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Abstract: Volatility, a pivotal factor in the financial stock market, encapsulates the dynamic nature
of asset prices and reflects both instability and risk. A volatility quantitative investment strategy is a
methodology that utilizes information about volatility to guide investors in trading and profit-making.
With the goal of enhancing the effectiveness and robustness of investment strategies, our methodology
involved three prominent time series models with six machine learning models: K-nearest neighbors,
AdaBoost, CatBoost, LightGBM, XGBoost, and random forest, which meticulously captured the
intricate patterns within historical volatility data. These models synergistically combined to create
eighteen novel fusion models to predict volatility with precision. By integrating the forecasting results
with quantitative investing principles, we constructed a new strategy that achieved better returns in
twelve selected American financial stocks. For investors navigating the real stock market, our findings
serve as a valuable reference, potentially securing an average annualized return of approximately 5 to
10% for the American financial stocks under scrutiny in our research.
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1. Introduction

With the rapid development of technology, computing and the advancement of data processing
capabilities, computer technology has become an integral part of quantitative finance and automated
trading. Currently in the financial market, computer technology is mainly used for financial data analysis
and mining, algorithmic trading, risk management, and quantitative investment strategies (Tatsat et al.,
2020). Among them, the quantitative investment strategy is a process using mathematical or statistical
models for investment practice and implementation of automated trading strategies. In this process, the
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quantitative investment strategy can strictly implement the trading logic initially designed by the investor
and will never make the decision to buy and sell stocks due to emotions from the individual investor
or the people in the financial trading market (Wang and Yan, 2023). Currently, there are a number
of studies and research papers in finance that focus on the problem of how to construct quantitative
trading strategies using computer technology. For example, some researchers used traditional time
series models and machine learning models to construct quantitative trading strategies and achieved
high returns in the backtesting of the cryptocurrency market (Attanasio et al., 2019). There is also
a research paper using a combination of the random forest model and the traditional bollinger band
strategy to construct a strategy that utilizes the stock price prediction results and bollinger bands for
buying and selling operations (Yan et al., 2023). As for the ups and downs in stock trading, volatility is
often used to measure the magnitude of the up and down fluctuations of stock prices in a certain time
frame. Volatility is common in the field of financial mathematics and engineering and usually defined as
the standard deviation of daily stock returns. Volatility is used as a statistical measure of the dispersion
of stocks’ return data and for measuring the value of options traded in financial markets (Li et al., 2023).
The bigger the volatility, the bigger the dispersion of stock returns. Therefore, volatility is a concept that
can be used to measure the risk and deviation of a stock (Schwert, 1990, and Brooks et al., 2003). In our
research, we aim to forecast the future volatility of different American financial stocks using various
variable construction methods, time series, and machine learning models in the first step. As a different
method from other studies only focused on prediction, we not only focus on how to predict volatility,
but also combine the predicted volatility with quantitative investment in real life. In the second step,
we employ a quantitative investment strategy that integrates the predicted volatility with the historical
volatility trend to inform our buy or sell decisions. To assess the performance of this strategy, we create
a simulated trading environment for each American financial stock. Our experimental results indicate
that employing a volatility quantitative investment strategy yields positive returns across a diverse range
of sample stocks. Notably, some stocks have achieved returns exceeding 10%.

The rest of this research can be summarized as follows. Section 2 reviews some research works
related to traditional time series models, machine learning, and deep learning models, and some
quantitative investment strategies. Section 3 describes the logical-technical approach to time series,
machine learning models, and volatility quantitative investment trading strategies used in detail. Section
4 presents the performance of the machine learning model metrics and the performance of the volatility
quantitative investment strategy on a variety of American financial stocks. Finally, Section 5 summarizes
this research and our future research plans.

2. Related works

At present, academic researchers and investors are keen on applying computer technology in finance and
hope that statistical and computer technology models manage to obtain excess returns in investment. Before
machine learning and deep learning were widely used, traditional statistical time series models occupied a
very important position in financial forecasting. Kumbure et al. (2022) made a very detailed description of the
financial stock price forecasting in recent years and summarized the relevant research. In general, traditional
statistical time series models have been widely used for forecasting stock prices or risk prediction for a long
period of time (Khanderwal et al., 2021, and Herwartz, 2017). Currently, the usage processes of traditional
statistical time series models are widely used in both forecasting and risk management (Karasan, 2021).
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In recent years, as artificial intelligence, big data, and other concepts continued to develop, many
studies had been devoted to using machine learning classification models or regression models to predict
the rise or fall of stock prices or the future value of different stocks (Rouf et al., 2021). In the field
of traditional machine learning applications, Basak et al. (2019) used XGBoost and random forest
models to predict future American stock prices under different trading windows, and reported that the
future rise or fall of a stock would be significantly different under different labeling settings. Similarly,
a research paper applied ensemble learning regression models to predict stock prices after moving
average treatment and found that the prediction error was smaller for daily data using moving average
as a label (Yan and Wang, 2023). Some scholars believed that machine learning models need some
constructed variables related to the research problem, so models could show a better result after training.
When faced with the stocks in the Saudi Stock Exchange, Alsulmi and Al-Shahrani (2022) constructed
31 variables of technical characteristics of the stock such as the exponential moving average, triple
exponential moving average, weighted close price, williams’ %R, on-balance volume, and so on. Patel
et al. (2015) used some more classical technical features such as the simple moving average, momentum,
moving average convergence/divergence, and relative strength index for stock trend prediction.

With the development of computer technology, deep learning algorithms and richer data sources
have also been introduced to study the rise and fall of stocks (Wang and Yan, 2022). Vijh et al. (2020)
applied the well-known artificial neural network model to predict the stock prices of four companies
listed in America and found that the artificial neural network model had a smaller error by comparing
it with the random forest model. Similarly, some research papers showed that deep learning models
such as long short-term memory (LSTM) and neural network models had better results than traditional
machine learning models such as support vector machine (SVM) and random forest by predicting the
world’s famous stock market indices (Yu et al., 2020, and Nikou et al., 2019). More novel methods
have also been applied to feature construction. Rezaei et al. (2021) decomposed the original stock
price data to reduce the noise in the original data, and found that the LSTM model could reorganize the
decomposed data and make predictions. In addition, the gated recurrent unit (GRU) model, another deep
learning model based on time series data, was used in many research projects to predict stock prices.
Researchers could control the parameters of the model and change the data inputs to reduce errors
(Shahi et al., 2020, and Gao et al., 2021). Except for using historical stock price data for prediction,
some studies considered introducing richer data sources for analysis. Khan et al. (2020) collected
social media and financial news data and conducted analysis to find investors’ optimistic or pessimistic
sentiment scores on the financial market. These scores facilitated a more accurate prediction of the
future stock prices. The study also pointed out that the variables constructed using text data had different
effects on the prediction of different types of stock. Although deep learning models can have excellent
fitting effects, they also have some limitations on the specific object of prediction, which may affect
their accuracy. Ayyildiz and Iskenderoglu (2024) found that machine learning models were better than
neural networks in predicting the Nikkei Stock Average (NIKKEI 225), Cotation Assistée en Continu
(CAC 40), and Toronto Stock Exchange (TSX) from the global financial markets. To make matters
worse, the parameter selection of deep learning models can be more complex than machine learning
models and the training process is very time-consuming.

Many research papers have concentrated on predicting the rise and fall of the stock price. However,
some studies focused on predicting the stock volatility instead of price (Luong et al., 2018, and Diane
et al., 2024). Volatility holds a significant position in the financial markets. Zhang et al. (2023)
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successfully predicted the risk in the crude oil market by combining the flexible Fourier form with the
generalized autoregressive conditional heteroskedasticity (GARCH) model. Other studies, such as those
by Bezerra and Albuquerque (2017) and Sun et al. (2020), have attempted to merge the GARCH model
with the machine learning model SVM to create an SVM-GARCH model for market risk prediction.
Nonetheless, these studies are limited as they focused on prediction and error comparison only. There
has been little effort to utilize predicted volatility as a trading signal within quantitative investment
strategies. In our prior research, we explored the application of double models in conjunction with
volatility-based quantitative trading strategies within the Hong Kong stock market (Yan et al., 2024).
In our current research, we aim to integrate a more precise volatility prediction model to implement
a quantitative investment strategy. Our objective is to forecast the subsequent day’s stock volatility
using machine learning models. We integrate these predictions with historical volatility trends to guide
our investment decisions regarding stock positions. The effectiveness of our volatility quantitative
investment strategies is evaluated within a comprehensive simulated trading framework.

3. Methodology and process

The framework completed in this research is depicted in Figure 1. Our research aims to utilize a
blend of traditional time series and machine learning models to forecast the future volatility of twelve
financial stocks in the American stock market. Additionally, we devise suitable quantitative investment
strategies. Our modeling process builds upon the methodologies from our previous research (Yan et
al., 2024). We maintain a hybrid approach that combines time series and machine learning models
for volatility prediction. Nevertheless, we have implemented improvements in feature construction,
model selection, the training process, and the quantitative investment process to enhance the alignment
with real-world applications, thus improving the framework’s overall effectiveness. The details of these
enhancements are outlined in Sections 3.1, 3.2, 3.3, and 4.

Figure 1. The experimental framework.

Based on Figure 1, we download the stock datasets first and construct characteristic variables that
facilitate the prediction of volatility based on common financial technical indicators. In addition, some
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better-known volatility forecasting time series models such as GARCH, glosten jagannathan runkle
GARCH (GJR-GARCH), and exponential GARCH (EGARCH) are discussed. The sliding window is
used dynamically during the time series modeling. The features that are constructed using financial
technical indicators and the volatility predicted by the time series modeling are then combined to form
brand new features. These features are used to predict future volatility using six well-known machine
learning models. Similarly, we train these machine learning models using a sliding window approach.
At last, financial simulation trading experiments based on the future volatility predicted by different
machine learning models are conducted. These experiments compare the profitability of volatility
quantitative investment strategies with different feature variables and different machine learning models.

3.1. Data preprocessing

America boasts the world’s largest economy and consumer base, and its stock market plays a
pivotal role in the global economy. The American stock market is recognized as one of the most mature
capital markets globally, distinguished by its vast size, high liquidity, and wide array of investment
options. In contrast to the Hong Kong stock market, which was the focus of our previous research
(Yan et al., 2024), the American market is considerably larger and more active with a large number of
market participants. Consequently, the insights derived from this research carry significant implications.
Moreover, we have included a selection of globally renowned stocks for our analysis. The names of
these twelve financial stocks selected from the American stock market are JPMorgan Chase & Co
(JPM), Bank of America (BAC), Wells Fargo & Company (WFC), The Goldman Sachs Group (GS),
Morgan Stanley (MS), PNC Financial Services Group (PNC), Bank of Montreal (BMO), State Street
Corporation (STT), HSBC Group (HSBC), American Express (AXP), Fifth Third Bank (FITB), and
M&T Bank Corporation (MTB). These stocks have made up a large share of the American financial
market and comprise the country’s bustling financial industry. We downloaded the day-trading datasets
of the above stocks spanning from January 1, 2014 to December 31, 2023 (Yahoo Finance, 2024).

Our dataset comprises five original variables: open, high, low, close, and volume. Beyond these
fundamental data points, we have developed volatility-related features derived from financial technical
indicators cited in research literature. In our previous research (Yan et al., 2024), we limited our
analysis to features associated with historical volatility. In our current research, we are incorporating
additional financial technical indicators such as momentum, on-balance volume, moving average
convergence/divergence, and stochastic oscillator to enhance the precision of our predictions. These
indicators have been constructed using the Pandas and Talib packages within Python. The versions
used are 1.3.4 for Pandas and 0.4.24 for Talib. Also, volatilities of the past few days are used to be the
features of the machine learning models, while the volatility of the next day is considered to be the
output of the machine learning models.

Relative strength index (RSI) is a common momentum indicator, used to calculate the average price
rise or fall of a stock over a certain period in the investment trading market (Levy et al., 1967). The
default period d is set to be 14 days. When the RSI value is above 70, the underlying investment is in an
overbought state. When the RSI value is below 30, the underlying investment is in an oversold state.

RS I(d)t = 100 −
100

1 + average gain over past d days
average loss over past d days

. (1)
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Momentum indicator (MOM), a common technical analysis tool, is used to measure the rate of
change in stock prices over a specific time period. The MOM calculates the momentum of price change
by comparing the current stock price with the stock price at a specific point in the past, which can help
investors identify the trend and strength of the market. A positive value of MOM indicates upward price
momentum, while a negative value indicates downward price momentum. A continuous rising of the
indicator suggests that buying momentum is increasing and the price may continue to rise. On the contrary,
decreasing of the indicator implies that the selling momentum is increasing and the price may fall (Khand
et al., 2019). In this research, d is set to 5 and the stock price is set to the close price.

MOM(d)t = Closet −Closet−d. (2)

On-balance volume (OBV) is also a common momentum indicator. It centers on the idea that
changes in volume can be indicative of future movements in stock prices. If the close price of an asset is
higher than the previous day, the volume for that day is added to the OBV value, and conversely, if the
close price is lower than the previous day, the volume for that day is subtracted from the OBV value.
If the close price is the same as the previous day, the OBV value remains unchanged. In this way, the
OBV indicator reflects the change in buying and selling power in the market (Nti et al., 2020).

OBVt =


OBVt−1 + Volumet, if Closet > Closet−1,

OBVt−1 − Volumet, if Closet < Closet−1,

OBVt−1, if Closet = Closet−1.

(3)

Moving average convergence/divergence (MACD) utilizes the relationship between two moving
average lines to predict price movements. The MACD indicator used in our research consists of three
parts: the MACD line, the MACD signal line, and the MACD histogram. The MACD line is the
difference between the fast exponential moving average (EMA) of the last 12 days and the slow EMA
of the last 26 days, which measures the trend and momentum of the price. The MACD signal line is a
smooth version of the MACD line. The MACD histogram is the difference between the MACD line and
the MACD signal line, which shows the convergence and divergence of the two lines. The difference
between the MACD line and the MACD signal line, always represented by a bar graph in stock investing
software (Wang and Kim, 2018), can help investors identify the strength and direction of the market.
The specific formulas for these indicators are:

EMA(d)t =
2

d + 1

t−1∑
i=0

(
d − 1
d + 1

)iCloset−i, (4)

MACDt = EMA(12)t − EMA(26)t, (5)

MACD S ignalt = EMA(MACDt, 9)t, (6)

MACD Histogramt = MACDt − MACD S ignalt. (7)

Stochastic oscillator, also known as the KDJ indicator, has been originally used in predicting the
futures trading market. The stochastic oscillator can be easily viewed in stock software and has a wide
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range of applications among the investor population. With the %K line and %D line, this indicator
measures the momentum and direction of the price. It shows the relationship between the high and
low levels of the stock price and the close price also reflects the strength of the price trend and the
phenomenon of overbought and oversold (Lai et al., 2019). It can help investors identify the optimal
entry and exit points for trading.

%K(d)t = 100 ×
Closet−i − LowestLow(d)t

HighestHigh(d)t − LowestLow(d)t
, (8)

%D(n)t = 100 ×
K(d)t + K(d)t−1 + . . . + K(d)t−(n−1)

n
. (9)

Since we are forecasting future volatility, we also include historical volatility as features when
constructing variables. First, we compute the daily return of a stock, denoted as Rt. Volatility is
calculated as the standard deviation of the daily return of a stock over a range of past periods of time.
For the purpose of this research, we applied a past period of 30 days, which means that n is 30.

Rt =
Closet −Closet−1

Closet−1
, (10)

Volatilityt =

√√
1

n − 1

n−1∑
i=0

(Rt−i − µ)2. (11)

In our research, we intricately weave the tapestry of volatility’s past to predict its future, utilizing
the features Volatilityt−1, Volatilityt−2, Volatilityt−3, Volatilityt−4, Volatilityt−5, and Volatilityt−6, which
represent the volatility metrics from the preceding six days. These features serve as the independent
variables in our machine learning models, providing a robust framework for discerning the nuanced
trends and shifts in stock volatility. The dependent variable, Volatilityt+1, embodies the projected
volatility for the subsequent day, anchoring the predictive prowess of our models.

As elucidated in the Introduction and visually represented in Figure 1, our exploration commences
with three venerable time series models: GARCH, GJR-GARCH, and EGARCH. These models are
harnessed to forecast volatility, and their predictions are then integrated as feature input for the machine
learning models one by one. The modeling process is executed using the Arch package, version 6.3.0,
within the Python programming environment. We begin with the GARCH model, a time-honored
stalwart in the realm of time series analysis. Renowned for its capacity to estimate the volatility of
financial asset returns, the GARCH model adeptly captures the clustering and leptokurtic nature of
volatility. The canonical GARCH(p,q) model is articulated as follows:

σ2
t = ω +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

β jσ
2
t− j, (12)

where the predictor variable σ2
t is the conditional variance at time t and ϵt is the independent identically

distribution white noise series. et ∼ N(0, 1). ϵt = σtet. The remaining ω, αi, and β j are the model
parameters estimated by maximum likelihood.

The GJR-GARCH model represents an evolution of the traditional GARCH framework, adeptly
capturing the asymmetric nature of financial asset return volatility. This is achieved through the
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incorporation of an innovative indicator function, which allows for a nuanced reflection of market
dynamics. The indicator function is articulated as follows:

σ2
t = ω +

p∑
i=1

(αi + γiNt−i)ϵ2t−i +

q∑
j=1

β jσ
2
t− j, (13)

where Nt−i is the indicator function. When ϵt−i is less than 0, Nt−i takes 1, otherwise it takes 0 (Monfared
et al., 2014). ω, αi, β j, and γi are the model parameters.

In parallel, the EGARCH model stands as another sophisticated iteration of the GARCH model. Its
hallmark lies in the modeling of logarithmic volatility, a feature that liberates the model from the constraints
typically imposed on parameter values (Epaphra, 2016). The EGARCH model is represented as:

ln(σ2
t ) = ω +

p∑
i=1

αi

| ϵt−i

σt−i
| −

√
2
π

 + q∑
j=1

β j ln(σ2
t− j). (14)

The distinction between these three models resides in their unique approaches to volatility modeling.
Our research uses the methodologies outlined by Karasan (2021), enhanced with the application of a sliding
window method. This dynamic update mechanism ensures that the predicted sigma values are not only
current but also highly indicative of future volatility. As we weave these time series models into the fabric
of machine learning, we adopt a hybridized approach. A time series model is meticulously paired with
a machine learning model to form our final model, ensuring robustness and accuracy when other feature
variables remain constant. This fusion of traditional and contemporary techniques yields a predictive model
that is both grounded in proven theory and enhanced by modern computational intelligence.

3.2. Machine learning models

Building upon our previous paper (Yan et al., 2024), we have selected a range of popular and
extensively utilized machine learning models. Alongside the retained AdaBoost and random forest models,
we have chosen four additional widely recognized models for volatility prediction regression modeling:
K-nearest neighbors, CatBoost, LightGBM, and XGBoost. The K-nearest neighbors, AdaBoost, and
random forest models were sourced from the Sklearn package, version 1.1.2, while the XGBoost model
was from the Xgboost package, version 1.7.4. The CatBoost model was implemented using the Catboost
package, version 1.0.6, and the LightGBM model was from the Lightgbm package, version 3.3.2. The
grid search method was chose to select the best parameters of each machine learning model during the
pre-training process. The five-fold validation method was used for the effect evaluation during the grid
search for the best parameters (Müller et al., 2016). The ranges of parameters of each model are listed here:

1) For the K-nearest neighbors model, we selected the following parameters using the grid search
method: n neighbors (1, 3, 5, 7), weights (“uniform”, “distance”), algorithm (“auto”, “ball tree”,
“kd tree,̈ “brute”).

2) For the AdaBoost model, we selected the following parameters using the grid search method:
n estimators (50, 100, 150, 200, 250), learning rate (0.1, 0.5, 1.0).

3) For the CatBoost model, we selected the following parameters using the grid search method:
n estimators (100, 150, 200), depth (2, 5, 8), learning rate (0.1, 0.5, 1.0).
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4) For the LightGBM model, we selected the following parameters using the grid search method: learn-
ing rate (0.01, 0.1, 1), n estimators (50, 100, 150, 200, 250), max depth (1, 2, 4, 8), num leaves
(10, 20, 30, 40, 50).

5) For the XGBoost model, we selected the following parameters using the grid search method:
n estimators (50, 100, 150, 200), max depth (5, 8, 11), reg alpha (0, 0.1, 0.5), reg lambda (0, 0.1,
0.5).

6) For the random forest model, we selected the following parameters using the grid search method:
n estimators (50, 100, 150, 200, 250), max depth (2, 5, 8, 11, 14, 17), max features (2, 4, 6, 8, 10).

We forecasted future volatility using a combination of time series models and machine learning
models, where the time series models are GARCH, GJR-GARCH, and EGARCH. The process of
combining six machine learning models results in 3 × 6 = 18 combinations, such as GARCH-K-nearest
neighbors, GARCH-random forest, GJR-GARCH-AdaBoost, GJR-GARCH-XGBoost, EGARCH-
CatBoost, EGARCH-LightGBM, and other models. In this research, we have adopted a new training
methodology for our 18 machine learning model combinations. Unlike our previous research (Yan et al.,
2024), where we trained models using a static training dataset and evaluated them on a testing dataset,
we now employ a sliding window approach. This method allows the model’s internal parameters to
adapt over time, yielding more accurate results for time series data and enhancing decision-making in
quantitative investment strategies. To evaluate the performance of our machine learning models, we
utilize four standard regression metrics: R squared, root mean square error (RMSE), mean square error
(MSE), and mean absolute error (MAE). These metrics gauge the discrepancy between the actual and
predicted values. An R squared value closer to 1 indicates superior model interpretability and predictive
reliability. Conversely, lower values of RMSE, MSE, and MAE, approaching 0, signify a better model
fit. The formulas for these metrics are as follows:

R squared = 1 −
∑n

t=1(yt − ŷt)2∑n
t=1(yt − ȳt)2 , (15)

RMS E =

√√
1
n

n∑
t=1

(yt − ŷt)2, (16)

MS E =
1
n

n∑
t=1

(yt − ŷt)2, (17)

MAE =
1
n

n∑
t=1

|yt − ŷt|, (18)

where yt is the actual value, ŷt is the predicted value, ȳt is the mean value, and n is the number of
observations.

3.3. Volatility quantitative investment strategy

Quantitative stock investment represents a sophisticated trading paradigm that employs statistical
models and advanced computer algorithms to execute stock transactions autonomously. This method
capitalizes on historical market data and identified trading patterns to inform buying and selling decisions.
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The quintessential aim of this approach is to amplify efficiency and profitability by mitigating the
influence of human emotions through the application of scientific techniques. This domain encompasses
a diverse array of strategies, including but not limited to trend-following, arbitrage, and mean reverting
strategies. The volatility quantitative investment strategy explored in our research draws inspiration
from the foundational principles of mean reverting strategies. Such strategies gauge whether a stock
is overbought or oversold by measuring the deviation of its price from the historical average. Our
strategy involves initiating a buy or sell order when there is a significant disparity between the current
trading price and the historical mean, thereby capitalizing on the anticipated reversion to the stock’s
intrinsic value to generate profits, as delineated by Lo et al. (2023). Our research substitutes historical
stock prices with historical volatility as the metric of interest. We introduce two pivotal constructs: the
upper track line U pper Trackt and the lower track line Lower Trackt. The upper track line signifies
the maximum of volatility in the past 60 days, while the lower track line represents the moving average
of volatility over a trailing 60-day window. These parameters serve as critical thresholds in our refined
mean reverting strategy, offering a fresh perspective on volatility quantitative investment strategy. In
our previous research (Yan et al., 2024), we set the parameter n at 70 when defining these track lines.
However, given that stocks in the American market exhibit greater stability compared to those in the
Hong Kong market, we have adjusted n from 70 to 60. This modification renders the upper and lower
track lines more indicative of significant market movements.

U pper Trackt = Max(Volatilityt,Volatilityt−1,Volatilityt−2, . . . ,Volatilityt−59), (19)

Lower Trackt =
Volatilityt + Volatilityt−1 + Volatilityt−2 + . . . + Volatilityt−59

60
, (20)

where Volatilityt is the historical volatility at time t. The volatility of the coming day predicted by the
machine learning model is used to guide the investment strategy. We buy the stock when predicted
Volatilityt+1 is greater than the U pper Trackt. At this time, the volatility of the trading market of the
stock is huge, which indicates that the investors’ moods are in a panicked or frenzied state. We sell
the stock when predicted Volatilityt+1 is smaller than the Lower Trackt. At this time, the volatility of
the trading market of the stock returns to a smoother stage and implies that the investors’ degree of
panic or frenzy has dispersed. The Backtrader package, version 1.9.76.123, is used to simulate the
quantitative investment strategy for twelve financial stocks. Some performance metrics can evaluate the
return and risk of the volatility quantitative investment strategy. The backtest profit of an individual
stock on the test dataset can be simply expressed as the total assets at the end of the backtest minus the
initial investment amount, which is given by the following formula:

Pro f it = Assetend − Assetinitial. (21)

To scientifically observe the returns, we can also use the annualized return to evaluate the effec-
tiveness of the investment strategy. It indicates the expected return for one year at the time of investing
and is calculated as a percentage. Its calculation formula is as follows, where n denotes the number of
backtesting days on the test set.

Annualized Return = (
Assetend

Assetinitial
)

252
n − 1. (22)
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To assess risk, we use maximum drawdown, calculated as a percentage. It represents the maximum
percentage of loss that an investment strategy can incur over a period of time. When the maximum
drawdown is large, the risk of the strategy is also high and less effective.

4. Experimental results

In this section, we meticulously discuss the efficacy of volatility quantitative investment strategies
as they are applied across a spectrum of machine learning predictive models and a selection of equities.
We employ the statistical metrics of R squared, RMSE, MSE, and MAE to gauge the predictive models’
precision, while the financial metrics of profit, annualized return, and maximum drawdown serve as
our yardsticks for evaluating the economic viability of the volatility quantitative investment strategies.
Our empirical analysis is anchored in backtesting conducted on a dozen stalwarts of the American
financial stocks: JPM, BAC, WFC, GS, MS, PNC, BMO, STT, HSBC, AXP, FITB, and MTB. The
temporal scope of our data spans from January of 2014 to December of 2023. A substantial portion,
precisely 70% of the dataset, encapsulating day-trading data from 2014 through 2020, is harnessed
to train the machine models. The residual 30%, encompassing data from 2021 to 2023, is utilized to
put the models through their paces, testing their performance and the robustness of the quantitative
investment strategies through backtesting.

4.1. Regression results

In this analytical segment, we embark on a comparative evaluation of the forecasting prowess of a
diverse group of 18 models. This ensemble includes three time series models and a series of machine
learning models, meticulously applied to a curated selection of twelve financial stocks. The robustness
of the regression predictions is quantitatively gauged through an aggregate metric of mean value ±
standard deviation value (Mean ± SD), providing a holistic view of model performance. Figure 2 serves
as a visual testament to the superior volatility fitting capabilities of the GARCH-XGBoost model when
applied to HSBC stock, unequivocally demonstrating the machine learning model’s ascendancy.

We categorize the time series models and compute the efficacy of an array of machine learning
models. These models are scrutinized under the lens of GARCH, GJR-GARCH, and EGARCH time
series frameworks, with a keen focus on the precision of fit and predictive error. Based on the financial
trading dataset of twelve American stocks, we employ mean and standard deviation to critically assess
model performance. Intriguingly, as Table 1 reveals, the machine learning models exhibit a uniformity
in predictive capability across the GARCH, GJR-GARCH, and EGARCH classifications. Despite this
parity in error metrics within the test dataset, we unearth a marked divergence in the performance of the
trading strategies, a subject we delve into with more details in Section 4.2.
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Figure 2. Volatility prediction of HSBC.

Table 1. Average regression results for the time series models.

Time Series R Squared RMSE MSE MAE
GARCH 0.907 ± 0.051 0.122 ± 0.036 0.016 ± 0.010 0.083 ± 0.028

GJR-GARCH 0.907 ± 0.051 0.122 ± 0.035 0.016 ± 0.009 0.083 ± 0.027
EGARCH 0.907 ± 0.051 0.122 ± 0.035 0.016 ± 0.010 0.083 ± 0.027

In the machine learning model analysis, we discern notable disparities in the fitting results. Table 2
shows the predicted volatility of the K-nearest neighbors and AdaBoost models, which fluctuates more
than the actual volatility. The R squared metric for these two models wavers between 0.8 and 0.9, a
testament to their erratic predictive behavior. Moreover, the RMSE, MSE, and MAE errors are also
the largest among several models. In stark contrast, the XGBoost and random forest models stand as
paragons of precision, marrying stellar fitting performance with the most diminutive error rates in our
research. As we proceed to invest through machine learning models in Section 4.2, it remains to be
seen whether the XGBoost and random forest models can continue to hold their ground in this arena of
algorithmic prowess.

Table 2. Average regression results for the machine learning models.

Machine Learning R Squared RMSE MSE MAE
K-Nearest Neighbors 0.830 ± 0.049 0.168 ± 0.030 0.029 ± 0.011 0.121 ± 0.021

AdaBoost 0.879 ± 0.035 0.141 ± 0.023 0.020 ± 0.007 0.105 ± 0.019
CatBoost 0.920 ± 0.027 0.117 ± 0.029 0.014 ± 0.007 0.075 ± 0.015

LightGBM 0.921 ± 0.027 0.114 ± 0.022 0.013 ± 0.005 0.078 ± 0.016
XGBoost 0.943 ± 0.013 0.099 ± 0.020 0.010 ± 0.004 0.061 ± 0.009

Random Forest 0.948 ± 0.016 0.095 ± 0.023 0.010 ± 0.005 0.059 ± 0.013
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Upon the synthesis of each time series and machine learning model, we present a detailed exposition
of the new model’s predictive acumen regarding the volatility of a dozen financial stocks in Table 3,
and more granularly in Figures 3 and 4. In a parallel vein to the findings of Table 1, Figures 3 and 4
elucidate the minimal variance in predictive efficacy among the machine learning models classified
under GARCH, GJR-GARCH, and EGARCH, with all corresponding models exhibiting analogous
distributions. A closer inspection of the machine learning models reveals that the K-nearest neighbors
model is beleaguered by the least favorable fitting effect and the most substantial error magnitude. The
box plots within Figures 3 and 4 further illustrate that this model’s volatility range is broader than the
other five counterparts, signaling a deficiency in stability and robustness. AdaBoost, albeit marginally
superior to the K-nearest neighbors, still falls short when measured against the collective performance
of the other three ensemble learning models. Conversely, the XGBoost and random forest models are
lauded for their enhanced fitting effects. However, when appraised on error performance, the random
forest model’s prowess eclipses that of the XGBoost model. Furthermore, the incorporation of financial
technical indicators has enhanced the precision of our machine learning outcomes. Compared to our
past research (Yan et al., 2024), we can observe that models relying solely on historical volatility and
time series features underperform in forecasting Hong Kong stocks. The overall R squared values are
inferior to those of the eighteen models discussed in this section. Similarly, the RMSE and MSE values
are approximately 0.1 higher than those of the models in the current section. In addition, the random
forest model in the Hong Kong stock market prediction also got the best results compared with other
machine learning models. Therefore, in the problem of volatility prediction, we can consider using
Random forest, which provides excellent prediction results in different stock markets.

Table 3. Average regression results for time series models and machine learning models.

Time Series Machine Learning R Squared RMSE MSE MAE

GARCH

K-Nearest Neighbors 0.831 ± 0.049 0.168 ± 0.031 0.029 ± 0.011 0.121±0.021
AdaBoost 0.880 ± 0.033 0.141 ± 0.023 0.020 ± 0.007 0.105 ± 0.019
CatBoost 0.917 ± 0.030 0.119 ± 0.031 0.015 ± 0.008 0.075 ± 0.016

LightGBM 0.921 ± 0.028 0.115 ± 0.023 0.014 ± 0.005 0.079 ± 0.017
XGBoost 0.944 ± 0.013 0.098 ± 0.021 0.010 ± 0.004 0.061 ± 0.009

Random Forest 0.948 ± 0.014 0.094 ± 0.022 0.009 ± 0.004 0.059 ± 0.012

GJR-GARCH

K-Nearest Neighbors 0.829 ± 0.049 0.169 ± 0.030 0.029 ± 0.011 0.120 ± 0.022
AdaBoost 0.877 ± 0.036 0.142 ± 0.022 0.021 ± 0.006 0.106 ± 0.019
CatBoost 0.922 ± 0.019 0.115 ± 0.025 0.014 ± 0.006 0.075 ± 0.013

LightGBM 0.923 ± 0.026 0.113 ± 0.021 0.013 ± 0.005 0.076 ± 0.015
XGBoost 0.942 ± 0.013 0.100 ± 0.020 0.010 ± 0.004 0.061 ± 0.009

Random Forest 0.946 ± 0.015 0.096 ± 0.023 0.010 ± 0.004 0.060 ± 0.014

EGARCH

K-Nearest Neighbors 0.829 ± 0.047 0.169 ± 0.029 0.029 ± 0.011 0.122 ± 0.019
AdaBoost 0.881 ± 0.035 0.140 ± 0.022 0.020 ± 0.007 0.104 ± 0.018
CatBoost 0.921 ± 0.030 0.116 ± 0.031 0.014 ± 0.008 0.075 ± 0.015

LightGBM 0.920 ± 0.026 0.115 ± 0.021 0.014 ± 0.005 0.078 ± 0.015
XGBoost 0.942 ± 0.013 0.099 ± 0.019 0.010 ± 0.004 0.062 ± 0.008

Random Forest 0.948 ± 0.019 0.094 ± 0.024 0.009 ± 0.005 0.059 ± 0.014
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Figure 3. Comparisons of R squared based on time series and machine learning.

Figure 4. Comparisons of RMSE based on time series and machine learning.

Compared with the models presented in Table 3, the GARCH-random forest model exhibits
superior performance across four key metrics: R squared, RMSE, MSE, and MAE. Consequently,
we select the GARCH-random forest model for the interpretable analysis within this section. In
the process of forecasting volatility for twelve American financial stocks using the GARCH-random
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forest model, we concurrently assess the significance of the model’s independent variables using Gini
impurity. Among the top 10 independent variables, Volatilityt stands out as the most critical, boasting
an average Gini impurity score of 0.501 ± 0.076. Furthermore, the volatilities from previous days also
significantly influence the forecast of the next day Volatilityt+1. This is evidenced by the average Gini
impurity scores of Volatilityt−1 (0.252 ± 0.027), Volatilityt−2 (0.095 ± 0.030), Volatilityt−3 (0.061 ±
0.035), Volatilityt−4 (0.012 ± 0.009), Volatilityt−5 (0.034 ± 0.016), and Volatilityt−6 (0.013 ± 0.005).
Additionally, the technical indicators we developed, MACDt (0.005 ± 0.006) and MACD S ignalt (0.013
± 0.009), contribute significantly to the model’s predictive capability. Ultimately, the GARCH model’s
importance is determined to be 0.002 ± 0.002. Although it is numerically the least significant among the
variables, the machine learning models incorporating the GARCH framework consistently demonstrate
enhanced performance when all other independent variables remain constant.

4.2. Trading results

We extend the results analysis in this section, offering a comprehensive exposition of the prof-
itability performance of volatility quantitative investment strategies. These strategies are meticulously
categorized based on their foundational time series models and machine learning models. Prior to
embarking on the backtesting of these quantitative investments, we set a standard initial capital bench-
mark of $100,000. This serves as the financial bedrock upon which we assess the investment prowess
of each model, scrutinizing their profitability and risk management capabilities. Figure 5 stands as a
testament to the efficacy of our approach, graphically depicting the GARCH-XGBoost model’s back-
testing performance on HSBC stock. The model’s acumen shines, demonstrating its ability to pinpoint
opportune moments for stock acquisition during periods of undervaluation, all predicated on accurately
forecasted volatility. Equally impressive is the model’s proficiency in issuing sell signals, capitalizing
on the stock’s return to normalcy or peak valuation, thereby securing profits. The culmination of this
strategic execution is a commendable profitability, with the model’s capital swelling to $161,742.67 by
the end of the backtesting period.

Figure 5. Trading simulation of HSBC stock.
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To provide an intuitive grasp of the quantitative investment performance across all models for each
selected stock, we have distilled the return and risk metrics into Table 4. In our commitment to realism and
pedagogical clarity for investors and researchers alike, we eschew the traditional Mean ± SD in favor of a
95% confidence interval. This statistical choice delineates the upper and lower bounds of our strategies’
profitability and risk control performances more accurately. A panoramic view of the results reveals a
spectrum of positive profits and annualized returns within the confidence interval for all stocks. Yet, the
interval values exhibit significant divergence; for instance, stocks like BAC, GS, MS, and STT present modest
returns, whereas BMO, HSBC, and FITB offer substantial gains to investors. These disparities underscore
the autonomous nature of the companies behind each stock, where executive decisions—shaped by market
forces, political climates, and economic conditions—directly influence the company’s trajectory and, by
extension, its stock price. Despite these variances, our strategy consistently delivers robust performance
across the board, affirming the soundness and applicability of our strategic framework.

Table 4. Average investment results for each stock.

Stock Code Profit Annualized Return Maximum Drawdown
JPM [11086, 22675] [3.520, 6.967] [16.061, 23.929]
BAC [9246, 21605] [2.924, 6.647] [10.921, 15.958]
WFC [11256, 24170] [3.546, 7.391] [10.246, 14.231]
GS [8511, 25243] [2.668, 7.592] [15.562, 22.351]
MS [3452, 12961] [1.068, 4.104] [20.540, 26.880]

PNC [13971, 24450] [4.394, 7.528] [14.106, 18.843]
BMO [32221, 51386] [9.599, 14.722] [11.160, 15.410]
STT [7741, 15916] [2.476, 5.020] [13.636, 18.315]

HSBC [24742, 39152] [7.541, 11.592] [6.347, 9.870]
AXP [22786, 28597] [7.080, 8.755] [12.200, 18.408]
FITB [42923, 52183] [12.657, 15.019] [14.920, 21.174]
MTB [15122, 33634] [4.677, 9.955] [13.955, 18.412]

Table 5. Average investment results for the time series models.

Time Series Profit Annualized Return Maximum Drawdown
GARCH [20219, 28328] [6.162, 8.464] [14.058, 17.235]

GJR-GARCH [19712, 28029] [5.995, 8.369] [14.530, 17.474]
EGARCH [17350, 25120] [5.311, 7.560] [14.654, 17.907]

In our exploration of modeling, Table 5 shows the outcomes of quantitative investment strategies when
categorized under time series-based models. Three distinct time series models exhibit a unique performance
spectrum that stands in stark contrast to the findings presented in Table 2. Within this realm, machine
learning models anchored in the GARCH framework flourish, boasting the most impressive span of returns.
Conversely, the EGARCH model lags, finding itself at a return disadvantage. The absence of notable
disparities in the aggregate predictive prowess of these time series models belies the pronounced variations
observed during the quantitative investment phase. This phenomenon stems from the divergent predictions

Quantitative Finance and Economics Volume 8, Issue 2, 364–386.



380

each model makes regarding volatility’s apexes and nadirs, which in turn dictate disparate transactional
junctures during the backtesting interval of quantitative trading, culminating in a spectrum of profitability
scenarios. Shifting focus to risk management, the maximum drawdown for all models hovers between 14%
and 17%, signaling an inconsequential variance in this metric.

Advancing our analysis, we delve into the efficacy of quantitative investment strategies delineated
by machine learning model classifications, with insights presented in Table 6. Similar to Table 2 in
Section 4.1, the K-nearest neighbors and AdaBoost models continue to underwhelm, not only faltering
in predictive accuracy but also delivering lackluster results in the realm of quantitative investing. Their
profits and annualized returns languish at the lower end of the spectrum. The LightGBM model,
with its superior forecasting abilities, only manages to eclipse the K-nearest neighbors in backtesting
performance, while its edge over the AdaBoost model remains marginal. In contrast, the CatBoost,
XGBoost, and random forest models distinguish themselves with more robust profit margins and elevated
annualized returns. When appraising risk management, the K-nearest neighbors model emerges as the
paragon of prudence, advocating a conservative investment approach. Its maximum drawdown is the
most contained. Some ensemble learning models like CatBoost, XGBoost, and LightGBM exhibit
maximum drawdown confidence intervals spanning from 12% to 21%. Notably, the random forest
model stands out for its ability to confine loss risks within a tolerable 18% threshold.

Table 6. Average investment results for the machine learning models.

Machine Learning Profit Annualized Return Maximum Drawdown
K-Nearest Neighbors [9769, 19029] [3.073, 5.817] [7.587, 10.744]

AdaBoost [17871, 26243] [5.568, 7.978] [14.491, 19.115]
CatBoost [20131, 31349] [6.128, 9.372] [16.080, 19.265]

LightGBM [18403, 29710] [5.678, 8.860] [16.732, 20.215]
XGBoost [21708, 33333] [6.597, 9.905] [16.480, 20.461]

Random Forest [17384, 32584] [5.217, 9.526] [12.799, 17.747]

We dissect the models further to illuminate the quantitative investment outcomes of the 18
fusion models, as delineated in Table 7. The visualization of profit, annualized return, and maximum
drawdown is more vividly depicted in Figures 6, 7, and 8, offering an intuitive grasp of the financial
metrics. Similar to the results in Tables 5 and 6, the sextet of machine learning models within
the GARCH taxonomy surpasses its GJR-GARCH and EGARCH counterparts in Table 7. This
superiority is further corroborated by Figures 6 and 7, where the GARCH-classified models are
shown to seize greater profits. The profitability landscape of the machine learning models is not
uniform across different time series classifications, revealing a nuanced performance matrix. The K-
nearest neighbors model consistently trails behind within the GARCH, GJR-GARCH, and EGARCH
groupings, delivering a performance that can best be described as standard. In a twist of outcomes,
the CatBoost model emerges as a curious anomaly, outshining in the GJR-GARCH and EGARCH
brackets with returns on par with the XGBoost and random forest models. However, its maximum
drawdown remains within a normal range, and under the GARCH classification, CatBoost’s perfor-
mance noticeably lags behind XGBoost and random forest. Based on the results of the XGBoost and
random forest models, we find that they outpace their counterparts in harnessing volatility-based
trading signals. During the forecasting phase outlined in Section 4.1, these two models demonstrate
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commendable performance, with their volatility predictions holding substantial referential value. In
the quantitative investment phase, they exhibit more consistent return performance and maximum
drawdown metrics, particularly under the GARCH and GJR-GARCH classifications. When it comes
to returns, XGBoost slightly outperforms random forest, yet in the arena of maximum drawdown
control, random forest significantly outstrips XGBoost. For investors, the choice of a volatility
quantitative investment strategy hinges on their return expectations and risk appetite. Those with
an aggressive stance, willing to embrace certain losses, may find that the GARCH-XGBoost and
GJR-GARCH-XGBoost models more fitting for their quantitative investment endeavors. Conversely,
conservative investors, averse to high risk, may prefer the stability offered by the GARCH-random
forest and GJR-GARCH-random forest models in their investment strategies. Upon comparing
the outcomes of the strategies from our previous research (Yan et al., 2024), it is evident that the
performance of the eighteen models in the American stock market surpasses that of similar models
in the Hong Kong stock market. The quantitative investment models applied to the American market
managed to maintain the maximum drawdown at approximately 20%, whereas in the Hong Kong
market, the models exhibited a maximum drawdown of about 30%, which is notably 10% higher.
Regarding profitability, the minimum annualized return for American stocks is marginally higher
than that for Hong Kong stocks, by about 1 to 2%. This superior model fit translates into enhanced
returns within the quantitative investment process. Finally, the application of volatility quantitative
investment strategies provided in this research can realize more returns for the investors, and provide
meaningful references for the investors and researchers to combine volatility, machine learning, and
quantitative investment.

Table 7. Average investment results for time series models and machine learning models.

Time Series Machine Learning Profit Annualized Return Maximum Drawdown

GARCH

K-Nearest Neighbors [6764, 23861] [2.211, 7.265] [6.956, 12.600]
AdaBoost [12764, 29836] [4.115, 8.965] [12.057, 20.516]
CatBoost [15203, 34345] [4.781, 10.259] [15.165, 20.838]

LightGBM [16468, 35657] [5.158, 10.625] [14.408, 21.586]
XGBoost [16621, 41346] [5.127, 12.122] [14.076, 22.399]

Random Forest [13978, 44440] [4.290, 12.834] [8.108, 19.049]

GJR-GARCH

K-Nearest Neighbors [4345, 23148] [1.439, 7.018] [5.811, 12.010]
AdaBoost [13889, 28065] [4.385, 8.572] [12.225, 21.674]
CatBoost [16931, 40658] [5.116, 12.041] [14.648, 20.315]

LightGBM [11334, 36605] [3.681, 10.685] [15.766, 21.783]
XGBoost [18272, 41205] [5.654, 12.097] [14.185, 21.325]

Random Forest [13007, 38988] [4.089, 11.406] [12.639, 19.639]

EGARCH

K-Nearest Neighbors [5279, 22998] [1.744, 6.992] [5.625, 11.991]
AdaBoost [15454, 32338] [4.885, 9.716] [12.746, 21.598]
CatBoost [12966, 34338] [4.065, 10.239] [14.025, 21.045]

LightGBM [11966, 32312] [3.842, 9.626] [15.194, 22.106]
XGBoost [14580, 33098] [4.529, 9.975] [15.709, 23.129]

Random Forest [4681, 34812] [1.483, 10.127] [11.140, 21.061]
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Figure 6. Comparisons of profit based on time series and machine learning.

Figure 7. Comparisons of annualized return based on time series and machine learning.

Figure 8. Comparisons of maximum drawdown based on time series and machine learning.
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5. Conclusions

This research employed cases from the American market to validate the integration of time
series and machine learning models, offering practical insights for volatility quantitative investment
strategies and introducing novel methodologies. We selected twelve financial stocks from the American
stock market as our subjects and applied three statistical time series models: GARCH, GJR-GARCH,
and EGARCH, alongside six machine learning models: K-nearest neighbors, AdaBoost, CatBoost,
LightGBM, XGBoost, and random forest to predict next-day stock volatility. Based on these forecasts,
we constructed a quantitative investment strategy to evaluate investment performance. The results
indicate that the XGBoost and random forest models, among the newly integrated models, deliver
optimal predictions for the twelve stocks, providing a solid foundation for developing quantitative
investment strategies. By integrating the predicted Volatilityt+1 with the investment logic established
in this research, the volatility quantitative investment strategy achieves positive returns for all twelve
stocks. Notably, the models utilizing XGBoost and random forest yield higher returns and exhibit
superior risk management. Building on previous research (Yan et al., 2024), we conducted analysis on
stocks within the more established stock trading market in America. We also significantly enhanced
the entire modeling framework, including feature construction, model selection, the training process,
and the quantitative investment process, leading to models with improved fitting, reduced errors, and
increased returns with lower risks. These improvements provide valuable contributions to the broader
investment community.

For future research, we plan to expand our sample beyond the American financial stock market
to include markets from other regions such as Europe, South America, Africa, and mainland China.
We will also explore additional models, training methods, and trading patterns to further enhance the
efficacy and resilience of volatility quantitative investment strategies.
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