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Abstract: This paper introduces the concept of redundancy in robotics to students in master degree 
based on a didactic approach. The definition as well as theoretical description related to redundancy 
are presented. The example of a human finger is considered to illustrate the redundancy with 
biomechanical point of view. At the same time, the finger is used to facilitate the comprehension and 
apply theoretical development to solve direct and inverse kinematics problems. Three different tasks 
are considered with different degree of redundancy. All developments are implemented under Matlab 
and validated in simulation on CAD software. 
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1. Introduction  

A robot is mechanically constructed by connecting a set of links to each other using various types 
of joints. Actuators provide forces or torques yielding the robot’s links to move. Generally, an end-
effector is attached to a last specific link [1]. The robot configuration allows to define a whole 
specification of the position of every point of the robot [2]. The minimum number n of coordinates 𝑞𝑞𝑛𝑛 
needed to represent the configuration is the number of degrees of freedom (dof) of the robot. The all 
possible configurations of the robot are included in a n-dimensional space called the configuration 
space (C-space). The workspace (W-space) is a description of the configurations that the end-effector 
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of the robot can reach. The workspace definition is deduced from the robot’s structure, independently 
of the task. The task space (T-space) is a space in which the robot’s task can be defined. Both the task 
space and the workspace are linked to user choice; more general, the orientation is not represented and 
T-space and W-space are limited to some freedoms of the end-effector. 

The task space and the workspace are distinct from the robot’s C-space. A point in the task space 
or the workspace may be reachable by at least one configuration of the robot. If a point in W-space is 
archived by more than one configuration of the robot, this point is considered with multiples-
configurations. This situation is frequently encountered in case of kinematic redundancy [3].  

A robot is termed kinematically redundant when it possesses more degrees of freedom than it is 
needed to execute a given task [4]. Redundancy can be conveniently exploited to achieve more 
dexterous robot motions [5, 6]; accordingly, the robot presents multiples configurations to access to a 
specific point in space. 

A robot is kinematical redundant for the task if 𝑛𝑛 >  𝑟𝑟 where: 

• 𝑛𝑛 the degrees of freedom of the structure (usually the number of the joints). 
• 𝑚𝑚 the number of variables needed to describe the task space. 
• 𝑟𝑟 the number of variables of the task space needed to describe a task. 

In other words, we can say that a robot is redundant when it has more degrees of freedom than 
strictly needed for describing and executing the task [7]. By the way the redundancy is a relative 
concept, a robot could be redundant for a task but not for another one [8]. In terms of operational space 
(T-space or W-space) and configuration space, a manipulator is intrinsically redundant when the 
dimension of the operational space is smaller than the dimension of the configuration space: 𝑚𝑚 <  𝑛𝑛. 
A generic task can be represented in the space with 6 variables (3 positional and 3 orientational values). 
For this reason, a robot that has more than 6 degrees of freedom is intrinsically redundant. 

Redundant robots don’t add additional complexity to the resolution of the direct kinematics. It is 
different for the inverse kinematics, where increasing the degrees of freedom the solutions in terms of 
joints that realize a certain position of the end effector in the space become potentially infinite. For this 
reason, it is necessary to add additional complexity to kinematic inversion, in order to solve the 
problem, selecting a solution according to a certain methodology. 

The system given by the kinematic model of redundant robot presents a nonempty null-space that 
allows adequate changes improving robot performances by using the redundant DOFs [9, 10]. This 
analytical arrangement is feasible due to the pseudoinverse which not affect the null-space. Thus, the 
solution still affective despite the element modifications of the pseudo-inverse [7]. It is possible to take 
advantage to this adding some interesting control task like: stay within the feasible joint ranges, avoid 
kinematic singularities, avoid collision with obstacles, uniformly distribute/limit joint velocities and/or 
accelerations, increase manipulability in specified directions, optimize execution time and minimize 
needed motion torques  

The human hand presents a captivating object on which researchers in both biomechanics and 
robotics lead and continue to lead many studies [9, 11]. In this work a human finger with four-joints is 
modelled as an open chain redundant robot. The finger model is used to introduce the concept of 
redundancy to students in master degree base on a didactic approach.  

This paper focuses on the redundancy definition and its theoretical description through the 
example of the human finger in didactic way helping the students to more understand the robotic 
concept. The paper is organised as follows: Section 2 presents the architecture as well as kinematic 
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model of a finger with biomechanical point of view. Three tasks are defined. Section 3 presents the 
methods to solve the redundant problem, i.e. geometric method and pseudo-inverse method. Numerical 
implementation and validation of each method used to solve redundancy to perform the three tasks is 
presented in section 4. Solutions are illustrated using simulation under CAD model with MECA3D 
software. Finally, the concluded remarks are summarized in section five. 

2. Finger kinematics model. 

The human hand can be considered as tree structure composed by a base and five serial chains 
which each one corresponds to a one finger (4 long fingers and a thumb) [12]. Each finger can be 
considered with 4 actuated degree of freedoms. The kinematic diagram of a single finger is presented 
in Figure 1. 

Let a point P on the fingertip that go through a trajectory 𝑇𝑇𝑖𝑖 during the finger motion. Each 
joint on the finger is defined by an angle 𝑞𝑞𝑘𝑘 with 𝑘𝑘 ∈ {1,2,3,4} that define the finger configuration. 

 

Figure 1. Schematic representation of the hand. 

In order to analytically identify the direct geometric model (DGM) of a finger as serial robot, the 
kinematic diagram in the Figure 2 is considered. 

Index and Middle fingers are represented as open serial chains with metacarpophalangeal (MCP), 
proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints. A single dof at the PIP, MCP 
and DIP joints, and two dof at the palm joint are modelled. 

Three tasks described in Table 1 is to be performed by the finger. An initial configuration as well 
as a displacement of the end-effector, fingertip, are given for each task. The fingertip displacement is 
performed in the (𝑥𝑥1, 𝑧𝑧1) plane and given by the trajectory of point P. Here we consider the angle 
𝑞𝑞1 at the palm joint as unchanged since the finger motion is performed in a plane.   
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Figure 2. Kinematic diagram of a single finger. 

Table 1. The three tasks of the finger in the (𝑥𝑥1, 𝑧𝑧1) plane. 

Task Initial Configuration End-effector displacement 

T1 𝑞𝑞2 = 45°,  𝑞𝑞3 = 90°,  𝑞𝑞4 = 30° 60 mm along 𝑥𝑥1 

T2 𝑞𝑞2 = 45°,  𝑞𝑞3 = 45°,  𝑞𝑞4 = 45° 40 mm along 𝑧𝑧1 

T3 𝑞𝑞2 = 0°,  𝑞𝑞3 = 45°,  𝑞𝑞4 = 45° 30 mm along −𝑥𝑥1 et 20 mm along 𝑧𝑧1 

The degree of redundancy is computed for each task based on 𝑛𝑛 the degrees of freedom and 𝑚𝑚 
the number of variables needed to describe the task space as given in Table 2. 

Table 2. Degree of redundancy 

Task Degree of redundancy (𝒏𝒏 −𝒎𝒎) 

T1 2 
T2 2 
T3 1 

The direct kinematic model (DKM) of the finger is given by the coordinates of point P in the 
plane (𝑥𝑥1, 𝑧𝑧1) for a configuration given by the joint variables 𝑞𝑞2, 𝑞𝑞3 and 𝑞𝑞4.   

𝐗𝐗P1 = 𝐓𝐓14𝐗𝐗P4  (1) 
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Where, 𝐓𝐓14  =  𝐓𝐓12 𝐓𝐓23 𝐓𝐓34  the homogeneous matrix defined according to the kinematic 
diagram in Figure. 

The DGM is obtained after arrangement of equation (2) as 

�
𝑥𝑥1 = 𝑙𝑙4 cos(𝑞𝑞2 + 𝑞𝑞3 + 𝑞𝑞4) + 𝑙𝑙3 cos(𝑞𝑞2 + 𝑞𝑞3) + 𝑙𝑙2 cos 𝑞𝑞2 + 𝑙𝑙1
𝑦𝑦1 = 0                                                                                                     
𝑧𝑧1 = −𝑙𝑙4 sin(𝑞𝑞2 + 𝑞𝑞3 + 𝑞𝑞4) − 𝑙𝑙3 sin(𝑞𝑞2 + 𝑞𝑞3) − 𝑙𝑙2 sin 𝑞𝑞2       

 (2) 

The direct kinematic model (DKM) can be computed by derivation of the coordinate equations 
of point P and the Jacobian matrix 𝐉𝐉 can be deduced. 

𝐗̇𝐗P1 = 𝐉𝐉𝛉̇𝛉 (3) 

where, 𝐗̇𝐗P1 = [𝑥̇𝑥1, 𝑦̇𝑦1, 𝑧̇𝑧1]𝐓𝐓 , 𝑥̇𝑥1 = 𝜕𝜕𝑥𝑥1
𝜕𝜕𝑞𝑞2

𝑑𝑑𝑞𝑞2
𝑑𝑑𝑑𝑑

+ 𝜕𝜕𝑥𝑥1
𝜕𝜕𝑞𝑞3

𝑑𝑑𝑞𝑞3
𝑑𝑑𝑑𝑑

+ 𝜕𝜕𝑥𝑥1
𝜕𝜕𝑞𝑞4

𝑑𝑑𝑞𝑞4
𝑑𝑑𝑑𝑑

  ,  𝑧̇𝑧1 = 𝜕𝜕𝑧𝑧1
𝜕𝜕𝑞𝑞2

𝑑𝑑𝑞𝑞2
𝑑𝑑𝑑𝑑

+ 𝜕𝜕𝑧𝑧1
𝜕𝜕𝑞𝑞3

𝑑𝑑𝑞𝑞3
𝑑𝑑𝑑𝑑

+ 𝜕𝜕𝑧𝑧1
𝜕𝜕𝑞𝑞4

𝑑𝑑𝑞𝑞4
𝑑𝑑𝑑𝑑

  

and 𝛉̇𝛉 = [𝑞̇𝑞2, 𝑞̇𝑞3, 𝑞̇𝑞4]𝐓𝐓. 
The Jacobian matrix for the finger is computed as follow with 𝑞𝑞234 = 𝑞𝑞2 +  𝑞𝑞3 + 𝑞𝑞4 and 𝑞𝑞23 =

𝑞𝑞2 +  𝑞𝑞3 

𝐉𝐉 = �
−𝑙𝑙4 sin 𝑞𝑞234 − 𝑙𝑙3 sin 𝑞𝑞23 − 𝑙𝑙2 sin 𝑞𝑞2 −𝑙𝑙4 sin 𝑞𝑞234 − 𝑙𝑙3 sin 𝑞𝑞23 −𝑙𝑙4 sin 𝑞𝑞234

0 0 0
−𝑙𝑙4 cos 𝑞𝑞234 − 𝑙𝑙3 cos𝑞𝑞23 − 𝑙𝑙2cos 𝑞𝑞2 −𝑙𝑙4 cos 𝑞𝑞234 − 𝑙𝑙3 cos𝑞𝑞23 −𝑙𝑙4 cos𝑞𝑞234

� (4) 

3. Solving redundant problem  

The inverse kinematics problem is of a particular interest in the case of redundant robot since it 
can admit infinite solutions.  

On one hand, the inverse kinematics algorithm can be adapted to a redundant robot by adopting 
a task space. Formally, a functional constraint task is imposed to be satisfied along the end-effector 
task; typical constraints can include obstacle avoidance, limited joint range, singularity avoidance, … 
etc. This constraint is implemented analytically by adding an equation to the equation system (2) of 
the DGM.  

On the other hand, one can find the best configuration that can optimize a certain criterion, without 
affecting the end effector pose. An optimization problem will be defined in this case and a procedure 
to solve the inverse problem based on the pseudo-inverse is adopted.  

Redundant robot takes advantage from the pseudo-inverse formulation by improving its flexibility 
and versatility as well as allowing collisions‐free motions in the workspace. A T-space component 
handles the control of joint angles needed to accomplish a given task and a null-space component 
handles the way to solve the redundancy regarding to the task. 

3.1. Kinematic method  

An additional equation is considered based on a constraint between all joint angles. The adopted 
constraint defines the orientation of the last phalange given as follows. 
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𝛼𝛼 =  𝑞𝑞2 + 𝑞𝑞3 + 𝑞𝑞4 (5) 

The equation (5) allows to arrange the DGM as classic direct model of planar manipulator with 2 
revolute joints and given by 

�𝑥𝑥1 = 𝑥𝑥1 − 𝑙𝑙4 cos𝛼𝛼 − 𝑙𝑙1 = 𝑙𝑙3 cos(𝑞𝑞2 + 𝑞𝑞3) 𝑙𝑙3 + 𝑙𝑙2 cos 𝑞𝑞2
𝑧𝑧1 = 𝑧𝑧1 + 𝑙𝑙4 sin𝛼𝛼 = −𝑙𝑙3 sin(𝑞𝑞2 + 𝑞𝑞3) − 𝑙𝑙2 sin 𝑞𝑞2          (6) 

The corresponding inverse model is identified analytically to compute all possible solutions of 
𝑞𝑞2, 𝑞𝑞3 and 𝑞𝑞4, resumed in Table 3.  

Table 3. Solutions of the IKM with an additional constraint. 

Joint variable Solution 1 Solution 2 

𝒒𝒒𝟐𝟐 
𝑞𝑞2 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(sin𝑞𝑞2 , cos 𝑞𝑞2) 

cos 𝑞𝑞2 = −𝑥𝑥1𝐵𝐵−𝑧𝑧1𝐴𝐴
𝐴𝐴2+𝐵𝐵2

 ; sin 𝑞𝑞2 = 𝑧𝑧1𝐵𝐵−𝑥𝑥1𝐴𝐴
𝐴𝐴2+𝐵𝐵2

 

𝒒𝒒𝟑𝟑 𝑞𝑞31 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑥𝑥2 + 𝑧𝑧2 − (𝑙𝑙32 + 𝑙𝑙22)

2𝑙𝑙2𝑙𝑙3 
� 𝑞𝑞32 = −𝑞𝑞31 

𝒒𝒒𝟒𝟒 𝑞𝑞4 = 𝛼𝛼 − 𝑞𝑞3 − 𝑞𝑞2 

with 𝐴𝐴 = −3𝑙𝑙3 sin 𝑞𝑞3, 𝐵𝐵 = 3𝑙𝑙3cos 𝑞𝑞3 + 𝑙𝑙2 and �𝑥𝑥1
2+𝑧𝑧1

2−�𝑙𝑙32+𝑙𝑙22�
2𝑙𝑙2𝑙𝑙3 

� ≤ 1.  

3.2. Pseudo-inverse method 

As introduced, the redundancy presents an important role in the kinematics control thus redundant 
joints allow a robot to cope with joint limits, singularities or collision. Further redundancy can be used 
to minimize joint velocities or actuator torques when end‐effector follows a desired trajectory. The 
differential kinematics equation cannot be solved directly due to the redundancy and thus the inverse 
of non‐square matrix 𝐉𝐉 cannot be obtained.  

A redundancy problem can be defined that for a given target joint velocity to be achieved whereas 
also achieving a desired end-effector velocity. Therefore, 𝐗̇𝐗1𝑃𝑃 is the objective to reach, while 𝛉̇𝛉 is the 
target objective which is based on the kinematics model given in equation (3).  

To reach the desired objective, the following optimization problem can be formulated: 

Minimise 𝑓𝑓(𝛿𝛿𝛉𝛉) = 1
2
𝛿𝛿𝛉𝛉𝐓𝐓𝐀𝐀𝛿𝛿𝛉𝛉 (7) 
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Subject to 

𝑔𝑔(𝛿𝛿𝛉𝛉) = 𝐉𝐉𝛿𝛿𝛉𝛉 − 𝛿𝛿𝐗𝐗 = 𝟎𝟎 

The analytical solution exists and the redundancy can be solved by the following solution: 𝛿𝛿𝛉𝛉 =
𝐉𝐉+𝛿𝛿𝐗𝐗, with 𝐉𝐉+ = 𝐀𝐀−𝟏𝟏𝐉𝐉𝑻𝑻(𝐉𝐉𝐀𝐀−𝟏𝟏𝐉𝐉𝑻𝑻)−𝟏𝟏. This can be proven as follows.  

The associated Lagrangien can be written as 𝐿𝐿(𝛿𝛿𝛉𝛉,𝛌𝛌) = 𝐿𝐿(𝑓𝑓,𝛌𝛌) = 𝑓𝑓(𝛿𝛿𝛉𝛉) + 𝛌𝛌T𝑔𝑔(𝛿𝛿𝛉𝛉) with the 
vector of Lagrange multipliers 𝛌𝛌 = [𝜆𝜆1, 𝜆𝜆2]T. The solution that minimise 𝑓𝑓(𝛿𝛿𝛉𝛉) and verify 𝑔𝑔(𝛿𝛿𝛉𝛉) =
[0,0,0]T, minimize also the Lagrangien 𝐿𝐿(𝛿𝛿𝛉𝛉,𝛌𝛌), 

One can write the optimality conditions 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛉𝛉

= 𝟎𝟎 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝛌𝛌

= 𝟎𝟎 as 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝛉𝛉

= 0   ⇒    
𝜕𝜕�𝑓𝑓(𝛿𝛿𝛉𝛉)�
𝜕𝜕𝜕𝜕𝛉𝛉

+ �
𝜕𝜕�𝑔𝑔(𝛿𝛿𝛉𝛉)�
𝜕𝜕𝜕𝜕𝛉𝛉

�
T

𝛌𝛌 = 0    (8) 

⇒    𝐀𝐀𝛿𝛿𝛉𝛉 + 𝐉𝐉T𝛌𝛌 = 0 (9) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0   ⇒    𝑔𝑔(𝛿𝛿𝛉𝛉) = 0 (10) 

⇒   𝐉𝐉𝛿𝛿𝛉𝛉 − 𝛿𝛿𝐗𝐗 = 0 (11) 

One can obtain,  

𝐀𝐀𝛿𝛿𝛉𝛉 + 𝐉𝐉T𝛌𝛌 = 0      (12) 

𝐉𝐉𝛿𝛿𝛉𝛉 − 𝛿𝛿𝐗𝐗 = 0      (13) 

If 𝐀𝐀 is considered non-singular, multiplying equation (12) by 𝐀𝐀−1 allows to compute 𝛿𝛿𝛉𝛉 and 
then by 𝐉𝐉 to compute 𝛿𝛿𝐗𝐗: 

𝛿𝛿𝛉𝛉 = −𝐀𝐀−1𝐉𝐉T𝛌𝛌 (14) 

𝛿𝛿𝐗𝐗 = −𝐉𝐉(𝐀𝐀−1𝐉𝐉T)𝛌𝛌 (15) 

If det( 𝐉𝐉(𝐀𝐀−1𝐉𝐉T) ) ≠ 0, the robot considered in non-singular configuration, we obtain: 

𝛌𝛌 = −[𝐉𝐉(𝐀𝐀−1𝐉𝐉T)]−1𝛿𝛿𝐗𝐗  (16) 

If we substitute 𝛌𝛌  expression in equation (14), we obtain the analytical solution minimising the 
optimisation problem: 

δ𝛉𝛉 = 𝐀𝐀−1𝐉𝐉T[𝐉𝐉(𝐀𝐀−1𝐉𝐉T)]−1𝛿𝛿𝐗𝐗 (17) 
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δ𝛉𝛉 = 𝐉𝐉+δ𝐗𝐗 (18) 

𝐉𝐉+ is the pseudo-inverse of the Jacobean matrix 𝐉𝐉. 
A more general analytical solution to (7) projects an arbitrary vector ℤ (in joint velocity space) 

onto the null-space of 𝐉𝐉 , allowing to select one of the many solutions and can be obtained by 

minimizing the function 𝑓𝑓(𝛿𝛿𝛉𝛉) = 1
2

(𝛿𝛿𝛉𝛉 − ℤ)𝐓𝐓𝐀𝐀(𝛿𝛿𝛉𝛉 − ℤ). 

𝛿𝛿𝛉𝛉 = 𝐉𝐉+𝛿𝛿𝐱𝐱 + 𝐏𝐏ℤ (19) 

The orthogonal projection operator into the null space can be used as 𝐏𝐏 = (𝐈𝐈 − 𝐉𝐉+𝐉𝐉). The vector 
ℤ  can be exploited to optimize any desired criterion, without affecting the task, as joint limits or 
singularity avoidance for example.  

4. Numerical implementation and validation 

This section is dedicated to the numerical implementation of the proposed methods to solve the 
kinematics redundancy on the finger and perform the three tasks. Each method is used to solve the 
inverse model under Matlab and compute the joints angles as well the coordinates of point P using 
the DGM.  

Table 4. The limit values of the joint angles. 

Joint angle 𝒒𝒒𝟐𝟐 𝒒𝒒𝟑𝟑 𝒒𝒒𝟒𝟒 

Maximum value 90° 120° 70° 

Minimum value 0° 0 0 

The simulations are carried out in Matlab. The frame assignments and their transformations are 
given out in Figure 2. The maximum and minimum joint values are shown in Table 4. The phalange 
length parameters are given in Table 5. 

Table 5. The phalangeal lengths of the finger. 

 𝑳𝑳𝟏𝟏 𝑳𝑳𝟐𝟐 𝑳𝑳𝟑𝟑 𝑳𝑳𝟒𝟒 

Phalange length 
[𝐦𝐦𝐦𝐦] 152 45 35 32 

4.1. Kinematic method implementation 

The geometric approach allows to solve the IKM but with a demerit of fixing the orientation of 
the last phalange given by angle 𝛼𝛼 at equation (5) and computed on the Table 6. A solution is not 
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always guaranteed, which limit the T-space and so the workspace. 

Table 6. Orientations of the last phalange. 

 Task 1 Task 2 Task 3 

𝜶𝜶 = 𝒒𝒒𝟐𝟐 + 𝒒𝒒𝟑𝟑 + 𝒒𝒒𝟒𝟒 165° 135° 90° 

The obtained solution is partially feasible and limited regarding the computed trajectory of the 
fingertip. In case of task 1, the finger is not able to generate the totality of the requested trajectory. 
Figures 3, 4 and 5 present the computed coordinates of the point 𝑃𝑃 used to plot the trajectory of the 
fingertip for the three tasks. For each task, the initial as well as the final positions are indicated. Only 
for the first task the last position is not given which means that this latter is not reachable by the finger.   

  

Figure 3. Task1 - Trajectory of the fingertip and corresponding joint angles. 
 

  

Figure 4. Task2 - Trajectory of the fingertip and corresponding joint angles. 
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Figure 5. Task3 - Trajectory of the fingertip and corresponding joint angles. 

4.2. Pseudo-inverse method implementation 

The obtained solution minimizing the optimization problem based on the pseudo-inverse of the 
Jacobian matrix allows to accomplish the three tasks. In order to show the feasibility of the method, 
all configurations of the finger are computed from the initial position to the final one and build under 
Matlab. In addition to this construction, the trajectory of the point 𝑃𝑃 as well as the finger joint angles 
are plotted. Figures 6, 7 and 8 present the numerical results of the implementation of the pseudo-
inverse method. 

 

 
Figure 6. Task 1 - Numerical validation of the pseudo-inverse method: (a) Graphical finger 

construction (b) Trajectory of the fingertip (c) Computed joint angles of the finger. 
 

55 60 65 70 75 80

-55

-50

-45

-40

-35

-20 0 20 40 60 80

20

30

40

50

60

70

80

90

100

110

An
gl

es
 (°

)

q
1

q
2

q
3

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0 10 20 30 40 50

-85

-80

-75

-70

-65

-60

-55

-50

-45

-20 -10 0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

70

80

90

An
gl

es
 (°

)

q
1

q
2

q
3



27 

 

STEM Education Volume 1, Issue 1, 17–31. 

 

Figure 7. Task 1 - CAD simulation of the finger motion using the pseudo-inverse method. 

 

 
Figure 8. Task 2 - Numerical validation of the pseudo-inverse method: (a) Graphical finger 

construction (b) Trajectory of the fingertip (c) Computed joint angles of the finger. 
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Figure 9. Task 2 - CAD simulation of the finger motion using the pseudo-inverse method. 

 

 

Figure 10. Task 3 - Numerical validation of the pseudo-inverse method: (a) Graphical finger 
construction (b) Trajectory of the fingertip (c) Computed joint angles of the finger. 

The orientation of the last phalange for the three tasks is not fixed a shown on the graphical finger 
construction which is computed and updated with each configuration. Furthermore, the finger is able 

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

55 60 65 70 75 80 85

-55

-50

-45

-40

-35

-40 -20 0 20 40 60 80

-20

-10

0

10

20

30

40

50

60

70

80

An
gl

es
 (°

)

q
1

q
2

q
3



29 

 

STEM Education Volume 1, Issue 1, 17–31. 

to perform all tasks with no limitation in its T-space. The pseudo-inverse method is convenient and 
allows to identify feasible solutions unlike the geometric method. 

One observes on Figures 6(c), 8(c) and 10(c) the evolution of the finger joint angles during the 
motion of the fingertip. All angles are inside the bounding interval defined in Table 4.    

CAD simulation performed under Solidworks with the help of Meca3D software comes to 
validate the obtained solution. As shown on Figures 7 and 9, the finger is controlled as a serial robot 
with computed joint angles 𝑞𝑞2, 𝑞𝑞3 and 𝑞𝑞4 as an input. Screen shots present the finger simulation in 
three positions (initial, intermediate and final) and the trajectory of the fingertip. 

In the next simulations, the orthogonal projection operator into the null space is used and an 
adequate vector ℤ is proposed.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Numerical validation of the pseudo-inverse method with a criterion on the joint limits: (a) 
𝑎𝑎 = 1, 𝑏𝑏 = 1 and 𝑐𝑐 = 1 (b) 𝑎𝑎 = 30, 𝑏𝑏 = 1 and 𝑐𝑐 = 1 (c) 𝑎𝑎 = 100, 𝑏𝑏 = 1 and 𝑐𝑐 = 1.   

The joint limits criterion is handled by the vector ℤ formulated as below  

ℤ = 𝜀𝜀𝐁𝐁(𝒒𝒒 − 𝒒𝒒𝑚𝑚), 𝜀𝜀 < 0 (20) 
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With 𝐁𝐁 = �
𝑎𝑎 0 0
0 𝑏𝑏 0
0 0 𝑐𝑐

�  is a diagonal matrix of weighting coefficients matrix and 𝐪𝐪𝑚𝑚 =

[𝑞𝑞2𝑚𝑚 𝑞𝑞3𝑚𝑚 𝑞𝑞4𝑚𝑚]T includes the mean values of the angles based on the bounding intervals.   
Three different values of the coefficient 𝑎𝑎 are considered to show how this choice can affects 

the 𝑞𝑞2 joint but without changing the task. The values for 𝑏𝑏 and 𝑐𝑐 are considered equal to 1. For 
each value of 𝑎𝑎, the finger joint angles are computed and plotted on the Figure 11 (a), (b) and (c) for 
the values 1, 30 and 100, respectively.  

The angle 𝑞𝑞1 is in the vicinity to its mean value when the weighting is bigger. The criterion on 
joint limits is respected leading thus to suitable configurations of the finger over the three simulations. 
One observes the compensation of the motion by changing the two other joints, 𝑞𝑞3  and 𝑞𝑞4 , and 
exploring different solutions in the null space.   

5. Conclusion  

The concept of redundancy in robotics is introduced in this paper through the study of a human 
finger. The biomechanical point of view allowed to establish a mechanical model of the human hand 
and introduce easily a finger model considered as a redundant serial robot. This latter is used to explain 
the definition and the theoretical description related to redundancy. The human finger model has been 
used to facilitate the theoretical development and to solve the inverse kinematics model. Three cases 
of redundancy have been considered each one linked to a specific task to execute by the fingertip. 
Geometric method and pseudo-inverse method have been presented and used to solve the inverse 
kinematics model. The limitations of the geometric method are highlighted through the obtained results. 
Thus, the finger is not able to generate the total trajectory and last phalangeal orientation is fixed. 
While, the pseudo-inverse method gives satisfaction as given by the obtained results under Matlab 
implementation and CAD simulation.    
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