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Abstract: Financial commodity markets have an impact on company values and cash flows, where price 

movements within frequent time intervals can be both significant and random. Understanding highly 

frequent price movements is both important and difficult. In this paper, I measured and forecasted 

volatility for high-frequency (mostly twelve hours per day) WTI Oil front month price movements from 

2012 to 2024 (about 40,500 observations). I created a new stochastic volatility model for extracting latent 

volatility using the non-linear Kalman filter. Stable and strictly ergodic hourly price series, along with 

the BIC optimal non-linear (generic) general method of moments model coefficients, enabled this 

process. The latent volatility seemed to separate into two volatility factors. One factor that was very 

persistent suggested slow mean reversion, and one choppy strongly mean-reverting factor. The data 

dependence found in the factor volatility series suggested forecasting ability. I applied classical static 

forecasts and three machine learning regression techniques to predict one-step-ahead volatility. The two 

volatility factors and one summarizing exponential factor were reported, along with several fit measures, 

including the root mean square error and Theil’s measure of covariance. 
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1. Introduction 

Volatility is a crucial concept in financial markets, and its importance is widely recognized in both 

academic research and practical finance. Key modern financial theory and practice reasons are risk 

measurement and management, option pricing, portfolio construction (diversification), and a general 
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understanding of market dynamics (microstructure). Multifactor volatility models are simple to simulate 

and estimate, and they appear to perform better in derivative calculations due to their smooth sample 

paths, compatibility with standard hedging arguments, and compatibility with Itô-calculus. Multifactor 

models, in contrast to jump diffusion models, are more appealing for implementing machine learning 

(ML) and artificial intelligence (AI) for volatility predictions. The applications of multifactor models are 

numerous, for example, options pricing, risk assessment, algorithmic trading, portfolio optimization, and 

general market surveillance. So, this study creates and tests multifactor scientific stochastic volatility 

(SV) models from high-frequency WTI oil front month (WTI oil) price changes to predict the latent 

volatility of the liquid fossil fuel market. Volatility is a measure of how widely apart an asset’s price 

swings are from one another. All volatility models must have the ability to anticipate future price changes 

to be successful. Internationally, volatility models have successfully predicted the absolute size of 

movements, quantiles, and full densities. Asset volatility is unique in that it is latent or not immediately 

visible, making the evaluation of volatility models’ predicting abilities challenging. I estimate the most 

liquid hourly WTI oil price movements (continuous) using a general method of moment (GMM) 

estimation. The SV models give access to conditional moments and potential forecasts (data dependence). 

The analysis is univariate (non-synchronous trading is irrelevant) and has mainly three objectives. First, 

an objective to find a general step ahead in WTI oil densities; second, an objective to identify data 

dependence for potential predictability; and third, an objective to report systematic market features and 

potential market features applying machine learning techniques. 

Gallant and Tauchen (1987, 1992) introduced semi-nonparametric time series analysis (SNP 

densities)1 as the methodology. Unlike traditional estimating methods, nonparametric estimation does 

not depend on selecting data from a known distribution. Nonparametric models, on the other hand, use 

the underlying data to establish the model structure. The conditional density of the time series 

processes (non-normality) is approximated by the method using an expansion of hermite functions. 

For time series data the hermite expansion is attractive both for modelling and computation. For 

modelling, the Gaussian components of the hermite expansion make it easy to absorb familiar time 

series models. For computation, the hermite density is easy to evaluate and differentiate. Furthermore, 

the SNP implementation is easy to sample from (simulations). The SNP expansion process is therefore 

well approximated using a well-known parametric model as the leading term in the model expansion 

process; higher-order terms, such as hermite functions, show how the process deviates from the model 

(Robinson, 1983). To find the proper order of expansion, I fit the SNP model using traditional 

maximum likelihood and a model selection approach (BIC) (Schwarz, 1978). To compute the 

nonlinear functions of densities2, the model is well-designed. 

The remainder of this paper is organized as follows: In Section 2, I discuss the WTI oil front 

month contracts and look at some literature on the semiparametric (SNP) time-series model, stochastic 

volatility, and the use of the efficient method of moments (EMM). For the volatility forecasting 

classical forecasting (OLS) and machine learning (ML) and the lasso, ridge and Decision Forest 

regression models are presented. Finally, in section 2, neural networks are described briefly for 

prediction purposes. In Section 3.1, the semi-nonparametric (SNP) establish a maximum likelihood 

 
1  SNP/EMM: A Program for Efficient Methods of Moments Estimation, Duke University, 09.08.2022 

(http://econ.duke.edu/webfiles/arg/emm). 

2  The computer cluster at NTNU, Faculty of Economics and Management, Trondheim is used for 

estimation/implementation. A special thanks to Professor Asgeir Thomasgaard at NTNU, for access to the computer cluster. 
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consistent mean and volatility equation details from an optimal BIC criterion (1978). The model 

approximation for the conditional density, which summarizes the probability distribution and describes 

the price movement processes, is expanded by the hermite function expansions (non-normality). The 

residual characteristics report t-statistics for all moment well below two indication a well approximate 

model fit. In Section 3.2, I look at the effective method of moments (EMM) for estimating SV 

specifications and use the non-linear Kalman filter to functionally calibrate the volatility vector that 

hasn’t been observed. The methodology evaluates one or two volatility factors for WTI oil. Potential 

data dependence evaluates the predictability of the volatility factors. In section 4, I study predictions 

using methodologies from section 2.4. In section 5, I summarize and conclude the study. Appendix A 

shows similar results for the daily WTI oil data series. 

2 Literature review 

2.1. WTI oil front month prices 

The fossil oil literature shows a link between the oil and stock markets, which appears not only 

in return but also in volatility. Clark (1973), Tauchen and Pitts (1983), and Ross (1989) observe that 

the rate of information flow to a market correlates with the volatility of an asset, not its return. Thus, 

volatility is a good measure of information flow among markets. Exploring information flow may 

generate new insights. For instance, the study by Vo (2011) shows a bidirectional dependence in 

volatility between stock and oil markets. That is, shocks to either market help predict not only volatility 

in their own market but also that in the other market. 

I attempt to extract information from WTI oil prices and their movements. It will not focus on the 

relationship between stock and oil returns, which many papers cited above have studied, but aim more 

at volatility models that can extract useful information and information flow with good forecasting 

power. Modelling and forecasting volatility are very important for at least two reasons. First, volatility 

is an important variable for pricing derivatives, whose trading volume has quadrupled in recent years. 

Furthermore, volatility is an important input in risk management. For instance, I use it to construct 

optimal hedge ratios to mitigate risk and estimate the value at risk, to name just two applications. 

Second, in order to make efficient econometric inferences about a variable’s mean, I need a correct 

specification of its volatility. 

2.2. The Semi-Non-Parametric (SNP) model 

Our work will suggest conditional models using non-linear stochastic models. To describe the 

structure of the conditional volatility, I use the term generalized autoregressive conditional 

heteroscedasticity (GARCH), and to describe the structure of the conditional mean, I use the word 

autoregressive and moving average (ARMA). In contrast to the ARCH specifications, which were 

initially explored by Engle (1982) and advanced by Bollerslev (1986), who described the generalized 

ARCH or GARCH, ARMA models can be investigated in detail in, for instance, Mills (1990). Initially, 

the number of delays in the ARCH specification was the reason for the development of GARCH from 

ARCH. The volatility is defined by ARCH/GARCH as a function of historical price changes and 

volatility. Quite a few studies have demonstrated how the findings from this work have been utilized 

in the literature on international finance. See, for instance, Nelson (1991), Bollerslev et al. (1987, 1992), 
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Engle et al. (1986, 1993), and deLima (1995a, 1995b). Gouriéroux (1997) provides a thorough 

introduction to ARCH models and their uses in finance. While Glosten et al. (1993) described the 

truncated GARCH (GJR), Ding et al. (1993) extended the symmetric GARCH model into an 

asymmetric GARCH. 

Gallant et al. (1992, 2010) use the term semi-nonparametric, or SNP3, to refer to a method that 

lies between parametric and nonparametric approaches. Higher-order terms in the series expansion are 

deviations from the existing parametric model, which is the leading term and is known to provide a 

decent approximation of the process. The method’s theoretical underpinning is the hermite series 

expansion, which is particularly appealing for time series data due to modelling and computational 

considerations. In terms of modelling, the Hermite expansion’s Gaussian component makes it simple 

to incorporate into popular time series models, including VAR, ARCH, and GARCH models (Engle, 

1982; Bollerslev, 1986). These models typically provide excellent initial approximations for a wide 

range of applications. Hermite density is simple to assess and distinguish computationally. 

Furthermore, because its moments are higher than those of the normal, which can be calculated using 

conventional recursions, they are simple to assess. Finally, sampling from a hermite density is doable, 

which makes simulation easier. 

2.3. Stochastic volatility4 

Instead of directly defining the predicted distribution of price returns, the stochastic volatility (SV) 

method does so indirectly through the model’s structure. The suggested one-step-ahead distribution of 

returns recorded over any arbitrary time interval appropriate for the econometrician is not a concern 

for the SV model because it has its own stochastic process. I begin with the work of Andersen et al. 

(1994, 2002), which examines the well-known stochastic volatility diffusion for a given stock price St, 

as indicated by Equation (1). 

 
𝑑𝑆𝑡
𝑆𝑡
= (𝜇 + 𝑐(𝑉1,𝑡 + 𝑉2,𝑡)) 𝑑𝑡 + √𝑉1,𝑡𝑑𝑊1,𝑡 +√𝑉2,𝑡𝑑𝑊2,𝑡 . (1) 

There are two types of unobserved volatility processes: log linear and square root (affine), for 𝑊1,𝑡, 

i = 1,2. Standard Brownian motions 𝑊1,𝑡 , and 𝑊2,𝑡 may be correlated by corr(d𝑊1,𝑡, d𝑊2,𝑡) = . The  

is mean drift and c is a parameter of volatility-in-mean. The stochastic volatility model was estimated by 

Andersen et al. (1994, 2002) using daily S&P 500 stock index data spanning from 1953 to December 31, 

1996. They sharply reject both SV model versions. A basic SV model, on the other hand, benefits a lot 

from having a jump component added because it captures two well-known features: Fat non-Gaussian 

tails and persistent time-varying volatility. Chernov et al.’s (2003) results for an SV model with two 

stochastic volatility variables are positive. An affine setup and a logarithmic setup are two major 

categories of setups that the authors take into consideration for the volatility index functions and factor 

dynamics. The authors estimate the models using daily data on the Dow Index from January 2, 1953, to 

July 16, 1999. They discover that models with two volatility variables perform significantly better than 

 
3The code and user guide are available at http://www.aronaldg.org. The programme is published under the terms of the 

GNU General Public Licence, version 2 or, at your option, any later version, which is published by the Free Software 

Foundation. You are free to redistribute and/or modify the programme. 

4 See also Solibakke (2020, 2022). 

http://www.aronaldg.org/


470 

Quantitative Finance and Economics  Volume 8, Issue 3, 466–501. 

models with just one. Additionally, they discover that logarithmic two-volatility component models 

outperform affine jump diffusion models and provide a good fit to the data. One of the two sources of 

volatility is quite persistent, whereas the other is substantially mean reverting. 

I apply the logarithmic model with two stochastic volatility variables. I expand the model to 

facilitate the correlation between the mean and the stochastic volatility variables. I use the Cholesky 

decomposition in the correlation to ensure consistency. The introduction of asymmetry effects 

(correlation between return innovations and volatility innovations) is the key justification for 

correlation modelling. With 𝑊1,𝑡 i = 1, 2, and 3 being standard Brownian motions (random variables), 

the generic SV model formulation for price change processes (yt) is therefore Equation (2): 

 

𝑦𝑡 = 𝑎0 + 𝑎1(𝑦𝑡−1 − 𝑎0) + 𝑒𝑥𝑝(𝑉1𝑡 + 𝑉2𝑡) ⋅ 𝑢1𝑡 , 

𝑉1𝑡 = 𝑏0 + 𝑏1(𝑉1,𝑡−1 − 𝑏0) + 𝑢2𝑡 , 

𝑉2𝑡 = 𝑐0 + 𝑐1(𝑉2,𝑡−1 − 𝑐0) + 𝑢3𝑡 , 

𝑢1𝑡 = 𝑑𝑊1𝑡 , 

𝑢2𝑡 = 𝑠1 (𝑟1 ⋅ 𝑑𝑊1𝑡 +√1 − 𝑟1
2 ⋅ 𝑑𝑊2𝑡), 

𝑢3𝑡 = 𝑠2

(

  
 
𝑟2 ⋅ 𝑑𝑊1𝑡 + ((𝑟3 − (𝑟2 ⋅ 𝑟1))/√1 − 𝑟1

2) ⋅ 𝑑𝑊2𝑡 +

√1 − 𝑟2
2 − ((𝑟3 − (𝑟2 ⋅ 𝑟1))/√1 − 𝑟1

2)

2

⋅ 𝑑𝑊3𝑡
)

  
 
. 

(2) 

The vector of parameters is (𝑎0, 𝑎1, 𝑏0, 𝑏1, 𝑐0, 𝑐1, 𝑠1, 𝑠2, 𝑟1, 𝑟2, 𝑟3) . An internally consistent 

variance/covariance matrix is enforced by the correlation coefficients, or the three correlation 

parameters, 𝑟1, 𝑟2, 𝑟3, obtained by a Cholesky decomposition. 𝑐0 is set to zero not to have two constants 

in the volatility equation. Taylor (1986), Clark (1973), Tauchen and Pitts (1983), and Rosenberg (1972) 

are early references. More recent references include Shephard (2004), Andersen (2002), Durham 

(2003), Gallant et al. (1993, 2010), Taylor (1982, 2005), and Chernov et al. (2003). 

The model above contains three stochastic factors (Solibakke, 2020). It is also possible to apply 

Poisson distributions to jumps, although this greatly complicates calculations. To do a statistical 

analysis on a stochastic volatility model produced from a scientific procedure, the research employs a 

computational methodology suggested by Gallant and Tauchen (2010). I first compute the tractable 

likelihood function of a reduced-form auxiliary model (generous parameterization), which intuitively 

explains the strategy. The estimated set of score moment functions encode crucial details about the 

raw data sample’s probabilistic makeup. I then use the continuous-time SV model to simulate a lengthy 

sample. I adjust the parameters in order to maximize the quasi-score moment functions that are 

assessed using the Metropolis-Hastings algorithm and parallel computing on the simulated data. 

Among the useful by-products are an explicit metric for assessing the severity of SV model failure and 

an extensive set of model diagnostics. The scientific stochastic volatility model is easy to simulate, but 

it cannot generate likelihoods. 

The previous SV model estimation yielded a long-simulated realization of the state vector 

{�̂�𝑖,𝑡}𝑡=1
𝑁
, 𝑖 =  1,2 and the accompanying {�̂�𝑡}𝑡=1

𝑁  for 𝜃 =  𝜃. By calibrating the functional form of the 
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conditional distribution of functions supplied {�̂�𝜏}𝜏=1
𝑡 , assessing the outcome on observed data {�̃�𝑡}𝑡=1

𝑛 , 

and producing predictions for 𝑉𝑖,𝑡 , 𝑖 =  1,2 through Kalman filtering on yt, extremely broad functions 

of can be employed and a large dataset is made available. An SNP model is estimated using the �̂�𝑡. A 

conditional variance of provided that is one step forward is represented by the final model. Regressions 

are performed on these series’ �̂�𝑖,𝑡generously lengthy lags, �̂�𝑡
2, �̂�𝑡 and {�̃�𝜏}𝜏=1

𝑡 . Values for the volatility 

factors �̃�𝑖,𝑡 , 𝑖 =  1,2 at the original data points are obtained by evaluating these functions on the 

observed data series {�̃�𝜏}𝜏=1
𝑡 . 

2.4. Step ahead forecasting 

2.4.1. Classic static regression 

Classic Static Regression: Static forecasting repeatedly forecasts the dependent variable one step 

ahead. That is, compute each observation in the forecast sample, compute the �̂�𝑠+𝑘  =  �̂�1 + �̂�2 ⋅

𝑥𝑠+𝑘  +  𝛼3 ⋅ 𝑧𝑠+𝑘  +  �̂�4 ⋅ 𝑦𝑠+𝑘−1 +. . . + �̂�𝑁+4 ⋅ 𝑦𝑠+𝑘−𝑁, always using the actual value of the lagged 

endogenous variable. I must observe data for both exogenous and any lagged endogenous variables for 

observations in the forecast sample. This type of volatility forecasting only uses endogenous variables. 

2.4.2. Machine learning regression models 

In this section, I will define various machine learning regression techniques. I primarily train the 

models using lagged volatility information. I do not use the potential of future market data for training 

and prediction. That is, the three models for predicting continuous data are: (1) Lasso regression; (2) 

Ridge regression; and (3) Decision Forest regression. The Lasso (Least Absolute Shrinkage and 

Selection Operator) is a linear regression technique that helps to prevent overfitting by shrinking the 

coefficients of less important features to zero. The method introduces a tuning parameter called lambda 

(𝜆) that controls the amount of shrinkage applied to the coefficients. The Lasso model minimises the 

sum of the squared residuals (difference between predicted and actual values) and the penalty term, 

which is the absolute value of the sum of the coefficients multiplied by lambda. Increasing the lambda 

value will shrink more coefficients to zero, resulting in a simpler model with fewer features. 

Ridge regression is a linear regression technique that helps to prevent overfitting by adding a 

penalty term to the sum of squared residuals. This penalty term is the sum of the squared coefficients 

multiplied by a tuning parameter called lambda (𝜆), also known as the regularization strength. The 

Ridge model minimises the sum of the squared residuals and the penalty term, where λ controls the 

trade-off between the model’s fit to the data and the coefficients’ magnitude. By increasing the value 

of lambda (𝜆), the Ridge model reduces the magnitude of the coefficients towards zero, resulting in a 

simpler model with smaller coefficients. Cross-validation, like Lasso, also determines the value of 

lambda in Ridge regression. I chose the best model with the lowest mean squared error on the 

validation set. 

Decision forests, also known as random forests, are an ensemble learning method that combines 

multiple decision trees to make predictions. Hyperparameters are adjustable parameters that control 

the behavior of the decision forest model. Techniques such as grid search, random search, or Bayesian 

optimization, which evaluate different combinations of hyperparameters on a validation set to find the 

best-performing combination, can optimize hyperparameters for decision forests. Decision trees use 
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data-based splitting rules to segment the data into subsets. Assign the average of the target variable 

within a subset as the prediction for all observations that fall inside that subset. Recursive binary 

splitting splits a sample into segments to implement a single decision tree. This iterative approach 

determines where and how to split the data based on what leads to the lowest residual sum of squares 

(RSS). Single-decision trees can have low, non-robust predictive power and suffer from high variance. 

Random decision forests, which offer performance improvements by combining results from groups, 

or “forests”, of trees, can overcome this. In summary, the random decision forest algorithm randomly 

selects predictors as potential candidates for data splitting. Constructs a decision tree from a 

bootstrapped training set. Repeats the decision tree formation for a specified number of iterations. 

Averages the results from all trees to make a final prediction. 

Lasso and Ridge regression aim to reduce prediction variances using a modified least squares 

approach. Let us look a little more closely at how this works. Recall that ordinary least squares estimate 

coefficients by minimizing the residual sum of squares (RSS): 

 𝑅𝑆𝑆 = [∑(𝑦𝑖 − 𝛽0 −∑𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

𝑛

𝑖=1

]

2

. (3) 

Penalized least squares estimates coefficients using a modified function: 

 𝑆𝜆 = [∑(𝑦𝑖 − 𝛽0 −∑𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

𝑛

𝑖=1

]

2

+ 𝜆𝐽2. (4) 

where 𝜆 is the tuning parameter and 𝜆𝐽2 is the penalty term. The penalty term for the Lasso regression 

is (L1): 𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1 , and for the ridge regression (L2): 𝜆∑ 𝛽𝑗

2𝑝
𝑗=1 . 

2.4.3. Artificial intelligence-neural networks 

An artificial neural network fits a non-linear model to available data. In a timeseries model, the 

input lags relate to the first (second) hidden layers, or neurons. Note the lags, avoiding look-ahead bias. 

Neurons in the final hidden layer calculate the output dimensions and forecasts. Additionally, I use the 

RELU activation function in both C(R)NN (convolutional/recurrent neural network) and LSTM (long 

short-term memory) neural networks in this paper5. Figure 1 illustrates a simple one-layer neural 

network with three neurons that predicts step-ahead volatility: Features (lags) Neurons Step-ahead 

prediction Simple one-layer neural network with S neurons and biases (b) and an activation function, 

i.e., the softmax function. 

 

 

 

 

 

 

 
5 See Hull (2021). 
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Features (lags)    Neurons   Step-ahead prediction 

 

Figure 1. Simple one-layer Neural Network with  neurons and biases (b) and an 

activation function (i.e. softmax). 

3. WTI oil front month prices and price movements 2010–2024 (3) 

3.1. Data and stationarity 

We ensure that the means, variances, and covariances (rather than the entire distribution) are time 

independent by enforcing weak stationarity. In other words, if that holds for all t, then a process {yt} is 

weakly stationary 𝐸{𝑦𝑡} = 𝜇 ≤ ∞,𝑉{𝑦𝑡} = 𝐸{(𝑦𝑡 − 𝜇)
2} = 𝛾0 < ∞ as well 𝑐𝑜𝑣{𝑦𝑡 , 𝑦𝑡−𝑘} = 𝐸{(𝑦𝑡 −

𝜇)(𝑦𝑡−𝑘 − 𝜇)} = 𝛾𝑘, 𝑘 = 1,2,3, . ..  Future observations are impacted by a shock to a stationary 

autoregressive process of order 1 (AR(1)) in a decreasing amount. Table 1 summarizes the characteristics 

of the price movement series. The data show a negative drift, suggesting a non-increasing WTI oil price 

level over a twelve years period (2014–2024(3) and 40,600 observations). The standard deviation on an 

hourly basis is 0.56, suggesting a yearly volatility of approximately 25%. The maximum (minimum) 

mean is 17 (−15). The kurtosis is high (101.7), indicating many observations around zero, followed by a 

few outliers. The skewness is positive (1.4), showing an asymmetric distribution for the movement 

densities. The high kurtosis likely leads to the strong rejection of the Cramer-Mises normality test (117.3). 

Serial correlation (Q(12)) reports serial correlation, while the Breusch-Godfrey LM statistic does not. 

Heteroscedasticity is present, as evidenced by the Q2 (12) (1,327) and ARCH (12) (1,107) test statistics. 

These series are stationary (ADF (−184) and Phillips-Perron (−184)). However, the series reports some 

form of data dependence (BDS Z statistic > 30). The RESET test statistic (Ramsey, 1969) reports minor 

coefficient instability (14.9). Figure 2 shows the series of continuous movements. Overall, the series 

seems like usual financial market data. In the movement equations, I also tested with breaking trends, 

but my findings did not support trend breaks. A popular notion for assessing risk is value at risk (VaR), 

and Table 1 shows the 2.5% and 1% VaR numbers for market participants. Figure 3 displays the density 

important for non-normality. 
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Figure 4 reports correlogram for ordinary returns (top) and absolute returns (bottom) series. 

Finally, in Figure 5, a simple forecasting of normal, equal weighted, and GARCH(1,1) volatility 

models are forecasted. The volatility seems well described using a GARCH(1,1) model, showing 

heterogeneous variables/volatility. 

Table 1. WTI oil high frequency (12 hours per day) price movements characteristics from 

2014 to 2024(3) giving approx. 40,600 observations. 

Mean (all)/ Median Maximum/ Moment Quantile Quantile Cramer- Serial dependence VaR 

M (-drop) Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q2(12) (1%; 2.5%) 

−0.00423 0.00000 16.9792 101.7092 0.48745 403.1285 117.282 28.884 1327.70 −1.585% 

0.00000 0.55892 −15.0454 1.36247 −0.01518 {0.0000} {0.0000} {0.0000} {0.0000} −1.055% 

BDS-Z-stat. (e = 1) 
  

Phillips- Augmented ARCH RESET Breusch- CVaR 

m=2 m=3 m=4 m=5 Perron DF-test (12) (12;6) Godfrey (1%; 2.5%) 

33.1594 35.5297 35.3718 36.2117 −184.003 −183.998 1106.922 14.87576 1.56234 −2.435% 

{0.0000} {0.0000} {0.0000} {0.0000} {0.0001} {0.0001} {0.0000} {0.0212} {0.9552} −1.734% 
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Figure 2. WTI oil High Frequency Price Movements characteristics for 2011–2024(3). The figure reports hourly price process (orange reported 

on the right axis) and price movements (blue on the left axis) for hourly WTI oil for the period 2016–2024(3). The vertical yellow area is the 

covid-19 period 2020 and the horizontal blue arear is +/−3% price movement bands. 
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Figure 3. WTI oil price movements density characteristics for 2014–2024(3). The Figure reports kernel WTI oil price movement densities 

(normal, epanechnikov, bi-weight, rectangular, and sigmoid) with a histogram in the background. 
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Figure 4. WTI Oil Price Movements autocorrelation characteristics 
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Figure 5. WTI oil Value at Risk (VaR) high frequency models (forecasts) 2014–2024(3). The figure report hourly price changes (blue), 

and 5% Normal (red), EWMA(1,1) (green), and GARCH(1,1) (purple) Value at Risk (VaR) for the period 2013–2024(3). The plot is 

computational intensive. 
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3.2. The SNP density projection 

The conditional density, which completely describes how prices move, is, of course, the most 

important statistical variable. I fit the semi-nonparametric (SNP) model using conventional maximum 

likelihood and a model selection strategy that determines the appropriate order of expansion (BIC). I 

compute the Schwarz Bayes information criterion 𝐵𝐼𝐶 = 𝑠𝑛(𝜃) + (
1

2
) (

𝑝𝑝

𝑛
) 𝑙𝑜𝑔(𝑛) (Schwarz, 1978), 

preferring small criterion values. 

Table 2 reports the maximum likelihood (ML) estimates of the parameters for the BIC-optimal 

SNP density models. First, for the mean, the intercept (𝜂7) is insignificant and the serial correlation 

(𝜂8) is negative (significant) (negative dependence). Second, the conditional variance coefficients 

(𝜂9 − 𝜂13) are all strongly significant. The variance parameters’ significance suggests conditional 

heteroscedasticity for the series. The P & Q companion matrix’s greatest eigenvalue for the conditional 

variance function is 1.006. The spline specification reports mean reversion of the conditional variance 

even though the P and Q companion matrix is 1.006. Last, the BIC favors the hermite function 

coefficients (𝜂1 − 𝜂6) up to the sixth polynomial lag expansion, which indicate modifications in the 

parametric model. Therefore, it is evident from the hermite result that there may be deviations from 

the traditional normally distributed and parametric conditional models. Asymmetry between positive 

and negative movements(𝜂12) seems not to be present. The quadratic and leverage reports corroborate 

the previously unreported finding (not reported). The high Q[1,1] (𝜂11) suggests volatility persistence.

Table 2. SNP-Model Projection Specification for WTI oil price changes. 

Statistical GMM Model: SNP-11116000 

Var SNP Coeff. WTI Oil Std.error 

Hermite Polynoms 
  

h1 a0[1] 0.03766 {0.01086} 

h2 a0[2] −0.11787 {0.00680} 

h3 a0[3] −0.01124 {0.00566} 

h4 a0[4] 0.10584 {0.00437} 

h5 a0[5] 0.03939 {0.00616} 

h6 a0[6] −0.13513 {0.00505} 

Mean Equation (Correlation) 
  

h7 b0[1] −0.05076 {0.01680} 

h8 B(1,1) 0.00069 {0.00855} 

Variance Equation (Correlation) 
  

h9 R0[1] 0.08822 {0.00244} 

h10 P[1,1] 0.08720 {0.00840} 

h11 Q[1,1] 0.98646 {0.00057} 

h12 V[1,1] −0.17172 {00000.0} 

h13 W[1,1] 0.39511 {0.01235} 

Log-Likelihood 
 

−14253.6 
 

Model sn 1.234503 
 

Selection aic 1.235629 
 

Criteras bic 1.239769 
 

Largest eigen value mean 
 

0.00069 

Largest eigen value variance 
 

0.98072 
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Table 3. SNP-Model Projection WTI oil SNP model residuals. 

Mean/ Median/ Maximum/ Moment Quantile Quantile Cramer- Serial dependence 

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q2(12) 

−0.00429 0.00601 7.55081 4.89239 0.28977 40.43639 20.09614 13.4086 1301.9  
1.00018 −7.01311 −0.32293 0.00611 {0.0000} {0.0000} {0.3400} {0.0000} 

BDS-stat. (=1) 
  

ARCH RESET Breusch- VaR CVaR 

m=2 m=3 m=4 m=5 (12) (12; 6) Godfrey 5%/1% 5%/1% 

3.37240 3.47479 1.58471 0.02899 76.0590 8.02566 1.4894 −1.5935 % −2.457 % 

{0.0007} {0.0005} {0.1130} {0.9769} {0.0000} {0.2362} {0.2256} −2.9996 % −4.036 % 

The SNP projection densities give access to the conditional mean and volatility densities reported 

in Figure 6. Figure 7 shows densities for the same conditional mean and volatility. The figure reports 

a right skewed conditional volatility density (log-normal), while the mean displays leptokurtosis. 

Furthermore, Figure 8 allows for the generation and reporting of one-step-ahead mean densities based 

on lagged values. Any length of simulation path (bootstrapping) is available. All these results are in 

full compliance with the statistics from Table 1. Finally, for the GMM moment estimations, Table 3 

reports residual statistics. The residual test statistics are closer to a normal distribution. However, the 

Cramer-von-Mises test for normality is significant. Furthermore, the BDS Z-statistics for m = 2 and 3, 

as well as the ARCH (12) test statistics, indicate data dependence. Most likely, the BDS and ARCH 

signals remain heteroscedastic.



481 

Quantitative Finance and Economics         Volume 8, Issue 3, 466–501. 

 

The figure reports the conditional mean (blue, left axis) for the WTI oil price changes together with WTI oil prices (right axis, yellow). The yellow 

horizontal bar indicates covid-19 period and the blue vertical band indicate −0.005–0.025% volatility band. 
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The figure reports the conditional volatility (blue, left axis) for the WTI oil price changes together with WTI oil prices (right axis, yellow). The yellow 

horizontal bar indicates covid-19 period and the blue vertical band indicate 20–50% volatility band. 

Figure 6. Conditional mean and volatility for the WTI oil high frequency prices period 2020–2024(3) (hourly).  
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Mean Kernel-estimation (NPE) 

 

Volatility Kernel-estimation (NPE) 

 

The Figure reports conditional mean (left) and conditional volatility (right) kernel densities (normal, epanechnikov, bi-weight, rectangular, and sigmoid) 

both with a histogram in the background. 

Figure 7. Conditional mean and volatility densities from WTI oil SNP model.  
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The Figure reports one-step-ahead price change densities left (blue, normal is red) conditional on price change xt-1= unconditional mean. To the right is 

one-step-ahead densities conditional on various xt-1. The densities getting wider the larger absolute xt-1. 

Figure 8. One-step ahead conditional densities (unconditional mean (left), and −5%,…,5% (right)). 



485 

Quantitative Finance and Economics         Volume 8, Issue 3, 466–501. 

 
The Figure reports the reprojected volatility factors, V1 (blue) and V2 (green). The reprojected volatility (purple) seems quite similar to V1 (blue). 

Figure 9. Volatility paths for two factors (V1 and V2) and re-projected volatility (exp(V1+V2)). 
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Figure 10. Correlogram for the volatility factors (V1 and V2) and exp(V1+V2).
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3.3. Stochastic volatility (EMM) for WTI oil front month prices 

The parameter vector for the EMM model described in section 2.3, is reported in Table 4 below. 

Table 4. SV model parameter vector  for WTI oil high frequency prices. 

Parameter values for Scientific model 
 

The WTI Oil High Frequency Prices model Standard 

 Mode Mean error (hess) 

a0 0.013855 0.012895 0.001403 

a1 0.001221 0.001529 0.001685 

b0 −0.959530 −0.961890 0.003432 

b1 0.785280 0.785230 0.000400 

c0 / c1 0 0 0 

s1 0.305690 0.305910 0.000501 

s2 0.253880 0.254000 0.000362 

r1 0.051086 0.051039 0.001003 

r2 −0.019867 −0.018614 0.001214 

r3 0 0 0 

Distributed Chi-square (freedoms) 2(5) 
Posterior at the mode 

 
−4.7650 

Chi-square test statistic 
 

{0.4452} 

Table 5. Characteristics volatility-factors 

Category Mean (all)/ Median Max/ Moment Quantile Quantile Cramer- Serial dep. VaR 
 

Mode Std.dev. Min Kurt/Skew Kurt/Skew Normal Mises Q(12) (1%, 2.5%) 
 

−0.94070 −0.98748 0.6980 5.2064 0.12966 58.4788 76.844 2404.76 −1.2155 

Factor 
 

0.20338 −1.3432 1.76035 0.16421 {0.0000} 
 

{0.0000} −1.1896 

V1t BDS-Z-stat (e = 1) 
  

Phillips- Augm 
 

Breusch- CVaR 
 

m=2 m=3 m=4 m=5 Perron DF-test 
 

Godfrey (1%, 2.5%) 
 

41.303 48.614 56.757 64.268 −66.813 −7.323 
 

218.566 −1.2463 
 

{0.0000} {0.0000} 
 

{0.0000} {0.0001} {0.0000} 
 

{0.0000} −1.2187 
 

Mean Median Max/ Moment Quantile Quantile Cramer- Serial dep. VaR 
  

Std.dev. Min Kurt/Skew Kurt/Skew Normal Mises Q(12) (1%, 2.5%) 
 

0.00592 0.00530 0.1529 2.2677 0.08283 3.4142 290.172 2106.38 −0.0471 

Factor 
 

0.02104 −0.1102 0.34166 0.01023 {0.1814} 
 

{0.0000} −0.0362 

V2t BDS-Z-stat (e = 1) 
  

Phillips- Augm 
 

Breusch- CVaR 
 

m=2 m=3 m=4 m=5 Perron DF-test 
 

Godfrey (1%, 2.5%) 
 

27.090 33.668 38.903 44.264 −101.116 −8.971 
 

204.872 −0.0604 
 

{0.0000} {0.0000} 
 

{0.0000} {0.0001} {0.0000} 
 

{0.0000} −0.0487 
 

Mean Median Max/ Moment Quantile Quantile Cramer- Serial dep. VaR 
  

Std.dev. Min Kurt/Skew Kurt/Skew Normal Mises Q(12) (1%, 2.5%) 
 

22.131 20.595 123.06 31.4565 0.21565 107.722 138.291 2318.3 16.253 

Volatility 
 

5.817 14.1801 3.96985 0.21397 {0.0000} 
 

{0.0000} 16.762 

exp(V1t+V2t) BDS-Z-stat (e = 1) 
  

Phillips- Augm 
 

Breusch- CVaR 

(yearly) m=2 m=3 m=4 m=5 Perron DF-test 
 

Godfrey (1%, 2.5%) 
 

21.416 25.855 29.051 31.818 −117.090 −7.945 
 

187.52 15.726 
 

{0.0000} {0.0000} 
 

{0.0000} {0.0001} {0.0000} 
 

{0.0000} 16.211 
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I use the efficient methods of moments (GMM-MCMC) to estimate the unobserved state vector, 

applying the Gallant and Tauchen (2010) method. In short, the EMM is a systematic approach generating 

moment conditions from the generalized method of the SNP moments estimator. The test-statistic 

𝜒2(5) = 4.765 with associated test statistic 0.45 from Table 4 (bottom) measure the extent of SV model 

failure6. A nonlinear Kalman filtering technique brings the unobserved vector back to reality. Figure 9 

(11,500 observations) reports the unobserved vectors for the sub-period 2020–2024(3). The volatility 

appears to be divided into two factors: One factor that is very persistent (slow men reversion) and a 

strongly mean-reverting factor. Table 5 reports the same figures’ characteristics in numerical form. 

The re-projected volatility, which is skewed to the right and non-normal, reports a yearly average 

of 22.1%. Both Phillips-Perron and Augmented Dickey-Fueller confirm the stationary nature of the 

data. Data dependence appears to be present, with a clearly higher value for volatility factor 1 (V1) than 

for factor 2 (V2). The correlogram for the factor volatilities in Figure 10 clearly suggests a strong serial 

correlation in the two series and in particular for V1 og exp(V1 and V2). Moreover, the Brock, Deckert, 

and Scheinkman (BDS) test statistic for the correlation integral from 2 to 5 (m) suggests significant 

data dependence. 

Table 6. WTI oil hourly volatility ordinary OLS (qr) step ahead fit measures. 

Hourly Estimated Stochastic Volatility Forecast Fit Measures (EVIEWS)   
Factor 1 

 
Factor 2 

 
Reprojected 

Contracts Error Measures V1t 
 

V2t 
 

Volatility 
 

 
Root Mean Square Error (RMSE) 0.00778 

 
0.07580 

 
0.0334 

 

 
Mean absolute Error (MAE) 0.00555 

 
0.05405 

 
0.0223 

 

WTI Oil Mean absolute percent error (MAPE) 0.5624 
 

528.168 
 

5.3733 
 

Front Month Theil inequality coefficient (U1) 0.00381 
 

0.37021 
 

0.04165 
 

Movements Bias proportion 
 

0.0004 
 

0.0004 
 

0.00187 

(Hourly) Variance Proportion 
 

0.0198 
 

0.2915 
 

0.01952  
Covariance Proportion 

 
0.9798 

 
0.7082 

 
0.97861  

Theil U2 Coefficient 0.0774 
 

0.72245 
 

0.86221 
 

 
Symmetric MAPE 0.563083 

 
83.4825 

 
5.40013 

 

4. Forecasting re-projected volatility factors 

4.1. Classical OLS static forecasting 

The WTI oil Hourly Volatility Ordinary OLS Step-Ahead Fit Measures demonstrate a data 

dependence that suggests predictability through serial correlations. Table 6 reports the classical 

step-ahead forecasts using only endogenous variables (lags), and provide numbers for the volatility 

fit. The Theil’s covariance measure is quite high. Factor 1 (V1) has a 97.9% Theil covariance fit, 

indicating that it is clearly predictable. Factor 2 (V2) report a lower Theil covariance measure of 

70.8%. The re-projected volatility (exp(V1 + V2)) reports a close to  factor 1 (V1) result of 97.8%. 

Therefore, it appears that I can project the volatility. However, trading volatility from these factors 

can become challenging, necessitating a close watch on other factors to prevent sudden losses from 

 
6 Degrees of freedom (5) is the number of SNP model parameters minus SV-model parameters –1. 
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the mean reversion process. Furthermore, when considering portfolio theory and systematic risk 

compensation, it’s crucial to keep in mind the significance of covariance.
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The Figure reports V1 actual volatility together with predicted volatility (ordinary, lasso, ridge, decision forest) and +/−2 ordinary regression robust 

standard deviations 
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The Figure reports V2 actual volatility together with predicted volatility (ordinary, lasso, ridge, decision forest) and +/−2 ordinary regression robust 

standard deviations 
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The Figure reports actual Reprojected volatility (exp(V1+V2) together with predicted volatility (ordinary, lasso, ridge, decision forest) and +/−2 ordinary 

regression robust standard deviations. 

Figure 11. Predictions from OLS, ML with 95% robust confidence intervals.  
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4.2. Machine learning regression techniques and step ahead forecasting 

Table 7 reports the prediction results from machine learning (ML) regression techniques for the 

volatility factors (V1 (left), V2 (middle) and exp(V1 + V2) (right column). Figure 11 contains the 

prediction plots for the same ML regression models. For the reprojected volatility, the Lasso model 

with a 𝜆 =   0.05 (L1 penalty is marginally positive) seems to report the lowest RMSE, followed by 

the Decision Forest model. Furthermore, the Theil covariance measure is clearly highest for the Lasso 

model, with 𝜆 =  0 (99.8%). The Ridge model with 𝜆 =  0.1 follows closely (99.8%). Generally, the 

Lasso model with lambda regularization serves as a powerful feature selection technique, enabling the 

construction of accurate and interpretable regression models. When the data contains numerous 

correlated features, people often use ridge regression. The regularization term shrinks the coefficients 

towards each other, which can improve the stability and interpretability of the model. Ridge regression 

with lambda regularization is therefore a useful technique for reducing overfitting and improving the 

performance of linear regression models. In this paper the 𝜆 uses values from 0 ≤  𝜆 <  1. I use 

hyperparameters to tune and improve the decision forest models. 

Confidence intervals are not available using machine learning (ML) techniques. However, Table 

6 reports fit measures for all regression models, which are all comparable with the static OLS forecasts. 

For volatility factor 1 (V1), the regression techniques Lasso ( = 0), Lasso (𝜆 =  0.05) , Ridge 

(𝜆 =  0.1) , and Decision Forest report RMSEs of 0.090, 0.101, 0.090, and 0.091, respectively. 

Furthermore, for factor V1, the Lasso (𝜆 =  0), Lasso (𝜆 =  0.05), Ridge (𝜆 =  0.1), and Decision 

Forest regressions report a Theil covariance measure of 99.3%, 74.0%, 99.3%, and 96.9%, respectively. 

Note however, that the classical static forecasts (OLS) in Table 6 report a Theil covariance fit of 99.3%, 

approximately equal to Ridge regression. The covariance values for volatility factor 2 (V2) are 92.8% 

for Lasso (𝜆 =  0), 3.4% for Lasso (𝜆 =  0.05), 92.7% for Ridge (𝜆 =  0.1), and 30.5% for Decision 

Forest regression. These values are clearly lower than those for factor 1 (V1). Hence, neither the OLS 

nor the ML techniques seem to report good fits for factor 2 (V2). For the re-projected volatility, the 

Lasso (𝜆 =  0), Lasso (𝜆 =  0.05), Ridge (𝜆 =  0.1), and Decision Forest regression techniques 

report covariance measures of 99.8%, 97.8%, 99.8%, and 95.4%, respectively. The regression results 

for the reprojected volatility is clearly closer to factor 1 (V1) than factor 2 (V2). 

The improvements made using ML are marginal, so it is important to evaluate ML techniques in 

light of the use of computer resources. Moreover, thorough tuning of the hyperparameters for the ML 

techniques may improve performance. Consequently, based on the regression results, the machine 

learning regression models seem to expand the possibilities for volatility predictions. For the re-projected 

volatility (𝑒𝑥𝑝(𝑉1  +  𝑉2)), the ML Lasso regression techniques (𝜆 =  0 𝑎𝑛𝑑 0.05)and ridge (𝜆 =

 0.1) report overall best fits (≈ 98 − 99%). In fact, the Lasso and Ridge regression models report a 

Theil covariance measure that is 5% better than the Decision Forest regression model. 

In ML, over-(under-)fitting is important to avoid, referred to as the bias-variance trade-off. For 

all methods, hyperparameters are used for tuning and therefore minimize the trade-off. It will therefore 

be important to use hyperparameters to tune and improve the models. I can categorize the error of a 

machine learning model into two major categories: Bias and variance (refer to the Theil measure). The 

error that occurs when I fit a simple model to a more complex data-generating process. A model with 

high bias will underfit the training data. When I apply our model to a new dataset that it has not seen, 

the expected prediction error occurs. A model with a high variance will typically overfit the training 
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data, resulting in lower training set errors but higher errors on any data not used for training. The model 

validation process in the previous section works when I have large datasets. When data is scarce, I 

must resort to a technique known as cross-validation. The purpose of cross-validation is to provide a 

better estimate of a model’s ability to perform on unseen data. It provides an unbiased estimate of the 

generalization error, especially in the case of limited data. There are many reasons I may want to do 

this: (1) To have a clearer measure of how the model performs; (2) to tune hyperparameters; and (3) 

to make model selections. The idea behind cross-validation is simple: rather than training our models 

on one training set, I train them on multiple subsets of data. I follow the basic steps of cross-validation: 

(1) Divide the data into portions; (2) train our model on a subset of these portions; (3) test our model 

on the remaining subsets of the data; and (4) repeat steps 2–3 until I have trained and tested the model 

on the entire dataset. Average the model performance across all iterations of testing to get the total 

model performance. 

4.3. Neural networks (CNN/RNN/LSTM) 

Figure 12 reports a neural network (CNN/RNN) for V1t. The fit is satisfactory, and the one-step-ahead 

predictions have a low MSE (0.09). Figure 13 shows that V2t has a much higher MSE (0.6). Hence, the 

neural networks report satisfactory forecasts for V1t. However, V2t seems difficult to forecast for neural 

networks. Note that V1t seems to be the most important factor for the accumulated for the reprojected 

volatility (exp(V1t + V2t). 

Table 7. WTI oil hourly volatility machine learning step ahead fit measures. 

Hourly Estimated Stochastic Volatility Forecasts Fit 
     

  
Factor 1 

 
Factor 2 

 
Reprojected 

Category 
 

V1t 
 

V2t 
 

Volatility (e(V1+V2)) 

Lasso Regression 
       

Ridge Regression RMSE 0.090061 
 

0.008824 
 

2.22884 
 

(l = 0.0) MSE 0.059361 
 

0.006768 
 

1.43976 
 

 
MAPE 6.616165 

 
190.1440 

 
6.80762 

 

 
Theil inequality c 1 (U1) 0.043735 

 
22.85882 

 
0.00264 

 

 
Bias Proportion 

 
0.00099 

 
0.00255 

 
0.00013  

Variance P 
 

0.00591 
 

0.06940 
 

0.00150  
Covariance P 

 
0.99310 

 
0.92805 

 
0.99837  

Theil U2 Coefficient 0.77736 
 

0.48436 
 

1.04657 
 

 
Symmetric MAPE 0.01071 

 
0.11457 

 
0.01288 

 

Lasso Regression 
       

(l = 0.05) RMSE 0.101101 
 

0.014326 
 

2.12479 
 

 
MSE 0.074398 

 
0.011201 

 
1.27648 

 

 
MAPE 8.125197 

 
248.4738 

 
5.94658 

 

 
Theil inequality c 1 (U1) 0.050636 

 
55.74350 

 
0.00253 

 

 
Bias Proportion 

 
0.09349 

 
0.01295 

 
0.00000  

Variance P 
 

0.16616 
 

0.95327 
 

0.02198  
Covariance P 

 
0.74035 

 
0.03378 

 
0.97802  

Theil U2 Coefficient 1.07112 
 

0.41586 
 

0.93108 
 

Continued on next page 
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Hourly Estimated Stochastic Volatility Forecasts Fit 
     

  
Factor 1 

 
Factor 2 

 
Reprojected 

Category 
 

V1t: 
 

V2t 
 

Volatility (e(V1+V2))  
Symmetric MAPE 0.01362 

 
0.23404 

 
0.01142 

 

Ridge Regression 
       

(l = 0.1) RMSE 0.090052 
 

0.008819 
 

2.23003 
 

 
MSE 0.059335 

 
0.006763 

 
1.44031 

 

 
MAPE 6.613866 

 
190.7067 

 
6.81054 

 

 
Theil inequality c 1 (U1) 0.043732 

 
22.87471 

 
0.00265 

 

 
Bias Proportion 

 
0.00101 

 
0.00265 

 
0.00015  

Variance P 
 

0.00602 
 

0.07086 
 

0.00158  
Covariance P 

 
0.99297 

 
0.92650 

 
0.99827  

Theil U2 Coefficient 0.77744 
 

0.47533 
 

1.04776 
 

 
Symmetric MAPE 0.01071 

 
0.11452   0.01288 

 

Decision Forest 
       

 
RMSE 0.091326 

 
0.013431 

 
2.16911 

 

 
MSE 0.057668 

 
0.010480 

 
1.28146 

 

 
MAPE 6.611637 

 
180.5500 

 
5.90789 

 

 
Theil inequality c 1 (U1) 0.044041 

 
53.12674 

 
0.00260 

 

 
Bias Proportion 

 
0.00326 

 
0.00076 

 
0.00533  

Variance P 
 

0.02742 
 

0.69393 
 

0.04049  
Covariance P 

 
0.96932 

 
0.30531 

 
0.95417  

Theil U2 Coefficient 0.81876 
 

0.41527 
 

0.97366 
 

 
Symmetric MAPE 0.01037 

 
0.23436   0.01151 

 

 

The Figure reports V1 actual volatility lagged for 25 days (and 12 hours) and a CNN neural network 

predicted volatility. 
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The Figure reports V1 actual volatility lagged for 25 days (and 12 hours) and a RNN/LSTM neural 

network predicted volatility. 

 

Neural network Mean Absolute Error (MAE) comparisons for V1t. 

Figure 12. Hourly neural networks and performance WTI oil V1t. 
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The Figure reports V2 actual volatility lagged for 25 days (and 12 hours) and a CNN/RNN/LSTM 

neural network predicted volatility. 

 

Neural network Mean Absolute Error (MAE) comparisons for V2t. 

Figure 13. Hourly neural networks and performance WTI oil V2t. 
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5. Summary and conclusions 

In this paper, I have modelled and successfully estimated a multifactor stochastic model for the 

conditional mean and variance for the WTI oil price movements, period 2014 to 2024(3). This 

multifactor model aligns with the efficient market hypothesis, which posits that relevant random 

information, accessible to all traders, drives financial market prices, rendering prediction impossible 

(akin to a random walk). The applications of option pricing, risk assessment, trading, portfolio 

optimization, and market surveillance show that volatility is a cornerstone of modern financial theory 

and practice. The analysis reports success with two volatility factors: one is extremely persistent, and 

the other strongly implies reverting. Furthermore, the latent volatility’s data dependence suggests 

predictability. The persistent factor is predictable; the mean reversion factor is most likely not 

predictable. The interesting question now is whether to trade volatility for only the predictable, 

persistent factor. I leave the market implementation to future research using ML and AI methods. 

Even though price processes in energy markets seem stochastic and are unpredictable, I can use 

observed previous prices and their variations to determine the time-dependent variance of forecast 

errors. For derivatives time series volatility is important for market participants in actual financial 

derivatives markets as well as synthetically for index and assets (B&S formula). The static predictions 

of the projected volatility for the WTI oil contracts show a Theil’s inequality coefficient close to zero 

and a covariance portion of 99.8% using Ridge regression (ML) with a 2 = 0.1 (L2). Furthermore, 

using continuous prediction updates (i.e., hourly) may further improve these measures of fit. Also, V1, 

the main and long-lasting factor for the expected volatility in WTI oil prices, has a Theil inequality 

coefficient that is very close to zero and a similar covariance portion of 99.3%. Furthermore, note that 

the reprojected volatility is strongly influenced of the persistent and predictable volatility factor V1. 

Market participants can apply a continuous multifactor SV model with associated volatility trading 

strategies to achieve superior profit from the energy markets. Hence, extending our results to AI/ML 

for program trading and applying volatility forecasts may turn out to be warranted. 
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