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Abstract: Using the GARCH-MIDAS model, we investigated the impact of Chinese and global 
macro-level determinants on the return volatility of Shanghai crude oil futures, covering Chinese and 
global economic policy uncertainty, Chinese and global crude oil demand as well as production, 
Chinese crude oil import, and global crude oil speculation. The in-sample empirical results showed 
that Chinese crude oil demand, Chinese crude oil production, Chinese economic policy uncertainty, 
and global crude oil speculation have significant impact on the long-term volatility component of 
Shanghai crude oil futures. The out-of-sample prediction results show that Chinese current crude oil 
production and previous crude oil import have the relatively best predictive power for the return 
volatility of Shanghai crude oil futures. As a whole, Chinese domestic macro-factors have a stronger 
impact and higher predictive power on the return volatility of Shanghai crude oil futures compared 
with corresponding global macro-factors. Besides, the global crude oil speculation is the global macro-
level determinant, which deserves most attention.  
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1. Introduction  

Since China laughed at the RMB-based crude oil futures in Shanghai International Energy 
Exchange on 26 March 2018, scholars began to study Shanghai crude oil futures, which is sometimes 
referred to as INE crude oil futures or Chinese crude oil futures from various perspectives. These 
emerging literatures studies can be summarized into the following categories. The first string of studies 
focuses on price discovery efficiency (Shao & Hua, 2022; Yang et al., 2020; Yu et al., 2023) and 
market maturity (Corbet et al., 2022; Joo et al., 2021). The second string of studies interests in the 
arbitrage strategy of Shanghai crude oil futures (Wu et al., 2022; Niu et al., 2023). The third string of 
literature concentrates on its price volatility and forecasting (Guo et al., 2023; Liu & Lee, 2021; Jin et 
al., 2022; Bei et al., 2023; Wang et al., 2022; Gong et al., 2022; Lu et al., 2022; Jiang et al., 2023). The 
fourth string of studies investigates the co-movements or spillover effects between Shanghai crude oil 
futures market and other financial markets, e.g., stock market (He et al., 2021; Li et al., 2023; Sun et 
al., 2023; Wang & Wang, 2019; Wang et al., 2023; Lv et al., 2020; Yu & Xiao, 2022), bond market 
(Sun et al., 2023), gold market (He et al., 2021), foreign exchange market (He et al., 2021; Sun et al., 
2022), and commodity market (Dai et al., 2022). The fifth string of studies pays attention on the 
influence of Shanghai crude oil futures on the global and domestic oil markets (Wang et al., 2022; 
Zhang et al., 2021; Dai et al., 2022; Luo & Ji, 2018; Sun et al., 2023; Yang et al., 2021; Zhang et al., 
2022; Sun et al., 2023; Wei et al., 2022; Fu & Qiao, 2022). Besides, there are few researchers focusing 
on the impact of extreme event such as COVID-19 pandemic on Shanghai crude oil futures market 
(Zhu et al., 2022; Hu & Jiang, 2023). 

In this paper, we continue to enrich the literature on Shanghai crude oil futures. Using a sample 
spanning from March 2018 to February 2023, we investigate the impact of Chinese and global 
economic determinants on the return volatility of Shanghai crude oil futures to determine which macro-
level determinant is the most informative: Chinese crude oil fundamentals, global crude oil 
fundamentals, Chinese or global economic policy uncertainty, or global crude oil speculation?  For 
this purpose, supposing that macro-level factors affect the return volatility via its long-term volatility 
component, the adjusted Generalized Autoregressive Conditional Heteroscedasticity Mixed Data 
Sampling (GARCH-MIDAS) models are used to conduct our study, in which we used the macro-level 
variables to replace the original realized volatility variable in the original GARCH-MIDAS model 
proposed by Engle et al. (2013). Specifically, twelve macro-level economic factors are included, 
namely, four Chinese macro-level economic determinants (i.e., Chinese crude oil demand, Chinese 
crude oil production, Chinese crude oil import, and Chinese economic policy uncertainty), four global 
macro-level economic factors (i.e., global crude oil demand, global crude oil production, global crude 
oil speculation, and global economic policy uncertainty), and four composite macro-level factors 
constructed by the method of principal component analysis (i.e., the composite macro-level factor 
constructed by the four Chinese macro-level economic determinants and global crude oil speculation, 
the Chinese composite macro-level factor constructed by the four Chinese macro-level economic 
determinants, the global composite macro-level factor constructed by the four global macro-level 
economic determinants, and the composite macro-level factor constructed by the eight Chinese and 
global macro-level economic determinants).  
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We start with estimating the GARCH-MIDAS models to investigate whether the 12 macro-level 
variables have significant impact on the return volatility of Shanghai crude oil futures. Then, we 
employ the recursive scheme to generate one-step-ahead forecasts, and further take the DM test 
proposed by Diebold & Mariano (1995) and the Fluctuation test proposed by Giacomini & Rossi (2010) 
to statically and dynamically compare the out-of-sample predictive power of the 12 different GARCH-
MIDAS models, respectively. The in-sample empirical results show that there are five individual 
macro-level determinants (i.e., Chinese crude oil demand, Chinese crude oil production, Chinese 
economic policy uncertainty, and global crude oil speculation) and two composite factors ( i.e., the 
composite macro-level factor constructed by these five individual macro-level determinants and the 
Chinese composite macro-level factor) being found having a significant impact on the long-term 
volatility component of Shanghai crude oil futures at the significance levels more than 10%. The out-
of-sample prediction results show that Chinese crude oil production has the best predictive power for 
the return volatility of Shanghai crude oil futures, followed by the composite macro-level factor 
constructed by the five macro-level determinants (i.e., Chinese crude oil demand, Chinese crude oil 
production, Chinese economic policy uncertainty, and global crude oil speculation). Compared with 
global crude oil production, global economic policy uncertainty and Chinese crude oil import, Chinese 
crude oil production, Chinese economic policy uncertainty, and global crude oil speculation have 
stronger impact and higher predictive power on the return volatility of Shanghai crude oil futures, 
respectively. These findings above are supported by both the statically DM test and the dynamical 
Fluctuation test results. However, there is no consistent evidence suggesting the much better predictive 
power of Chinese crude oil demand than global crude oil demand.  

Our study contributes to the literature on Shanghai crude oil futures from following aspects. First, 
different from the previous studies mentioned in the first paragraph (e.g., Shao & Hua, 2022; Corbet et 
al., 2022; Niu et al., 2023; Gong et al., 2022; Sun et al., 2023; He et al., 2021; Dai et al., 2022; Luo & Ji, 
2018), we investigate the influential factors for the return volatility of Shanghai crude oil futures from 
the macro-level economic perspectives since there is little relevant literature on the macro-economic 
determinants for the return volatility of Shanghai crude oil futures. Second, different from the researchers 
who investigated China’s macro-financial factors (e.g., exchange rate, interest rate, treasury bonds rate, 
etc.), determining the Shanghai crude oil futures market (Lin & Su, 2021), we examine the impact of 
crude oil fundamentals, economic policy uncertainty, and crude oil speculation on its return volatility. 
Third, different from Huang et al. (2023) and Yang et al. (2021), who focused on the linkage of economic 
policy uncertainty and China’s crude oil futures market, we compare the forecast power of economic 
policy uncertainty for the return volatility of Shanghai crude oil futures with that of several other macro-
level factors, including crude oil fundamentals, global crude oil speculation, and these composite factors. 
Fourth, we consider both Chinese and global macro-level determinants related to crude oil futures 
market, including individual and composite factors, to determine which determinant is most informative 
to the volatility of Shanghai crude oil futures. Last, we take both statical and dynamical methods, namely, 
the DM test and the Fluctuation test, to compare the relative forecast performance for the return volatility 
of Shanghai crude oil futures, which is also one innovation of our study.  

The remainder of this paper is organized as follows. In Section 2, we introduce the methodology, 
including the GARCH-MIDAS model, the principal component analysis, the DM test, and the 
Fluctuation test. In Section 3, we describe data sources and descriptive statistics. In Section 4, we 
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present the empirical results, which mainly show the in-sample parameter estimation and the out-of-
same prediction performance of different models. Finally, in Section 5, we conclude the study. 

2. Methodology  

2.1. GARCH-MIDAS model 

Our purpose of this study is to figure out whether the volatility of Shanghai crude oil futures can 
be affected by Chinese domestic economic activities and global economic activities. Considering that 
the frequency of data for financial markets is daily or higher frequency while that for economic 
activities is monthly or lower frequency, we use the Generalized Autoregressive Conditional 
Heteroscedasticity Mixed Data Sampling (GARCH-MIDAS) model suggested by Engle et al. (2013) 
to link economic activity and the volatility of Shanghai crude oil future market. The advantage of the 
GARCH-MIDAS model is that it can involve low-frequency and high-frequency sample data into one 
model, which can be specified as below. 
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where ,ri t  is the log return of Shanghai crude oil futures on day i during month t . iP  and i-1P  are the 

closing price of Shanghai crude oil futures on day i  and 1i  , respectively. tN  is the number of trading 

days in month t . The total volatility of daily return is defined as  2 2
, , ,i t i t t i tg    , where t  and ,i tg  

are the long-term component and the short-term component of the total volatility, respectively. The 
short-term component ,i tg   follows a daily GARCH (1,1) process (Equation 2). The long-term 

component t  is specified by smoothing economic variables in the MIDAS regression (Equation 3), of 

which the weighting scheme is specified by one-parameter beta polynomial (Equation 4). Notably, tEV

(    100t t t-1EV ln E -ln E     ), represents the monthly change rates of selected economic activities, 

including Chinese economic policy uncertainty (CEPU), Chinese crude oil demand(COD), Chinese 
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crude oil production(COP), Chinese crude oil import amount(COI), global crude oil demand(GEPU), 
global crude oil production(GOP), global crude oil speculation (GOS) and the composite proxy 
variable for these economic fundamentals. 

2.2. Principal component analysis  

Since the GARCH-MIDAS model is computationally complex, we use one variable at a time in the 
MIDAS equation, in case of identification or convergence problems caused by the inclusion of several 
economic variables in one model. In this study, there are eight types of economic activity considered, 
including Chinese economic policy uncertainty (CEPU), Chinese crude oil demand (COD), Chinese 
crude oil production (COP), Chinese crude oil import amount (COI), global crude oil demand (GEPU), 
global crude oil production (GOP), and global crude oil speculation (GOS). To incorporate the 
information contained in different variables in the same equation, we also refer to Stock & Watson (2002) 
to construct principal components to extract the combined information from several economic variables. 
We take four ways to construct composite proxy variables. First, we use the correlation matrix to extract 
the first principal component of all the eight economic variables. Second, we divide the eight economic 
variables into two groups: Chinese factors (namely, Chinese economic policy uncertainty, Chinese crude 
oil demand, Chinese crude oil production, and Chinese crude oil import amount), and global factors 
(namely, global economic policy uncertainty, global crude oil demand, global crude oil production, and 
global crude oil speculation). For each group, using the correlation matrix, we extract the first principal 
component of Chinese and global economic factors, respectively. In the last, we construct a composite 
proxy variable by extracting the first principal component for all the economic variables which have 
statistically significant impact on the volatility Shanghai crude oil futures, depending on the estimation 
results of GARCH-MIDAS models with these economic variables. 

2.3. Loss function and DM test 

In this study, we use the square forecast error as the loss function to evaluate the volatility 
predictive power of a specific model by comparing the estimated predicted variance with the realized 
volatility. It can be described as follows: 
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where 2
,i te  denotes the square forecast error of model i  at time t . tY is the realized volatility of 

Shanghai crude oil futures ( 2
t tY r ), and ,î tY is the estimated predicted variance of Shanghai crude oil 

futures by model i  at time t . 
We employ the Diebold and Mariano (DM) test, suggested by Diebold & Mariano (1995) to 

compare the prediction accuracy of completive models. The DM test can be described as below: 
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where 2
1,te  means the square forecast error of the benchmark model at time t. 2

2 ,te  means the squared 

forecast error of the completing model at time t , and td means the square forecast error differences of 

the two completive models at time t. T  is the total number of forecasts, d  is the mean square forecast 

error (MSFE) differences computed over the whole forecasting sample, and  var d  is the variance of 

td . The null hypothesis of the DM test is 0( ) E d  , preferring non-difference in the forecasting 

abilities of the two completive models. When the DM statistic is positive, it indicates that the 
completing model has better forecasting power than the benchmark model. 

2.4. Fluctuation test 

The Diebold and Mariano (DM) test can compare the average forecasting performance of 
different models in the out-of-sample period, but the relative performance of the two competitive 
models may be time-varying in real life. Thus, considering the fact that using the static DM test to 
averaging the evolution over time could result in loss of information, we further employ the Fluctuation 
test proposed by Giacomini & Rossi (2010) to compare the out-of-sample forecasting performance of 
different models in the presence of possible instabilities.  

The Fluctuation test can be performed by following these steps. First, we assume that the variable 

tY  can be estimated by two models, which are respectively characterized by parameters   and  . The 

total sample of size T is assumed to be divided into two parts, namely, an in-sample portion and an 
out-of-sample portion. The size of the in-sample portion and the out-of-sample portion is marked as 
M and P, respectively. Second, for comparing the two h-step-ahead forecasts for the variable tY , the 

local relative loss for the two completive models is defined as the sequence of out-of-sample loss 
differences computed over centered rolling windows of size m. It can be described as below: 
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where t,mRL  the local relative loss for the two competitive models over rolling window of size m. 

(1)
,( , )t h MtL Y   is the loss function computed by the in-sample parameter estimates  ,t h M  for the first 

model. (2)
,( , )t h MtL Y   is the loss function computed by the in-sample parameter estimates  ,t h M  for the 

second model.  
, ,( , )t h M t h MtL      is the forecast loss difference of the two model. Corresponding to the 

DM test, we also take the square forecast error (SFE) as the loss function here. However, different from 
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the DM test, the models’ local relative performance is calculated by the out-of-sample mean square 
forecast error (MSFE) differences over rolling windows rather that the whole sample. 

Third, the Fluctuation test statistic can be specified as follows: 
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where ,t mF  is the test statistic for Fluctuation test at time t. 
2

  is a HAC estimator of 2  and ( )q P  is 

a bandwidth that grows with P. If preferring non-difference in the forecasting abilities of the two 

completive models. If the Fluctuation test statistic ,t mF  is positive, it means that the second model 

(completing model) has better forecasting accuracy than the first model (benchmark model) at time t. 

The null hypothesis of Fluctuation test is  
, ,( , ) 0t h M t h MtE L  

      for all ,...,t M h T  .The null 

hypothesis is rejected against the two-sided alternative  
, ,[ ( , )] 0t h M j h MtE L      when 

,maxt t mF k  , where k  is the critical value for a significant level  . 

3. Data  

3.1. Data sources  

We collect daily closing prices of Shanghai crude oil futures from the Wind database. We collect 
the monthly macro-level determinants of oil price volatility from three ways. The monthly Chinese 
Economic Policy Uncertainty (CEPU) Index which is based on mainland newspapers, and the monthly 
Global Economic Policy Uncertainty (GEPU) Index which is based on current-price GDP-weighted 
average of national EPU indices for 21 countries, are obtained from the Economic Policy Uncertainty 
website (http://www.policyuncertainty.com/). The data of Chinese crude oil demand, Chinese crude 
oil production, Chinese crude oil import, global crude oil demand, and global crude oil production are 
collected from the Wind database. Notably, since the original data frequency of Chinese crude oil 
demand and global crude oil demand that can be available is quarterly, we convert quarterly data to 
monthly data based on the actual number of days in each month. Following the methods of Kilian & 
Murphy (2014) and Wei et al. (2017), the global oil speculation index is calculated by the ratio of 
OECD petroleum stocks over U.S. petroleum stocks, of which data are also collected via the Wind 
database from the U.S. Energy Information Administration. 

Our sample data spans from March 2018 to February 2023, of which the daily price data of 
Shanghai crude oil futures is from 30 March 2018 to 28 February 2023. Supposing that there are five 
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trading days for each week, we use interpolation to fill in the missing values. We calculate the 
logarithm growth rates for all the variables. Consequently, there are 1282 daily observations for the 
log returns of Shanghai crude oil futures and 59 monthly data for the logarithm growth rate of each 
macro-level variable in our final sample. 

3.2. Descriptive analysis  

Figure 1 plots the daily evolution of Shanghai crude oil futures’ price and the monthly evolution 
of the eight macro-level economic factors, namely, Chinese crude oil demand and production, global 
crude oil demand and production, Chinese crude oil import, global oil speculation, Chinese economic 
policy uncertainty index, and global economic policy uncertainty index. As we can see in the figure, 
both the crude oil price and the macro-level economic activities reacted to the important events during 
recent years, including the COVID-19 pandemic and Russia-Ukraine war. Specifically, when the 
COVID-19 pandemic broke out in 2020, both Chinese and global economic policy university indexes 
reached a peak, along with a peak in the global oil speculation. However, global and Chinese crude oil 
fundamentals (including global crude oil demand and production, Chinese crude oil demand and 
production, and Chinese crude oil import amount) experienced sharp decreases, along with a low point 
in the price of Shanghai crude oil futures. When the Russia-Ukraine war broke out in 2022, both 
Chinese and global economic policy university indexes also experienced a smaller peak, while the 
global oil speculation index did not increase. It seems that global crude oil demand and production 
experienced a small dip and then quickly recovered. Chinese crude oil demand increased and its crude 
oil import rose sharply, and the price of Shanghai crude oil futures sharply increased when Russia-
Ukraine war broke out in 2022. Besides, as seen in Figure 1, China’s crude oil demand is much greater 
than its crude oil production, so it is very dependent on crude oil imports. That is also why we consider 
whether Chinese crude oil import is an important factor to influence the volatility of Shanghai crude 
oil futures’ returns in this study. 
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Figure 1. Time evolution of Shanghai crude oil future prices and macro-level determinants 

(Notes: This figure plots daily evolution of Shanghai crude oil future prices and monthly evolution of macro-level 

determinants from 26th March 2018 to 28th February 2023. This upper subgraph plots daily prices and returns of Shanghai 

crude oil futures. Notably, the first purple dashed vertical line marks the date when WHO announced the COVID-19 

pandemic on 11 March 2020, the second one marks the date when Russia launched military attack against Ukraine on 24 

February 2022.) 

Table 1 shows descriptive statistics of daily log returns of Shanghai crude oil futures and monthly 
change rates of the eight macro-level determinants in our final sample. Seen from this table, the mean 
value of daily log returns of Shanghai crude oil futures ( _ _INE oil return ) during March 2018 to February 

2023 is 0.021, indicating the overall upward trend of the crude oil futures’ price, which is in line with 
Figure 1. The mean values of China_EPU and _Global EPU  are 1.438 and 0.649, respectively. It means 

that the change rate of Chinese economic policy uncertainty is larger than global economic policy 
uncertainty. The mean values of _ _China oil demand  , _ _China oil production  , _ _China oil import  ,

_ _Global oil demand , and _ _Global oil production are 0.236, 0.027, 0.446, −0.109 and −0.143, respectively, 

suggesting that the he average growth rates of Chinese crude oil demand, production and import are 
positive while those of global crude oil demand and production are negative during March 2018 to 
February 2023. 

 



582 
 

Quantitative Finance and Economics                                    Volume 8, Issue 3, 573–609. 

Table l. Descriptive statistics for all the variables. 

  Freq. Obs. Mean S.D. Min Max Skew. Kurt.
_ _INE oil return  Daily 1282 0.021 2.294 −14.132 9.732 −0.392 3.151

China_EPU  Monthly  59 1.438 22.370 −50.975 75.471 0.114 1.115
_ _China oil demand  Monthly  59 0.236 5.847 −17.583 12.287 −0.348 0.517
_ _China oil production  Monthly  59 0.027 4.993 −11.941 12.560 0.065 0.867
_ _China oil import  Monthly  59 0.446 12.964 −43.007 28.534 −0.445 1.238
_Global EPU  Monthly  59 0.649 16.880 −27.099 54.074 0.603 0.869
_ _Global oil demand  Monthly  59 −0.109 5.549 −14.845 12.628 −0.140 0.171
_ _Global oil production Monthly  59 −0.143 5.168 −13.796 13.755 −0.028 0.641
_ _Global oil speculation Monthly  59 0.071 0.725 −2.028 1.563 −0.566 0.520

Notes: This table reports descriptive statistics of all the variables in this study. Daily data covers the period from 2 April 
2018 to 28 February 2023.Monthly data covers the period from April 2018 to February 2023. _ _INE oil return  is the daily 

return series of Shanghai crude oil futures. China_EPU  denotes the monthly change rate of Economic Policy Uncertainty 

Index for China based on mainland newspapers. _Global EPU   is the monthly change rate of Global Economic Policy 

Uncertainty (GEPU) Index based on current-price GDP-weighted average of national EPU indices for 21 countries. 
_ _China oil demand , _ _China oil production ,and _ _China oil import are monthly growth rates of Chinese crude oil demand, 

production and import amount, respectively. _ _Global oil demand and _ _Global oil production  are monthly growth rate of 

global crude oil demand and production, respectively. _ _Global oil speculation  denotes the growth rate of global crude oil 

speculation, which is calculated by the ratio of OECD petroleum stocks over U.S. petroleum stocks. 

Table 2 reports the results of the unit root test, normality test, and ARCH effect test for the 
variables. All the statistics of Dickey-Fuller (DF) test, Augmented Dickey-Fuller (ADF) test, Phillips-
Perron (PP) test, and Vratio (VR) test are statistically significant at 1% or 5% levels, rejecting the unit 
root null hypothesis and indicating that these time series are stationary. The Jarque-Bera (JB) test for 
Shanghai crude oil future return series is significant at the 1% level, implying that it does not follow 
the normal distribution. Similarly, the Jarque-Bera (JB) tests for global economic policy uncertainty, 
Chinese crude oil import and global oil speculation are statistically significant at the 10% level, in 
favor of non-normal distributions. Contrarily, the Jarque-Bera (JB) tests for Chinese economic policy 
uncertainty, Chinese and global crude oil demand, Chinese and global oil production cannot reject the 
null hypothesis of normal distribution. Besides, the ARCH test for Shanghai crude oil future return 
series is significant at 1% level, indicating that there is significant heteroskedastic effect and GARCH-
type models are proper to capture its volatility. 

Table 3 shows the correlation between monthly observations about macro-level economic 
variables and the monthly realized volatility of Shanghai crude oil futures return (RV). The correlation 
coefficient between Chinese and global economic policy uncertainty ( China_EPU  and _Global EPU ) is 

0.694, which is highly correlated. The correlation coefficient between Chinese crude oil demand 
( _ _China oil demand ) and Chinese crude oil production ( _ _China oil production ) is 0.665, and that between 
global crude oil demand ( _ _Global oil demand ) and global crude oil production ( _ _Global oil production ) is 

0.871 , highlighting that the correlation between crude oil demand and production in China is lower 
than that on the global level . Except for Chinese economic policy university ( China_EPU ), the growth 
rate of global crude oil speculation index ( _ _Global oil speculation ) negatively correlates to all the growth 

rates of the other macro-level economic variables. 
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Table 2. Stationary test and normality test. 

  DF ADF PP VR JB ARCH
_ _INE oil return  −34.504*** −23.766*** −34.504*** −11.427*** 557.322*** 45.158***

  (0.001) (0.001) (0.001) (0.000) (0.001) (0.000)
China_EPU  −10.230*** −7.895*** −10.230*** −3.185*** 2.215 0.524

  (0.001) (0.001) (0.001) (0.001) (0.201) (0.470)
_Global EPU  −10.313*** −6.497*** −10.313*** −3.652*** 4.585* 0.080

  (0.001) (0.001) (0.001) (0.000) (0.059) (0.778)
_ _China oil demand  −9.841*** −6.704*** −9.841*** −4.122*** 1.475 0.364

  (0.001) (0.001) (0.001) (0.000) (0.358) (0.546)
_ _Global oil demand  −14.084*** −7.701*** −14.084*** −4.632*** 0.190 0.373

  (0.001) (0.001) (0.001) (0.000) (0.500) (0.541)
_ _China oil production  −13.957*** −8.820*** −13.957*** −3.848*** 0.593 6.480**

  (0.001) (0.001) (0.001) (0.000) (0.500) (0.011)
_ _Global oil production  −19.523*** −12.481*** −19.523*** −3.980*** 1.227 13.782***

  (0.001) (0.001) (0.001) (0.000) (0.432) (0.000)
_ _China oil import   −6.644*** −5.447*** −6.644*** −2.374** 4.485* 0.532

  (0.001) (0.001) (0.001) (0.018) (0.062) (0.466)
_ _Global oil speculation  −7.039*** −5.152*** −7.039*** −2.983*** 3.336* 1.338

  (0.001) (0.001) (0.001) (0.003) (0.099) (0.247)

Notes: This table reports results of unit root test, normality test and ARCH effect test for all the variables in this study. 

Daily data cover the period from 2 April 2018 to 28 February 2023. Monthly data cover the period from April 2018 to 
February 2023. _ _INE oil return  is the daily return series of Shanghai crude oil futures. China_EPU  denotes the monthly 

change rate of Economic Policy Uncertainty Index for China based on mainland newspapers. _Global EPU   is the 

monthly change rate of Global Economic Policy Uncertainty (GEPU) Index based on current-price GDP-weighted 
average of national EPU indices for 21 countries. _ _China oil demand , _ _China oil production ,and _ _China oil import are 

monthly growth rates of Chinese crude oil demand, production and import amount, respectively. _ _Global oil demand

and _ _Global oil production   are monthly growth rate of global crude oil demand and production, respectively. 

_ _Global oil speculation  denotes the growth rate of global crude oil speculation. The Dickey-Fuller (DF) test, Augmented 

Dickey-Fuller (ADF) test, Phillips-Perron (PP) test and Vratio (VR) test are used to test the stationarity of time series. 

The Jarque-Bera (JB) tests is for testing whether a given time series follows the normal distribution, and the ARCH test 

is for testing the heteroskedastic effect. The numbers in parentheses are the p-values corresponding to the test statistics. 

0.000 means that the value is less than 0.001. ***, ** and * respectively denote the significance at 1%, 5%, and 10% levels. 

Compared with the growth rate of global crude oil demand, the growth rate of global crude oil 
speculation index has a closer correlation with the growth rate of global crude oil production 
( 0.111 0.038   ). Except Chinese crude oil import (−0.033), the monthly realized volatility of Shanghai 

crude oil futures return (RV) is positively correlated with the change rates of other macro-level 
economic variables, namely, Chinese economic policy uncertainty index (0.319), Chinese crude oil 
demand (0.310), Chinese crude oil production (0.218), global economic policy uncertainty index 
(0.445), global crude oil demand (0.059), global crude oil production (0.219), and global crude oil 
speculation (0.015).
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Table 3. Correlation between variables. 

 China_EPU  _ _China oil demand _ _China oil production _ _China oil import _Global EPU  _ _Global oil demand _ _Global oil production  

China_EPU  1 
 

_ _China oil demand  0.399 1 

_ _China oil production  0.383 0.665 1 

_ _China oil import  0.146 0.072 0.329 1 

_Global EPU  0.694 0.408 0.436 0.075 1 

_ _Global oil demand  0.349 0.732 0.829 0.373 0.428 1 

_ _Global oil production 0.350 0.749 0.878 0.358 0.420 0.871 1 

_ _Global oil speculation 0.112 −0.118 −0.097 −0.005 −0.007 −0.038 −0.111 

Notes: This table reports the correlation between monthly observations about macro-level economic variables and the monthly realized volatility of Shanghai crude oil 
futures return (RV). The monthly realized volatility of Shanghai crude oil futures return is calculated by the sum of daily realized volatility in a given month, namely, 

2

1

N

t i
i

RV r


  .The macro-level economic variables are the growth rates of Chinese Economic Policy Uncertainty Index ( China_EPU ), Global Economic Policy Uncertainty 

Index ( _Global EPU ),Chinese crude oil demand ( _ _China oil demand ), Chinese crude oil production ( _ _China oil production ), Chinese crude oil import ( _ _China oil import ), 
global crude oil demand ( _ _Global oil demand ), global crude oil production ( _ _Global oil production ), and global crude oil speculation ( _ _Global oil speculation ).Data cover 
the period from April 2018 to February 2023. 
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4. Empirical results  

4.1. In-sample estimation  

Table 4 shows the estimated parameters of the GARCH-MIDAS models, spanning from April 2018 
to February 2023. Panel A and B of this table reports the estimation results for the different models with 
the eight individual economic variables in the MIDAS equation. Most parameters in the equations for 
the short-term variance component ( ,i tg  , Equation 3) are statistically significant at the 1% level, 

suggesting a clustering pattern in the short-term return volatility of Shanghai crude oil futures. Turning 
to the impact of macro-level economic factors on the long-term variance component ( t , Equation 4), 

we can see that the estimated parameter ( ) for China_EPU and _ _Global oil speculation  are significant at the 
5% level, and that for _ _China oil demand  , _ _China oil production  ,and _ _China oil import   are significant at the  
10% level, indicating that the growth rates of Chinese economic policy uncertainty, Chinese crude oil 
demand, Chinese crude oil production, Chinese crude oil import and global crude oil speculation index 
have significant impact on the long-run return volatility of Shanghai crude oil futures. As shown in Panels 
A and B of Table 4, the estimation results do not provide evidence that global economic policy 
uncertainty index ( _Global EPU  ), global crude oil demand ( _ _Global oil demand  ) and global crude oil 
production ( _ _Global oil production ) have significant impact on the return volatility of Shanghai crude oil 
futures, for the corresponding estimated parameters ( ) are not significant at a level less than 10%. If 
we divide the eight macro-level determinants into two groups, namely Chinese factors and global factors, 
of which corresponding estimation results respectively shown in Panel A and B of Table 4, we can find 
that the number of Chinese factors which significantly affect the long-term return volatility of Shanghai 
crude oil futures is more than that of global factor. In detail, the shocks from Chinese economic policy 
uncertainty, Chinese crude oil demand and production are respectively stronger than the shocks from 
global economic policy uncertainty, global crude oil demand and production. Interestingly, the shock 
from global crude oil speculation is stronger than that from Chinese crude oil import, in that the 
estimation parameter ( ) for _ _Global oil speculation  is larger than that for _ _China oil import .Among the four 
global factors, namely, global economic policy uncertainty, global crude oil demand, global crude oil 
production and global crude oil speculation, only global crude oil speculation index has significant 
impact on the return volatility of Shanghai crude oil futures. 

 

 

 

 

 

 

 



586 
 

Quantitative Finance and Economics   Volume 8, Issue 3, 573–609. 

Tabel 4. Estimated parameters of the GARCH-MIDAS model with individual macro-level 
variables of the MIDAS equation. 

Model                Obs. /L.L. AIC/BIC

Panel A: Chinese macro-level factors 

CEPU 0.0762 0.1232*** 0.8316*** −0.0256** 1.0313*** 1.7173*** 1282  5452 

  (0.0543) (0.0163) (0.0195) (0.0104) (0.0487) (0.1441) −2720  5483 

COD 0.0670 0.0531*** 0.9469*** −0.0421* 4.7684 −0.1050 1282  5513 

  (0.0465) (0.0049) (0.0045) (0.0232) (2.9654) (0.2492) −2750  5544 

COP 0.0716 0.0654*** 0.9346*** −0.0714* 7.7409 0.2370 1282  5497 

  (0.0452) (0.0059) (0.0054) (0.0395) (7.3988) (0.4170) −2742  5528 

COI 0.0696 0.1367*** 0.8109*** 0.0335* 1.0010*** 1.6731*** 1282  5151 

  (0.0583) (0.0185) (0.0227) (0.0177) (0.0312) (0.1400) −2569  5182 

Panel B: Global macro-level factors 

GEPU 0.0776 0.1286*** 0.8322*** 0.0129 1.0010*** 1.6710*** 1282  5457 

  (0.0539) (0.0162) (0.0191) (0.0154) (0.0601) (0.1647) −2723  5488 

GOD 0.0767 0.1299*** 0.8314*** 0.0901 1.0010*** 1.6810*** 1282  5456 

  (0.0545) (0.0160) (0.0184) (0.0811) (0.0283) (0.1653) −2722  5487 

GOP 0.0787 0.1308*** 0.8280*** 0.0849 1.0010*** 1.6785*** 1282  5457 

  (0.0543) (0.0166) (0.0191) (0.0856) (0.0316) (0.1592) −2722  5488 

GOS 0.0796 0.1315*** 0.8184*** 0.4806** 1.0010*** 1.6182*** 1282  5456 

  (0.0546) (0.0172) (0.0224) (0.2258) (0.0391) (0.1376) −2722  5486 

Notes: The table shows the estimated parameters of the GARCH-MIDAS model with different specifications of the MIDAS 

equation. Panel A of this table reports the results of the model with the growth rates of Chinese macro-level determinants in the 

MIDAS equation, namely, Chinese economic policy uncertainty index ( China_EPU ),Chinese crude oil demand 

( _ _China oil demand  ), Chinese crude oil production ( _ _China oil production ), and Chinese crude oil import 

( _ _China oil import  ),of which the corresponding GARCH-MIDAS models are marked as CEPU , COD , COP ,and COI, 

respectively. Panel B of this table reports the results of the model with the growth rates of global macro-level determinants in the 

MIDAS equation, namely, global economic policy uncertainty index ( _Global EPU  ),global crude oil demand 

( _ _Global oil demand  ), global crude oil production ( _ _Global oil production  ), and global crude oil speculation 

( _ _Global oil speculation ),of which the corresponding GARCH-MIDAS models are marked as GEPU , GOD , GOP ,and GOS, 

respectively. The parameter space for the short-term component of the total volatility is Θ = {  ,  ,  }, corresponding to 

Equation (3). The parameter space for the long-term component of the total volatility is Θ = { ,  ,  }, corresponding to 

Equations (4) and (5). The numbers in parentheses are standard errors. Obs. is the number of daily observations in the estimated 

sample. L.L.is the optimal log-likelihood function, AIC is the Akaike information criterion and BIC is the Bayesian information 

criterion. ***, ** and * respectively denote the significance at 1%, 5%, and 10% levels.
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Tabel 5. Estimated parameters of the GARCH-MIDAS model with composite macro-level 
variables of the MIDAS equation. 

Model Long-run 
variables 

          Obs. 
/L.L. 

AIC/BIC

TPCA Total_PCA  0.0757 0.1252*** 0.8323*** 0.0237 1.1501 1.6979*** 1282  5456  

    (0.0542) (0.0164) (0.0195) (0.0155) (0.7969) (0.1501) −2722  5487  

MPCA macro_PCA  0.0750 0.1230*** 0.8332*** 0.0372** 1.2316** 1.7233*** 1282  5454  
    (0.0544) (0.0165) (0.0197) (0.0165) (0.5120) (0.1470) −2721  5485  
CPCA China_PCA  0.0754 0.1226*** 0.8313*** −0.0661** 1.0604*** 1.8014*** 1282  5451  
    (0.0541) (0.0165) (0.0204) (0.0266) (0.1796) (0.1520) −2719  5482  
GPCA Global_PCA  0.0373 0.0491*** 0.9509*** −0.0087 4.4338 −0.1051 1282  5520  
    (0.0470) (0.0041) (0.0039) (0.0229) (15.8790) (0.2767) −2754  5551  

Notes: The table shows the estimated parameters of the GARCH-MIDAS model with composite macro-level variables 
of the MIDAS equation. There are four composite macro-level variables, which are respectively constructed by the first 
principal component of all the eight macro-level variables ( Total_PCA ),the first principal component of the five macro-
level variables which have been found having statistically significant relationship with the long-term volatility 
component of Shanghai crude oil futures as shown in Table 4 ( macro_PCA ),the first principal component of the four 
Chinese macro-level variables ( China_PCA ),the first principal component of the four global macro-level variables 
( Global_PCA ), which are specified as following equations: 
Total_PCA = -0.32 * Global_EPU + -0.29 * China_EPU + -0.41 * China_oil_demand + -0.45 * Global_oil_demand + 

                       -0.46 * Global_oil_production + -0.45 * China_oil_production +-0.19 * China_oil_import+ 0.04 * Global_oil_speculation  

macro_PCA = -0.46 * China_EPU + -0.57 * China_oil_demand + -0.61 * China_oil_production + 

                         -0.29 * China_oil_import + 0.07 * Global_oil_speculation  

China_PCA = 0.47 * China_EPU + 0.57 * China_oil_demand + 0.61 * China_oil_production + 0.29 * China_oil_import 

Global_PCA = -0.45 * Global_EPU + -0.63 * Global_oil_demand  + -0.63 * Global_oil_production + 0.08 * Global_oil_speculation   

These composite variables are respectively involved in the MIDAS equation and the corresponding GARCH-MIDAS models 
are marked as TPCA, MPCA, CPCA and GPCA, respectively. The parameter space for the short-term component of the total 
volatility is Θ = {  ,  ,  }, corresponding to Equation (3). The parameter space for the long-term component of the total 
volatility is Θ = { ,  ,  }, corresponding to Equations (4) and (5). The numbers in parentheses are standard errors. L.L.is 
the optimal log-likelihood function, AIC is the Akaike information criterion and BIC is the Bayesian information criterion. ***, 
and ** respectively denote the significance at 1% and 5% levels.

In order to further test the relationship between Chinese as well as global macro-level factors and 
the long-term return volatility of Shanghai crude oil futures, we further estimate the GARCH-MIDAS 
models with the composite factors which consist of the principal components extracted from these 
individual determinants, which can incorporate the information contained in different determinants. 
Table 5 reports the corresponding estimation results. The estimated parameter ( ) for Total_PCA is not 
statistically significant while that for macro_PCA   is statistically significant at the 5% level. This 
indicates that the composite factor ( macro_PCA  ) constructed by the five determinants ( China_EPU  ,

_ _China oil demand , _ _China oil production , _ _China oil import , _ _Global oil speculation ) which have been found to 

have a significantly estimated parameter ( ) as shown in Panels A and B of Table 4, has stronger 
impact on the long-term return volatility of Shanghai crude oil futures, compared with the composite 
factor ( Total_PCA ) constructed by all the eight determinants in this study.  

The estimated parameter ( ) for the composite factor ( China_PCA ) constructed by the four Chinese 
determinants ( China_EPU  , _ _China oil demand  , _ _China oil production  ,and _ _China oil import  ) is statistically 
significant at the 5% level, while that for the composite factor ( Global_PCA ) constructed by the four 
global determinants ( _Global EPU  , _ _Global oil demand  , _ _Global oil production  ,and _ _Global oil speculation  ) 

cannot be statistically significant at the 10% level. It suggests that the long-term return volatility of 
Shanghai crude oil futures is strongly exposed to the change of Chinese macro-level determinants but 
weakly affected by corresponding macro-level global factors.
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Figure 2. Plot of the daily realized volatility and the estimated total and long-term volatilities from different GARCH-MIDAS models  
(Notes: This figure illustrates the total and long-term variances estimated by the GARCH-MIDAS model and the daily realized volatility calculated by daily squared returns of Shanghai 

crude oil futures ( 2
i iRV r ). Corresponding to Table 4, the MIDAS equation respectively includes the corresponding macro-level variable as shown in the subtitle for each subgraph. 

The estimation period covers the period from April 2018 to February 2023, while a sample of 30 observations is used to calculate the moving average of the included variables in the 

MIDAS equation. Notably, the first black dashed vertical line marks the date when WHO announced the COVID-19 pandemic on 11 March 2020, the second one marks the date when 

Russia launched military attack against Ukraine on 24 February 2022.)  
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Figure 3. Estimated long-term volatilities from different GARCH-MIDAS models.  
(Notes: The figure plots the estimated long-term volatility, based on twelve alternative specifications of the MIDAS equation, namely, a model that includes Chinese economic 

policy uncertainty index (CEPU), a model that includes Chinese crude oil demand (COD), a model that includes Chinese crude oil production (COP), and a model that includes 

Chinese crude oil import (COI), a model that includes global economic policy uncertainty index (GEPU), a model that includes global crude oil demand (GOD), a model that 

includes global crude oil production (GOP), a model that includes global crude oil speculation (GOS), a model that includes the first principal component of all the eight macro-

level variables (TPCA), a model that includes the first principal component of the five macro-level variables which have been found having statistically significant relationship 

with the long-term volatility component of Shanghai crude oil futures as shown in Table 4 (MPCA), a model that includes the first principal component of the four Chinese 

macro-level variables (CPCA), and a model that includes the first principal component of the four global macro-level variables (GPCA). The estimation period covers the 

period from April 2018 to February 2023, while a sample of 30 observations is used to calculate the moving average of the included variables in the MIDAS equation. Notably, 

the first black dashed vertical line marks the date when WHO announced the COVID-19 pandemic on 11 March 2020, and the second one marks the date when Russia launched 

military attack against Ukraine on 24 February 2022 in this figure.)  
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Figure 2 illustrates the estimated total and long-term volatility from the GARCH-MIDAS models 
corresponding to different specifications in the MIDAS equation and the daily realized volatility of 
Shanghai crude oil futures during from April 2018 to February 2023. It shows that the estimated 
variances from the 12 GARCH-MIDAS models mostly follow a similar pattern with the realized 
volatility, which successfully capture the abnormally high volatility of Shanghai crude oil future 
returns when the COVID-19 pandemic and the Russia-Ukraine war broke out. Except for the estimated 
variances from the models, which includes Chinese crude oil demand (COD), Chinese crude oil 
production (COP), and the joint proxy variable of the four global macro-level determinants (GPCA), 
respectively, we observe that the long-term component volatility is below the total volatility most of 
the time. Besides, the peak of estimated long-term volatility comes later than the peak of estimated 
total volatility and the realized volatility. 

To compare the estimated long-term volatilities from different models more clearly, we further 
depict the estimated long-term variance components in one graph, which is shown in Figure 3. Some 
interesting findings can be observed from this figure. First, the estimated long-term volatilities 
obtained from the three models that includes Chinese crude oil demand (COD), a model that includes 
Chinese crude oil production (COP), and the joint proxy variable of the four global macro-level 
determinants (GPCA), respectively, which are higher than those obtained from the other nine models. 
Second, the long-term volatility estimated by Chinese crude oil production (COP) is lower than that 
estimated by Chinese crude oil demand (COD) and the global composite factor (GPCA). Third, the 
long-term volatility estimated by Chinese crude oil demand (COD) is higher than that estimated by the 
global composite factor (GPCA) at most of time. Fourth, when the COVID-19 pandemic broke out in 
2020, the long-term volatility estimated by the global composite factor (GPCA) once outpaced the 
long-term volatility estimated by Chinese crude oil demand (COD) and then gradually fell back. 
Besides, the long-term volatility estimated by the global composite factor (GPCA) outpaced that that 
estimated by other macro-level variables once again when the breakout of Russia-Ukraine war in 2022.  

4.2. Out-of-sample prediction  

Next, we further compare the forecast performance of different GARCH–MIDAS models for the 
total daily return volatility of Shanghai crude oil futures. Following Yu et al. (2021), we use the 
recursive scheme to generate one-step-ahead forecast, in which the initial estimation date is fixed while 
an additional observation is added at a time to the estimation period. The DM test is employed to 
statically compare the forecasting accuracy of different GARCH-MIDAS models, while the 
Fluctuation test is used to dynamically compare the forecasting accuracy of the models. Three out-of-
sample forecasting horizons (i.e., 120 days, 250days, and 500 days of the total sample) are considered 
for obtaining robust model evaluation results, ranging from approximately 6 months to 3 years. 

4.2.1. DM test 

Table 6 reports the Diebold and Mariano (DM) testing results for comparing the predictive 
accuracy of the eight GARCH-MIDAS models with individual macro-level determinants, namely, the 
Chinese economic policy uncertainty index (CEPU), Chinese crude oil demand (COD), Chinese crude 
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oil production (COP), Chinese crude oil import (COI), global economic policy uncertainty index 
(GEPU), global crude oil demand (GOD), global crude oil production (GOP), and global crude oil 
speculation (GOS). As shown in Table 6, all the DM statistics are statistically significant at the 5% or 
1% levels, suggesting different forecast performance between the eight models. As discussed in 
Section 2.3, positive DM statistics indicate that the completing model in the row has better forecast 
performance than the benchmark model in the corresponding column, while the negative DM statistics 
means the better forecast performance of the benchmark models in the column comparing the 
completing model in the row. 

Panel A in Table 6 shows the comparing results for the 120-day out-of-sample horizon. First, we 
can observe that the model with Chinese crude oil demand (COD) has the best forecast performance in 
that all the DM statistics in the corresponding column are negatively significant at the 5% or 1% levels, 
while the model with global economic policy uncertainty index (GEPU) has the worst forecast 
performance in that all the DM statistics in the corresponding column are positively significant at the 1% 
significance level. Second, when we compare the models including Chinese macro-level variables with 
the models including corresponding global macro-level variables, the results show that Chinese crude oil 
demand (COD), Chinese crude oil production (COP), and Chinese economic policy uncertainty 
respectively have better forecast performance than global crude oil demand (GOD), global crude oil 
production (GOP), and global economic policy uncertainty index (GEPU). However, the model with 
global crude oil speculation (GOS) outperforms than that with Chinese crude oil import (COI). 

When the out-of-sample forecasting period is extended to 250 trading days (Panel B, Table 6), 
the model with global economic policy uncertainty index (GEPU) still performs worst, while the model 
which has the best predictive accuracy is turned from the model with Chinese crude oil demand (COD) 
to that with Chinese crude oil production (COP). In line with the DM testing results for the out-of-
sample forecasting period which has 120 trading days (Panel A, Table 6), the model with Chinese 
crude oil demand (COD) performs better than that with global crude oil demand (GOD), the model 
with Chinese crude oil production (COP) performs better than that with global crude oil production 
(GOP), and the model with Chinese economic policy uncertainty (CEPU) performs better than that 
with global economic policy uncertainty index (GEPU), which is in line with the parameter estimation 
results shown in Table 4. Besides, global crude oil speculation (GOS) has better predictive accuracy 
for the volatility of Shanghai crude oil futures than Chinese crude oil import (COI), in spite that both 
the estimated parameters for global crude oil speculation and Chinese crude oil import are statistically 
significant in Table 4. 
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Table 6. Results of DM test for the out-of-sample forecasting performance of GARCH-MIDAS models 
with individual macro-level determinants. 

Model  Long-run variables CEP COD COI COP GEPU GOD GOP GOS
Panel A: 120-day forecasting horizon 
CEPU China_EPU    −1.193** −0.276** −0.990** 1.257*** −0.900** −0.138** −0.638**

COD _ _China oil demand  1.193   0.609*** 0.596** 1.541*** 0.548***  0.253***  0.069***

COI _ _China oil production  0.276 −0.609**  −0.163** 1.358*** −0.648** −0.045** −0.430**

COP _ _China oil import  0.990 −0.596** 0.163***  1.626*** −0.303** 0.009***  −0.378**

GEPU _Global EPU  −1.25 −1.541** −1.358** −1.626**  −1.565** −0.787** −1.215**

GOD _ _Global oil demand  0.900 −0.548** 0.648*** 0.303*** 1.565***   0.097***  −0.223**

GOP _ _Global oil production  0.138 −0.253** 0.045*** −0.009** 0.787*** −0.097**   −0.266**

GOS _ _Global oil speculation  0.638 −0.069** 0.430*** 0.378*** 1.215*** 0.223***  0.266***   

Panel B: 250-day forecasting horizon 
CEPU China_EPU    0.520*** 1.708*** −0.740** 1.613*** 0.810***  0.869***  0.691***

COD _ _China oil demand  −0.52   0.439*** −0.842** 1.038*** 0.152***  0.010***  −0.206**

COI _ _China oil production  −1.70 −0.439**  −1.280** 1.190*** −0.159** −1.070** −2.147**

COP _ _China oil import  0.740 0.842*** 1.280***  1.606*** 1.922***  0.963***  0.867***

GEPU _Global EPU  −1.61 −1.038** −1.190** −1.606**  −0.733** −1.533** −1.834**

GOD _ _Global oil demand  −0.81 −0.152** 0.159*** −1.922** 0.733***   −0.165** −0.341**

GOP _ _Global oil production  −0.86 −0.010** 1.070*** −0.963** 1.533*** 0.165***    −0.516**

GOS _ _Global oil speculation  −0.69 0.206*** 2.147*** −0.867** 1.834*** 0.341***  0.516***   

Panel C: 500-day forecasting horizon 
CEPU China_EPU    −0.003** 0.688*** −1.218** 1.521*** −0.303** −0.131** −0.091**

COD _ _China oil demand  0.003   0.577*** −0.871** 1.534*** −0.271** −0.118** −0.070**

COI _ _China oil production  −0.68 −0.577**  −1.401** 1.749*** −0.469** −1.610** −1.814**

COP _ _China oil import  1.218 0.871*** 1.401***  1.988*** 0.252***  0.917***  0.987***

GEPU _Global EPU  −1.52 −1.534** −1.749** −1.988**  −0.911** −2.241** −2.228**

GOD _ _Global oil demand  0.303 0.271*** 0.469*** −0.252** 0.911***   0.243***  0.254***

GOP _ _Global oil production  0.131 0.118*** 1.610*** −0.917** 2.241*** −0.243**   0.091***

GOS _ _Global oil speculation  0.091 0.070*** 1.814*** −0.987** 2.228*** −0.254** −0.091**  

Notes: The table shows the Diebold and Mariano (DM) test for the different models’ out-of-sample forecast performance. The DM method 

is applied to examine the null hypothesis of equal forecasting performance. The DM statistic in each cell is calculated by the model given in 

the row comparing with the benchmark model given in the column. The positive DM statistics indicate that the completing model in the row 

has better forecast performance than the benchmark model in the corresponding column, while the negative DM statistics means the better 

forecast performance of the benchmark models in the column comparing the completing model in the row. *** and ** denote significance at 

the 1%, and 5% level, respectively. 

We extend the out-of-sample forecasting period to 500 trading days, of which the corresponding 
DM testing results are reported in Panel C in Table 6. Like the 250-day forecasting horizon, the model 
with Chinese crude oil production (COP) performs best while the model with global economic policy 
uncertainty index (GEPU) performs worst. The models with Chinese crude oil production (COP), 
Chinese economic policy uncertainty (CEPU), and global crude oil speculation (GOS) have better 
forecast power for the volatility of Shanghai crude oil futures than corresponding models with global 
crude oil production (GOP), global economic policy uncertainty (GEPU), and Chinese crude oil import 
(COI), respectively. The only expectation is that global crude oil demand (GOD) has better predictive 
power for Shanghai crude oil futures’ return volatility than Chinese crude oil demand (COD) when the 
forecasting period extended to around 2 years (500 trading days).  

Next, we use the DM test to compare the out-of-sample forecast performance of GARCH-MIDAS 
models with composite macro-level determinants. As shown in Table 7, the model with the composite 
factor constructed by the five macro-level variables, which have been found having statistically 
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significant relationship with the long-term volatility component of Shanghai crude oil futures, as 
shown in Table 4 (MPCA), has relatively best predictive accuracy for the volatility of Shanghai crude 
oil futures according to the fact that all the DM statistics are negative and statistically significant at the 
1% level when taking it as the benchmark. The model with the composite factor constructed by the 
four global macro-level variables (GPCA) has relatively worst predictive accuracy, according to the 
fact that all the DM statistics are positive and statistically significant at the 1% level when taking it as 
the benchmark. Compared with both the global composite macro-level factor (GPCA) and the total 
composite macro-level factor (TPCA), the Chinese composite macro-level factor (CPCA) has better 
predictive power. These findings can hold for all the three out-of-sample forecasting horizons (i.e., 
120 days, 250 days, and 500 days of the total sample).  

Table 8 summarizes the DM testing results for the 12 GARCH-MIDAS models with different 
macro-level variables. Panel A of this table shows the ranking results according to the out-of-sample 
predictive accuracy of the eight GARCH-MIDAS models which include individual macro-level factors 
(i.e., CEPU, COD, COP, COI,GEPU,GOD,GOP, and GOS) for the three forecasting horizons ( i.e., 
120 days, 250 days, and 500 days), while Panel B in this table shows the ranking results according to 
the out-of-sample predictive accuracy of the for GARCH-MIDAS models, which include composite 
macro-level factors (i.e., TPCA, MPCA, CPCA, and GPCA). Since we have discussed the comparing 
results reported in Table 6 and Table 7 corresponding to Panels A and B in Table 8, respectively, we 
focus on further analyzing the comparing results between GARCH-MIDAS models with composite 
macro-level factors (i.e., TPCA, MPCA, CPCA, and GPCA) and GARCH-MIDAS models with 
individual macro-level factors that have been found having statistically significant relationship with 
the long-term volatility component of Shanghai crude oil futures as shown in Table 4 (i.e., CEPU, 
COD, COP, COI, and GOS). Notably, in these five individual variables, there are four variables that 
have better forecast performance than other given macro-level variables as reported in Table 6. Namely, 
CEPU performs better than GEPU, COD performs better than GOD, COP performs better than GOP, 
and GOS performs better than COI. 
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Table 7. Results of DM test for the out-of-sample forecast performance of GARCH-
MIDAS models with composite macro-level determinants. 

Model Long-run variables CPCA GPCA MPCA TPCA

Panel A: 120-day forecasting horizon 

CPCA China_PCA   1.369*** -0.457***  0.941***

GPCA Global_PCA  −1.369***  -1.258***  -0.143***

MPCA macro_PCA  0.457*** 1.258***   1.199***

TPCA Total_PCA  −0.941*** 0.143*** -1.199***   

Panel B: 250-day forecasting horizon 

CPCA China_PCA   1.504*** -1.687***  0.496***

GPCA Global_PCA  −1.504***  -2.443***  -1.382***

MPCA macro_PCA  1.687*** 2.443***   1.804***

TPCA Total_PCA  −0.496*** 1.382*** -1.804***   

Panel C: 500-day forecasting horizon  

CPCA China_PCA   1.337*** -2.054***  0.943***

GPCA Global_PCA  −1.337***  -1.845***  -1.014***

MPCA macro_PCA  2.054*** 1.845***   1.461***

TPCA Total_PCA  −0.943*** 1.014*** -1.461***   

Notes: This table shows the Diebold and Mariano (DM) test for the out-of-sample forecast performance of different 

models with composite macro-level determinants, namely, the composite determinant constructed by all the eight macro-

level variables (TPCA), the composite determinant constructed by the five macro-level variables which have been found 

having statistically significant relationship with the long-term volatility component of Shanghai crude oil futures as 

shown in Table 4 (MPCA), the composite determinant constructed by the four Chinese macro-level variables (CPCA), 

and the composite determinant constructed by the four global macro-level variables (GPCA). The DM method is applied 

to examine the null hypothesis of equal forecasting performance. The DM statistic in each cell is calculated by the model 

given in the row comparing with the benchmark model given in the column. The positive DM statistics indicate that the 

completing model in the row has better forecast performance than the benchmark model in the corresponding column, 

while the negative DM statistics means the better forecast performance of the benchmark models in the column 

comparing the completing model in the row. *** denotes significance at the 1% level. 
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Table 8. Summary of the DM testing results. 

 
Ranki
ng 
numbe
r 

120-day forecasting horizon  250-day forecasting horizon 500-day forecasting horizon  
Model  Long-run variables Model  Long-run variables Model Long-run variables 

Panel A: Comparing results among GARCH-MIDAS models with individual macro-level factors
1 COD _ _China oil demand  COP _ _China oil production COP _ _China oil production

2 GOS _ _Global oil speculation  CEPU China_EPU  GOD _ _Global oil demand  

3 GOD _ _Global oil demand  GOS _ _Global oil speculation GOP _ _Global oil production

4 COP _ _China oil production  COD _ _China oil demand  GOS _ _Global oil speculation

5 GOP _ _Global oil production  GOP _ _Global oil production COD _ _China oil demand  

6 COI _ _China oil import  GOD _ _Global oil demand  CEPU China_EPU  

7 CEPU China_EPU  COI _ _China oil import  COI _ _China oil import  

8 GEPU _Global EPU  GEPU _Global EPU  GEPU _Global EPU  

Panel B: Comparing results among GARCH-MIDAS models with composite macro-level factors
1 MPCA macro_PCA  MPCA macro_PCA MPCA macro_PCA  

2 CPCA China_PCA  CPCA China_PCA CPCA China_PCA  

3 TPCA Total_PCA TPCA Total_PCA TPCA Total_PCA  

4 GPCA Global_PCA  GPCA Global_PCA GPCA Global_PCA

Panel C: Comparing results between GARCH-MIDAS models with composite macro-level factors and GARCH-MIDAS models 
with individual macro-level factors 
1 COD _ _China oil demand  COP _ _China oil production COP _ _China oil production

2 GOS _ _Global oil speculation  MPCA macro_PCA MPCA macro_PCA  

3 COP _ _China oil production  CEPU China_EPU  GOS _ _Global oil speculation

4 COI _ _China oil import  CPCA China_PCA COD _ _China oil demand  

5 CEPU China_EPU  GOS _ _Global oil speculation CEPU China_EPU  

6 MPCA macro_PCA  COD _ _China oil demand  CPCA China_PCA  

7 CPCA China_PCA  TPCA Total_PCA COI _ _China oil import  

8 TPCA Total_PCA COI _ _China oil import  TPCA Total_PCA  

9 GPCA Global_PCA  GPCA Global_PCA GPCA Global_PCA

Notes: This table summarizes the DM testing results for the 12 GARCH-MIDAS models with different macro-level variables. Panel 
A of this table shows the ranking results according to the out-of-sample predictive accuracy of the eight GARCH-MIDAS models 
which include individual macro-level factors (i.e., CEPU, COD, COP, COI,GEPU,GOD,GOP, and GOS) for the three forecasting 
horizons ( i.e., 120 days, 250 days, and 500 days), while Panel B of this table shows the ranking results according to the out-of-sample 
predictive accuracy of the for GARCH-MIDAS models which include composite macro-level factors (i.e., TPCA, MPCA, CPCA, 
and GPCA). Panel C shows the ranking results according to the comparing results between GARCH-MIDAS models with composite 
macro-level factors and GARCH-MIDAS models with individual macro-level factors.

Panel C in Table 8 shows the ranking results according to the comparing results between 
GARCH-MIDAS models with composite macro-level factors and GARCH-MIDAS models with 
individual macro-level factors for predicting the volatility of Shanghai crude oil futures, of which the 
specifical DM statistics are reported in Appendix A. When the forecasting horizon is 120 days (around 
half of one year) of the total sample, the models with individual macro-level factors performs better 
than the models with composite factors, in which the model with Chinese crude oil demand (COD) 
performs best, followed by the model with global crude oil speculation (GOS) and that with Chinese 
crude oil production (COP), etc.  

The ranking result changes when the forecasting period is extended. Specifically, the predictive 
accuracy of the model with Chinese crude oil production (COP) is better than that with Chinese crude 
oil demand (COD) and becomes the model that has the best predictive power, along with the 
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forecasting period extended from 120 days to 250 days. Thus, the model with the composite macro-
level factor (MPCA) constructed by Chinese crude oil demand, Chinese crude oil production, Chinese 
crude oil import, Chinese economy policy uncertainty, and global crude oil speculation has an excellent 
predictive power, which is only worse than the model with Chinese crude oil production (COP). This 
highlights the important role of global crude oil speculation activity in the return volatility of Shanghai 
crude oil futures, except the domestic macro-level determinants of China. These major results can hold 
when the forecasting period is extended to 500 days. In addition, no matter which forecasting period 
(120 days, 250 days, or 500 days) is considered, the predictive power of the model with the global 
composite macro-level factor remains worst, as shown in Panel C in Table 8.  

4.2.2. Fluctuation test 

Observing the DM testing results summarized in Table 8, we find that the ranking results for 
predictive abilities of all the GARCH-MIDAS models are not consistent in three forecasting horizons, 
except that the major findings mentioned in the previous subsection can be obtained. This indicates 
that the relative predictive power of these models is possibly time-varying, highlighting the necessity 
for comparing their forecast performance dynamically.  

Figure 4 depicts the Fluctuation statistics for relative forecast performance among the twelve 
GARCH-MIDAS models, which include different macro-level variables in this study. The Fluctuation 
test statistics are constructed following Equations (8)-(10) with a moving window of 120 days, where 
the whole forecasting period is 500 trading days. Positive statistic values demonstrate that the 
competing model has better predictive power than the benchmark model. As shown in Figure 4, as our 
expectation, the relative forecast performance among the GARCH-MIDAS models involving different 
macro-level variables is time-varying, with the Fluctuation test statistics waving all the time 
(sometimes positive while sometimes negative).  

Table 9 summarizes the Fluctuation test results via calculating the number of positive statistics and 
corresponding percent ratios. Combined with Figure 4 and Table 9, we can observe following results. 
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Figure 4. Plots of Fluctuation test statistics. 
(Notes: This figure plots the Fluctuation testing results for relative forecast performance among 12 GARCH-MIDAS models specified in this study.The forecasting period is set as 500 days of the 

total sample and the Fluctuation test statistics are calculated by using a moving window of 120 days. In each subgraph, blue or red lines are used to plot the Fluctuation testing statistics of the 

competing model marked in the y-axis relative to the benchmark model marked in the title. Positive values of the test statistics imply that the competing model marked in the y-axis is better than 

the benchmark model marked in the title. Blue line demonstrates that the competing model marked in the y-axis is better than the corresponding benchmark model marked in the subgraph title at 

most of time, while red line demonstrates that the benchmark model marked in the subgraph title is better than the competing model marked in the corresponding y-axis at most of time, 

corresponding to the statistical results shown in Table 9.) 
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Table 9 Summary of the Fluctuation test results for dynamically comparing relative out-of-
sample forecast performance among different GARCH-MIDAS models.  

Model  Ranki
ng 
numbe
r 

COP MPC
A 

GOD GOS GOP COD CEPU CPCA COI TPCA GEPU GPC
A 

COP 1   260## 271## 206## 273## 258## 377## 368## 317## 371## 336## 335##

  
 

  (68%) (71%) (54%) (72%) (68%) (99%) (97%) (83%) (97%) (88%) (88%)
MPC
A 

2 121   203## 216## 278## 293## 298## 368## 320## 381## 339## 378## 

  
 

(32%)   (53%) (57%) (73%) (77%) (78%) (97%) (84%) (100%
) 

(89%) (99%)

GOD 3 110 178   195## 253## 195## 345## 326## 292## 360## 318## 336##

  
 

(29%) (47%)   (51%) (66%) (51%) (91%) (86%) (77%) (94%) (83%) (88%)
GOS 4 175 165 186   197## 197## 209## 290## 348## 308## 315## 344##

  (46%) (43%) (49%)   (52%) (52%) (55%) (76%) (91%) (81%) (83%) (90%)
GOP 5 108 103 128 184  227## 208## 280## 254## 353## 303## 352##

  (28%) (27%) (34%) (48%)  (60%) (55%) (73%) (67%) (93%) (80%) (92%)
COD 6 123 88 186 184 154  257## 331## 341## 346## 309## 375##

  (32%) (23%) (49%) (48%) (40%)  (67%) (87%) (90%) (91%) (81%) (98%)
CEPU 7 4 83 36 172 173 124  260## 213## 261## 239## 319##

  (1%) (22%) (9%) (45%) (45%) (33%)  (68%) (56%) (69%) (63%) (84%)
CPCA 8 13 13 55 91 101 50 121  195## 303## 265## 330##

  (3%) (3%) (14%) (24%) (27%) (13%) (32%)  (51%) (80%) (70%) (87%)
COI 9 64 61 89 33 127 40 168 186  313## 269## 308##

  (17%) (16%) (23%) (9%) (33%) (10%) (44%) (49%)  (82%) (71%) (81%)
TPCA 10 10 0 21 73 28 35 120 78 68   198## 320##

  (3%) (0%) (6%) (19%) (7%) (9%) (31%) (20%) (18%)   (52%) (84%)
GEPU 11 45 42 63 66 78 72 142 116 112 183   292##

  (12%) (11%) (17%) (17%) (20%) (19%) (37%) (30%) (29%) (48%)   (77%)
GPCA 12 46 3 45 37 29 6 62 51 73 61 89  

  
 

(12%) (1%) (12%) (10%) (8%) (2%) (16%) (13%) (19%) (16%) (23%)  

Notes: This table summarizes the Fluctuation test results for dynamically comparing relative out-of-sample forecast 
performance among different GARCH-MIDAS models. The Fluctuation test statistics are constructed following 
Equations (8)-(10) with a moving window of 120 days, where the whole forecasting period is 500 trading days, 
consequently generating 381 observations. Positive statistic values demonstrate that the competing model has better 
predictive power than the benchmark model. The right 12 columns of the table report the number of positive Fluctuation 
test statistics of the competing models in the row, relative to the benchmark models in the corresponding column. The 
number in parentheses is the percent ratio of the number of positive statistics to the total number of Fluctuation test 
statistics (381 observations) in each cell. ## denotes that the model in the row has better forecast performance relative to 
the benchmark model in the corresponding column at most of time (more than 50%). The second column of this table 
shows the ranking result according to the Fluctuation test. 

First, the GARCH-MIDAS model involving Chinese crude oil production (COP) has the best 
predictive power for the return volatility of Shanghai crude oil futures in that its Fluctuation test statistics 
relative to other 11 models are positive more than 50% of the time. Specifically, as shown in the first 
row of Table 9, relative to the benchmark models with Chinese economic policy uncertainty (CEPU), 
Chinese composite factor (CPCA), the total composite factor (TPCA), global economic policy 
uncertainty (GEPU), Chinese crude oil import (COI ), global crude oil production (GOP), global crude 
oil demand (GOD), Chinese crude oil demand (COD), the composite factor (MPCA), and global crude 
oil speculation (GOS), the ratios of the number of positive statistics to the total number of Fluctuation 
test statistics are 99%, 97% , 97%, 88%, 88%, 83% ,72%, 71%, 68%, 68%, and 54%, respectively. 



599 
 

Quantitative Finance and Economics                                     Volume 8, Issue 3, 573–609. 

Second, following the GARCH-MIDAS model involving Chinese crude oil production (COP), the 
predictive power of the model which includes the composite macro-level factor constructed by Chinese 
economic policy uncertainty, Chinese crude oil import, Chinese crude oil demand, and production, can 
rank in the second place, as shown in the second row of Table 9. Third, following a similar analysis 
method, we find that the model with the global composite macro-level factor (GPCA) has the worst 
predictive power, comparing with other models. These three findings are consistent with the DM testing 
results for 120-day and 500-day forecasting horizons, which are shown in Panel C of Table 8. 

Due to space limitation, we do not describe the Fluctuation test results in Table 9 one by one. 
Thus, we concentrate on whether other major findings obtained from the DM test can hold when time-
varying relative forecast performance is considered. As reported in Table 9 and Figure 4, the GARCH-
MIDAS model involving global oil speculation index (GOS) performs better than the model with 
Chinese oil import (COI) 91% of the time, the model involving Chinese crude oil production (COP) 
performs better than the model with global crude oil production (GOP) 72% of the time, the model 
involving Chinese economic policy uncertainty index (CEPU) performs better than global economic 
policy uncertainty index (GEPU) at 63% of the time, and the model involving Chinese composite 
macro-level factor (CPCA) performs better than global composite macro-level factor (GPCA) 87% of 
the time, providing robust evidence for the corresponding comparing results obtained from the DM 
test. However, inconsistent with the DM test, there is no obvious evidence for the better predictive 
power of Chinese crude oil demand (COD) compared with global crude oil demand (GOD) in that the 
ratio of the positive Fluctuation test statistics for GOD relative to COD is 51%. Summarily, these 
findings suggest that the return volatility of Shanghai crude oil futures is more affected by the domestic 
macro-level factors in China than the global macro-level factors.  

4.3. Robustness check 

In the previous subsections, we found that the current growth rates of Chinese economic policy 
uncertainty( China_EPU  ), Chinese crude oil demand ( _ _China oil demand  ), Chinese crude oil 
production( _ _China oil production  ), Chinese crude oil import( _ _China oil import  ) and global crude oil 
speculation index( _ _Global oil speculation  ) have significant impact on the long-run return volatility of 

Shanghai crude oil futures. However, the market price of the Shanghai crude oil futures is always 
available immediately while the monthly or quarterly data always have delay in real life. In order to 
check whether this kind of delay would impact the empirical results, we further re-estimate the 
GARCH-MIDAS models in which the macro-level economic variables are one-monthly lagged, 
investigating how the macro-factors in the previous month affect the return volatility of Shanghai crude 
oil futures in current month. 

As seen in Table 10, when the macro-level economic factors are one-monthly lagged, the 
estimated parameter ( ) for China_EPU , _ _China oil demand , _ _Global oil production , and _ _Global oil speculation  

are significant at the 5% level, indicating that the previous monthly growth rates of Chinese economic 
policy uncertainty, Chinese crude oil demand, global crude oil production, and global crude oil 
speculation index also have significant impact on the long-run return volatility of Shanghai crude oil 
futures. Connected with the empirical results shown in Table 4, it can be summarized that the long-run 
return volatility of Shanghai crude oil futures is significantly influenced by Chinese crude oil 
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production in current month and global previous oil production in the last month. In addition, the 
current long-run return volatility of Shanghai crude oil futures is not only affected by Chinese 
economic policy uncertainty, Chinese crude oil demand, and global crude oil speculation index in 
current month, but also affected by the growth rates of these three macro-factors in the last month. 

Next, we concentrate on whether other major findings about the out-of-sample forecast 
performance obtained in previous subsections can hold when the macro-level variables are one-
monthly lagged. Table 11 shows the time-varying relative forecast performance of the GARCH-
MIDAS models involving the one-monthly lagged macro-level variables in the MIDAS speculation. 
As seem from this table, different from the results shown in Table 9, the GARCH-MIDAS model 
involving Chinese oil import (COIt-1) has the best predictive power for the return volatility of Shanghai 
crude oil futures, followed by the models with Chinese crude oil production (COP t-1) and global oil 
speculation index (GOS t-1), respectively. Although the ranking numbers for different models slightly 
changed when the lagged macro-level variables are involved, compared with the results shown in Table 
9, the main finding that the return volatility of Shanghai crude oil futures is more affected by the 
domestic macro-level factors in China than the global macro-level factors can hold. Specifically, when 
the macro-level variables are one-monthly lagged, the model with Chinese oil import (COIt-1) performs 
better than global oil speculation index (GOS t-1) 62% of the time, the model involving Chinese crude 
oil production (COP t-1) performs better than the model with global crude oil production (GOP t-1) 75% 
of the time, the model involving Chinese economic policy uncertainty index (CEPU t-1) performs better 
than global economic policy uncertainty index (GEPU t-1) 52% of the time, and the model involving 
Chinese crude oil demand (COD t-1) performs better than global crude oil demand (GOD t-1) 54% of 
the time.  
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Tabel 10. Estimated parameters of the GARCH-MIDAS models when the macro-level 
variables are one-monthly lagged. 

Model             Obs. /L.L. AIC/BIC 

Panel A: Chinese factors 

CEPUt-1 0.0762 0.1232*** 0.8317*** −0.0258** 1.0318*** 1.7184*** 1282  5452  
  (0.0543) (0.0163) (0.0195) (0.0104) (0.0491) (0.1442) −2720  5483  
COD t-1 0.0242 0.0526*** 0.9474*** −0.0498** 4.7179* −0.0650 1282  5211  
  (0.0494) (0.0049) (0.0045) (0.0241) (2.4759) (0.3182) −2599  5242  
COP t-1 0.0536 0.0686*** 0.9314*** −0.0591 10.1040 0.3429 1282  5496  
  (0.0451) (0.0060) (0.0057) (0.0363) (16.2190) (0.4318) −2742  5527  
COI t-1 0.0440 0.0674*** 0.9326*** −0.0259 1.0069*** −0.3490 1282  5211  
  (0.0466) (0.0056) (0.0052) (0.0181) (0.0329) (0.3403) −2599  5242  
Panel B: Global factors 
GEPU t-1 0.0002 0.0410*** 0.9590*** 0.0095 4.0962 −0.6169*** 1282  5232  
  (0.0487) (0.0035) (0.0035) (0.0087) (3.9815) (0.2348) −2610  5263  
GOD t-1 0.0767 0.1298*** 0.8314*** 0.0895 1.0010*** 1.6799*** 1282  5457  
  (0.0545) (0.0160) (0.0184) (0.0813) (0.0285) (0.1651) −2722  5487  
GOP t-1 0.0190 0.0544*** 0.9456*** 0.1692** 1.0022*** 0.1069 1282  5521  
  (0.0462) (0.0045) (0.0043) (0.0718) (0.0111) (0.2836) −2754  5552  
GOS t-1 0.0796 0.1315*** 0.8186*** 0.4765** 1.0012*** 1.6182*** 1282  5456  
  (0.0545) (0.0172) (0.0223) (0.2258) (0.0396) (0.1378) −2722  5487  
Panel C: Composite factor 
TPCA t-1 0.0669 0.1336*** 0.8175*** −0.0022 7.4495 1.7096*** 1282  5153  
  (0.0582) (0.0182) (0.0226) (0.0091) (58.2020) (0.1447) −2571  5184  
MPCA t-1 −0.0055 0.0422*** 0.9578*** 0.0083 16.3260 −0.7132*** 1282  5230  
  (0.0485) (0.0037) (0.0035) (0.0068) (142.3600) (0.2330) −2609  5261  
CPCA t-1 0.0437 0.0422*** 0.9578*** −0.0278 4.6998 0.2594 1282  5518  
  (0.0492) (0.0038) (0.0037) (0.0190) (4.0895) (0.3135) −2753  5549  
GPCA t-1 0.0785 0.1299*** 0.8289*** −0.0104 9.6282 1.6733*** 1282  5457  
  (0.0542) (0.0164) (0.0196) (0.0218) (29.5690) (0.1567) −2723  5488  

Notes: The table shows the estimated parameters of the GARCH-MIDAS model with different specifications of the MIDAS equation. 

In these models, the macro-level variables are one-monthly lagged, which are respectively marked as CEPUt-1, COD t-1, COP t-1, COI t-1, 

GEPU t-1 , GOD t-1 , GOP t-1 , GOS t-1 , TPCA t-1 , MPCA t-1 , CPCA t-1 , and GPCA t-1. Please see the footnotes of Tables 4 and 5 for more 

details on these variables. The parameter space for the short-term component of the total volatility is Θ = {  ,  ,  }, corresponding 

to Equation (3). The parameter space for the long-term component of the total volatility is Θ = { ,  ,  }, corresponding to Equations 

(4) and (5). The numbers in parentheses are standard errors. the variables, namely, Obs. is the number of daily observations in the 

estimated sample. L.L.is the optimal log-likelihood function, AIC is the Akaike information criterion and BIC is the Bayesian 

information criterion. ***, ** and * respectively denote the significance at 1%, 5%, and 10% levels.  
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Table 11. Summary of the Fluctuation test results when the macro-level variables are one-
monthly lagged. 

Model  COI t-1 COP t-1 GOS t-1 GPCA t-1 CPCA t-1 GOP t-1 COD t-1 GEPU t-1 CEPU t-1 MPCA t-1 GOD t-1 TPCA t-1 

COI t-1   241## 237## 340## 211## 291## 330## 203## 256## 290## 249## 345##

    (63%) (62%) (89%) (55%) (76%) (87%) (53%) (67%) (76%) (65%) (91%)

COP t-1 140   236## 305## 254## 284## 308## 230## 247## 315## 232## 346##

  (37%)   (62%) (80%) (67%) (75%) (81%) (60%) (65%) (83%) (61%) (91%)

GOS t-1 144 145   208## 254## 171 219## 196## 321## 220## 294## 243##

  (38%) (38%)   (55%) (67%) (45%) (57%) (51%) (84%) (58%) (77%) (64%)

GPCA t-1 41 76 173   203## 240## 214## 192## 227## 267## 200## 266##

  (11%) (20%) (45%)   (53%) (63%) (56%) (50%) (60%) (70%) (52%) (70%)

CPCA t-1 170 127 127 178   192## 236## 217## 217## 212## 281## 281##

  (45%) (33%) (33%) (47%)   (50%) (62%) (57%) (57%) (56%) (74%) (74%)

GOP t-1 90 97 210## 141 189##   185 206## 228## 257## 213## 316##

  (24%) (25%) (55%) (37%) (50%)   (49%) (54%) (60%) (67%) (56%) (83%)

COD t-1 51 73 162 167 145 196##   183 189## 229## 204## 268##

  (13%) (19%) (43%) (44%) (38%) (51%)   (48%) (50%) (60%) (54%) (70%)

GEPU t-1 178 151 185 189## 164 175 198##   184 183 191## 299##

  (47%) (40%) (49%) (50%) (43%) (46%) (52%)   (48%) (48%) (50%) (78%)

CEPU t-1 125 134 60 154 164 153 192## 197##   179 235## 180 

  (33%) (35%) (16%) (40%) (43%) (40%) (50%) (52%)   (47%) (62%) (47%)

MPCA t-1 91 66 161 114 169 124 152 198## 202##   177 290##

  (24%) (17%) (42%) (30%) (44%) (33%) (40%) (52%) (53%)   (46%) (76%)

GOD t-1 132 149 87 181 100 168 177 190 146 204##   209##

  (35%) (39%) (23%) (48%) (26%) (44%) (46%) (50%) (38%) (54%)   (55%)

TPCA t-1 36 35 138 115 100 65 113 82 201## 91 172   

  (9%) (9%) (36%) (30%) (26%) (17%) (30%) (22%) (53%) (24%) (45%)   

Notes: This table summarizes the Fluctuation test results for dynamically comparing relative out-of-sample forecast 

performance among different GARCH-MIDAS models, in which the macro-level variables are one-monthly lagged. 

The Fluctuation test statistics are constructed following Equations (8)-(10) with a moving window of 120 days, where 

the whole forecasting period is 500 trading days, consequently generating 381 observations. Positive statistic values 

demonstrate that the competing model has better predictive power than the benchmark model. The right 12 columns of 

the table report the number of positive Fluctuation test statistics of the competing models in the row, relative to the 

benchmark models in the corresponding column. The number in parentheses is the percent ratio of the number of positive 

statistics to the total number of Fluctuation test statistics (381 observations) in each cell. ## denotes that the model in the 

row has better forecast performance relative to the benchmark model in the corresponding column at most of time (more 

than 50%). 
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5. Discussion and conclusion  

To determine which macro-level determinant is the most informative in affecting Shanghai crude 
oil futures’ return volatility, we investigate the impact of Chinese and global macro-level economic 
activities on Shanghai crude oil futures. There are twelve macro-level economic factors considered in 
this study, including four Chinese macro-level economic determinants (i.e., Chinese crude oil demand, 
Chinese crude oil production, Chinese crude oil import, and Chinese economic policy uncertainty), 
four global macro-level economic factors (i.e., global crude oil demand, global crude oil production, 
global crude oil speculation, and global economic policy uncertainty), and four composite macro-level 
factors constructed by the method of principal component analysis (i.e., the composite macro-level 
factor constructed by the four Chinese macro-level economic determinants and global crude oil 
speculation, the Chinese composite macro-level factor constructed by the four Chinese macro-level 
economic determinants, the global composite macro-level factor constructed by the four global macro-
level economic determinants, and the composite macro-level factor constructed by the eight Chinese 
and global macro-level economic determinants). Based on the GARCH-MIDAS model proposed by 
Engle et al. (2013), we suppose that Chinese and global macro-level economic activities affect the 
return volatility of Shanghai crude oil futures via the long-term component of the total volatility, using 
the macro-level variables to replace the original realized volatility variable in the model.  

We take three steps to carry out this study. In the first step, we estimate the GARCH-MIDAS 
models with different macro-level variables during from April 2018 to February 2023, to find out 
which macro-level factor significantly affects the return volatility of Shanghai crude oil futures. In the 
second step, we use the recursive scheme to generate one-step-ahead forecasts and take the Diebold 
and Mariano (DM) test to statically compare the out-of-sample predictive power of the 12 different 
GARCH-MIDAS models, considering three forecasting horizons (i.e., 120 days, 250 days, and 500 
days of the total sample). In the last step, we further employ the Fluctuation test proposed by Giacomini 
& Rossi (2010), to dynamically compare the out-of-sample forecasting performance of the twelve 
GARCH-MIDAS models in the presence of possible instabilities.  

Some interesting findings are obtained from this study. First, the growth rates of Chinese 
economic policy uncertainty, Chinese crude oil demand, Chinese crude oil production, Chinese crude 
oil import and global crude oil speculation have a significant impact on the long-run return volatility 
of Shanghai crude oil futures, in that the corresponding estimated coefficients of these variables in the 
GARCH-MIDAS models are statistically significant. The current composite factor constructed by 
these five macro-level variables and the current composite factor constructed by the four Chinese 
macro-level variables also have statistically significant impact on the long-run return volatility of 
Shanghai crude oil futures. Second, the DM testing results show that the GARCH-MIDAS model 
involving Chinese crude oil production has the best predictive power for the return volatility of 
Shanghai crude oil futures, followed by the model involving the composite macro-level factor 
constructed by the four Chinese macro-level determinants and the global crude oil speculation, when 
the current monthly macro-factors are considered. Compared with global crude oil demand, global 
crude oil production, and global economic policy uncertainty, the models respectively with Chinese 
crude oil demand, Chinese crude oil production, Chinese economic policy uncertainty and global crude 
oil speculation have relative better predictive power, respectively. This highlights that the return 
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volatility of Shanghai crude oil futures is more affected by the domestic macro-level factors in China 
and the global crude oil speculation activity rather than global oil fundamentals. Thirdly, the results of 
Fluctuation test show that the relative forecast capabilities among the GARCH-MIDAS models 
involving different macro-level variables are indeed time-varying, but even so, the main results 
obtained from the DM test still can be supported. Specifically, the GARCH-MIDAS model involving 
Chinese crude oil production (COP) has the best predictive power for the return volatility of Shanghai 
crude oil futures, in that its Fluctuation test statistics relative to other 11 models are positive at least 
more than 50% of the time. In addition, the Fluctuation test results show that Chinese crude oil 
production and Chinese economic policy uncertainty have better predictive power more than 70% of 
the time relative to global crude oil production and global economic policy uncertainty, respectively, 
which are in line with the DM testing results. Especially when the macro-level variables are one-
monthly lagged, all the GARCH-MIDAS models with Chinese domestic factors have better predictive 
performance than the corresponding models with global factors. In the last, our empirical results show 
that the global crude oil speculation is the global macro-level determinant which has strongest 
influence on the volatility of Shanghai crude oil futures. 

This study has following incremental contributions to the literature on Shanghai crude oil futures in 
China. First, it is the first study to systematically investigate the impact of Chinese and global macro-
level economic factors on the return volatility of Shanghai crude oil futures, including Chinese and global 
crude oil demand, Chinese and global crude oil production, Chinese and global economic policy 
uncertainty, Chinese crude oil import, and global crude oil speculation. Second, both the individual 
macro-level economic factors and the composite factors constructed by all or parts of these individual 
variables are considered to figure out the most informative determinant for predicting the volatility of 
Shanghai crude oil futures. Third, we not only take the DM test to statically compare the forecast 
performance of different determinants for the volatility of Shanghai crude oil futures in different 
forecasting horizons, but also use the Fluctuation test to dynamically compare the time-varying relative 
forecast performance of these determinants. Fourth, the findings of this study are very helpful for 
understanding Chinese and global macro-level economic determinants on Shanghai crude oil futures. 
Although there have been several studies on the impact of economic policy uncertainty and traditional 
determinants (e.g., global oil demand, supply, and speculation) on global crude oil futures such as WTI 
and Brent crude oil markets (Zagaglia, 2010; Wei et al., 2017; Dai et al., 2022; Kang et al., 2020; Diaz-
Rainey et al., 2017; Bu, 2014; Ma et al., 2019), we find some special features for the emerging Shanghai 
crude oil futures. For example, we found that global crude oil speculation has closer linkage with 
Shanghai crude oil futures volatility than global economic uncertainty has, which is inconsistent with the 
study by Wei et al. (2017) that argue the stronger predictive capacity of global economic uncertainty. 
Besides, the volatility of Shanghai crude oil futures is more exposed to the changes of Chinese global oil 
fundamentals and economic policy uncertainty than global oil fundamentals and economic policy 
uncertainty, in which the Chinese crude oil production is the most informative determinant.  

This study has some important implications for investors and policymakers related to Shanghai 
crude oil futures market. Based on the empirical results in this study, we suggest investors and 
policymakers to pay more attention to Chinese domestic macro-level determinants, but also to not 
ignore the shocks from global factors. For example, we found that Chinese crude oil production, 
Chinese crude oil import, and global crude oil speculation activity have a significant impact on 
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Shanghai crude oil futures in this study. If one investor notices a shape decrease of Chinese crude oil 
production while shape increases of China crude oil import and global crude oil speculation index in 
the last month, it possibly implies a sharp increase of the price of Shanghai crude oil futures, vice versa. 
Although this paper has some important contributions to the literature on Shanghai crude oil futures 
by providing new knowledge about its volatility, there are some limitations of this study, implying 
some further research directions in future. First, in our paper, the original data of Chinese and global 
crude oil demand are quarterly while all the data of other macro-factors are monthly. Limited by the 
data availability, we choose to convert quarterly oil demand to monthly data by simply based on the 
actual number of days in each month. However, this smoothing methodology would impact the 
empirical results, suggesting that it could be interesting to re-study this topic when more specifical 
sample data can be obtained in the future. Second, we concentrate only on the impact of Chinese and 
global macro-factors on the volatility of Shanghai crude oil futures, trying to compare the strength of 
different factors and their predictive abilities in this study. Further comparison between the volatility 
of Shanghai crude oil futures and other major global crude oil futures markets also could be an 
interesting research topic in the future. Third, the research object of this study is Shanghai crude oil 
futures, which was first launched in March, 2018. There are only 12 monthly observations for each 
macro-level variables after the Russia-Ukraine war broke out in 2022; thus, it is not appropriate to 
depart the total sample into two groups for comparing the changes before and after Russia-Ukraine 
war. Therefore, it could be interesting to investigate how geopolitical events to affect the volatility of 
Shanghai crude oil futures, by using other methodology such as the Event Study. Fourth, we do not 
investigate the impact of some specific economic policy on the volatility of Shanghai crude oil futures, 
but only take the economic policy uncertainty index as one of macro-factors to examine economic 
policies’ impact on the volatility of Shanghai crude oil futures. Moreover, estimated parameter for the 
monthly changes of Chinese economic policy uncertainty is negative in this study, contrary to some 
previous literature that found positive relationship between changes of EPU and the volatility of 
financial markets. Thus, there are also potential topics for future study. Besides, there have been many 
researchers investigating the co-movements among different financial markets. Thus, there may be 
some reasons to speculate that the macro-level determinants on Shanghai crude oil futures volatility 
would have some influence to other commodities traded in China, which is also one potential research 
direction of our study in the future. 
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