathematics/
https://doi.org/10.1016/S0959-4752(96)00012-6
https://doi.org/10.1186/2211-1522-2-5
http://www.corestandards.org/Math/Content/4/NBT/
https://www.codex-atlanticus.it/#/Detail?detail=820
http://leonardo.bne.es/index.html
https://www.rct.uk/collection/search#/12/collection/919145/studies-of-geometry
https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study/national-curriculum-in-england-mathematics-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study/national-curriculum-in-england-mathematics-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-mathematics-programmes-of-study/national-curriculum-in-england-mathematics-programmes-of-study
https://nsuworks.nova.edu/transformations/vol2/iss2/2


184 

 

STEM Education  Volume 1, Issue 3, 170–185 

21. Handley, B., Speed maths for kids. 2005, Milton, Qld: John Wiley & Sons. 
22. Hanna, G. and Sidoli, N. Visualisation and proof: a brief survey of philosophical Perspectives, 

ZDM Mathematics Education, 2007, 39: 73–78. https://doi.org/10.1007/s11858-006-0005-0 
23. Hatano, G., Foreword, in A The development of arithmetic concepts and skills: Constructing 

adaptive expertise. J. Baroody & A. Dowker Ed. 2003, pp. xi–xiii. Mahwah: Lawrence 
Erlbaum Associates. https://doi.org/10.4324/9781410607218 

24. Innocenzi, P., The Innovators Behind Leonardo. 2019,  Cham, Switzerland: Springer 
International Publishing.  https://doi.org/10.1007/978-3-319-90449-8_14  

25. Izsk, A., Teaching and Learning Two-Digit Multiplication: Coordinating Analyses of 
Classroom Practices and Individual Student Learning. Mathematical Thinking and Learning, 
2004, 6(1): 37-79. https://doi.org/10.1207/s15327833mtl0601_3 

26. Jahnke, H.N., The use of original sources in the mathematics classroom, in History in 
mathematics education, the ICMI study. J. Fauvel & J. van Maanen Ed. 2000, pp. 291–328. 
Dordrecht: Kluwer Academic. 

27. Jankvist, U.T., A categorization of the “whys” and “hows” of using history in mathematics 
education. Educ Stud Math, 2009, 71: 235–261. https://doi.org/10.1007/s10649-008-9174-9 

28. Kemp, M., Leonardo da Vinci: Experience, Experiment, and Design. 2006, Princeton NJ: 
Princeton University Press 

29. Kettle, C., The Symbolic and Mathematical Influence of Diophantus's Arithmetica. Journal of 
Humanistic Mathematics, 2015, 5(1): 139-166. https://doi.org/10.5642/jhummath.201501.08  

30. Kospentaris, G., Spyrou, P. and Lappas, D., Exploring students’ strategies in area conservation 
geometrical tasks. Educ Stud Math. 2011, 77: 105–127. https://doi.org/10.1007/s10649-011-
9303-8  

31. Larsson, K., Connections for learning multiplication, in Proceedings from Symposium 
Elementary Mathematics Education: Developing mathematical language and reasoning. J. 
Novotná & H. Moraová Ed, 2015, pp. 202-211. Prague: Charles University, Faculty of 
Education 

32. Larsson, K., Pettersson, K. and Andrews, P., Students’ conceptualisations of multiplication as 
repeated addition or equal groups in relation to multi-digit and decimal numbers. The Journal 
of Mathematical Behavior, 2017, 48: 1-13. https://doi.org/10.1016/j.jmathb.2017.07.003  

33. Littlewood, J.E., A Mathematician’s Miscellany. 1953, London: Methuen & Co. Ltd.  
34. Marshall, G.L. and Rich, B.S. The Role of History in a Mathematics Class. Mathematics 

Teacher, 2000, 93(8): 704-706. 
35. McIntosh, A., Reys, B.J. and Reys, R.E., A proposed framework for examining basic number 

sense. For the Learning of Mathematics, 1992, 12: 2-44. 
36. Mental Calculation World Cup, 2021.  

https://en.wikipedia.org/wiki/Mental_Calculation_World_Cup 
37. Russ, S., Ransom, P., Perkins, P. et al., The experience of history in mathematics education. 

For the Learning of Mathematics, 1991, 11(2): 7–16. 
38. Sanne, H.G., van der Ven, Straatemeier, Marthe, Jansen, Brenda R.J., Klinkenberg, Sharon, 

and Maas, Han L.J. van der, Learning multiplication: An integrated analysis of the 
multiplication ability of primary school children and the difficulty of single digit and multidigit 

https://doi.org/10.4324/9781410607218
https://doi.org/10.1007/978-3-319-90449-8_14
https://doi.org/10.1016/j.jmathb.2017.07.003
https://en.wikipedia.org/wiki/Mental_Calculation_World_Cup


185 

 

STEM Education  Volume 1, Issue 3, 170–185 

multiplication problems. Learning and Individual Differences, 2015, 43: 48-62. 
https://doi.org/10.1016/j.lindif.2015.08.013  

39. Santhamma, C., Vedic mathematics. lecture notes 1 – multiplication. 2021. Retrieved from 
http://mathlearners.com/vedic-mathematics/multiplication-in-vedic-mathematics/  

40. Siu, M.-K., The ABCD of using history of mathematics in the (undergraduate) classroom, in 
Using history to teach mathematics—an international perspective, V. Katz Ed. MAA notes, 
2000, 51: 3–9. Washington, DC: The Mathematical Association of America. 

41. Smith, S.B., The Great Mental Calculators: The Psychology, Methods, and Lives of 
Calculating Prodigies Past and Present. 1983, New York: Columbia Univ Press. 

42. Stigler, J.W., Lee, S. and Stevenson, H.W., Mathematical knowledge of Japanese, Chinese, 
and American elementary school children. 1990, Reston, VA: National Council of Teachers of 
Mathematics 

43. Swetz, F., Using problems from the history of mathematics in classroom instruction, in Learn 
from the masters, F. Swetz, J. Fauvel, O. Bekken, B. Johansson & V. Katz Eds. 1995, pp. 25– 
38. Washington, DC: The Mathematical Association of America. 

44. Swetz, F., Problem solving from the history of mathematics, in Using history to teach 
mathematics—an international perspective. V. Katz Ed. MAA notes, 2000, 51, pp. 59–65. 
Washington, DC: The Mathematical Association of America. 

45. Thomas, G., How to Do Your Research Project: A Guide for Students. 2017, London: SAGE 
Publications Ltd. 

46. Tisdell, C.C., Schoenfeld's problem-solving models viewed through the lens of 
exemplification. For the Learning of Mathematics, 2019, 39(1): 24–26. 

47. Tisdell, C.C., Tic-Tac-Toe and repeated integration by parts: alternative pedagogical 
perspectives to Lima's integral challenge. International Journal of Mathematical Education in 
Science and Technology, 2020, 51(3): 424-430. 
https://doi.org/10.1080/0020739X.2019.1620969 

48. Tisdell, C.C.,  Why do ‘fast’ multiplication algorithms work? Opportunities for understanding 
within younger children via geometric pedagogy. International Journal of Mathematical 
Education in Science and Technology, 2021, 52(4): 527-549. 
https://doi.org/10.1080/0020739X.2019.1692933 

49. Tufte, E., The visual display of quantitative information. 1983, Cheshire, CT: Graphic Press. 
50. Tzanakis, C. and Arcavi, A., Integrating history of mathematics in the classroom: An analytic 

survey, in History in mathematics education. J. Fauvel & J. van Maanen Ed. 2000, pp. 201–
240. The ICMI Study. Dordrecht: Kluwer Academic Publishers. 

51. Verschaffel, L., Greer, B. and De Corte, E., Whole number concepts and operations, in Second 
handbook of research on mathematics teaching and learning. F.K. Lester Jr Ed. 2007, pp. 557–
628. Charlotte, NC: Information Age Publishing Inc 

52. West, L., An Introduction to Various Multiplication Strategies. Thesis, 2011,  Lincoln, 
NE:  University of Nebraska at Lincoln. 

  

 

https://doi.org/10.1016/j.lindif.2015.08.013
https://doi.org/10.1080/0020739X.2019.1692933

