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Abstract: Given the competitiveness of a market-making environment, the ability to speedily quote
option prices consistent with an ever-changing market environment is essential. Thus, the smallest
acceleration or improvement over traditional pricing methods is crucial to avoid arbitrage. We propose a
method for accelerating the pricing of American options to near-instantaneous using a feed-forward neural
network. This neural network is trained over the chosen (e.g., Heston) stochastic volatility specification.
Such an approach facilitates parameter interpretability, as generally required by the regulators, and
establishes our method in the area of eXplainable Artificial Intelligence (XAI) for finance. We show
that the proposed deep explainable pricer induces a speed-accuracy trade-off compared to the typical
Monte Carlo or Partial Differential Equation-based pricing methods. Moreover, the proposed approach
allows for pricing derivatives with path-dependent and more complex payoffs and is, given the sufficient
accuracy of computation and its tractable nature, applicable in a market-making environment.
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1. Introduction

Equity derivative market-making environments are known for their competitive pricing
requirements in terms of both speed and accuracy. Large fluctuations of the underlying security price,
together with other pricing parameters, can occur fast and without warning and are influenced by
company news, as well as macroeconomic, financial, and political factors. If market makers cannot
adjust the corresponding option prices instantaneously, arbitrage opportunities can occur.
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There are many reasons why a market maker could be slow in updating the price of a product.
Firstly, high overall system latency can potentially cause a delay in the arrival of market data to the
trading system. Secondly, the calibration process of an implied volatility surface (e.g., using a chosen
parametric volatility model such as the Heston stochastic volatility model) based on new market price
arrivals can represent another potential source of latency. The third step, however, is typically the
most prevalent source of computational latency. Here, current market data and the corresponding
fitted parametric volatility model are inputted into an algorithm to evaluate the price of a derivative.
Depending on the option type, the computational performance of a pricer is affected by its underlying
algorithm and the complexities in the payoff structure of the option.

This paper proposes a method that accelerates the American-style option pricing mechanism. We
do not investigate the closely connected data acquisition, calibration, and price publishing parts. We
assume that a trading system gathers market data and other parameters during the data acquisition
and calibration phases and provides them to the pricing engine. We focus on the pricing algorithm
that calculates what is known as the fair price of the option. This is the price at which no theoretical
arbitrage exists – the probabilistic expectation of a profit on both sides of a transaction is equal to zero.
In practice, a bid-ask spread is then generated around the computed fair price, and both bid and ask
prices are subsequently published on the market platform.*

Since the main objective of the proposed method is its adoption in market making, a key
responsibility of the proposed algorithm lies in its compliance with regulatory guidelines. Even though
we use neural networks to accelerate American option pricing, we ensure that our algorithm is not a
black box. This is achieved by generating a training set using a standard well-known pricing method
(e.g., the PDE-based pricer under the Heston stochastic volatility model) instead of alternative neural
network-based methods employing market data in the training set. Subsequently, we utilize the
generated training set for training a neural network over the assumed (e.g., Heston-based) parameter
space. By training the neural network over a set of all possible parameter space configurations given a
chosen parameter range offline, such an approach allows for: i) decreasing the latency in the pricing of
American options to near-instantaneous and ii) enhancing the transparency and explainability of the
American option pricing algorithm. Furthermore, we show that the prices resulting from the proposed
deep explainable pricer are sufficiently smooth with respect to the input parameters–one of the
algorithmic criteria in eXplainable Artificial Intelligence.

In pricing path-dependent options, conventional methods rely extensively on computationally
expensive numerical techniques. The most common pricing approaches are binomial models, numerical
partial differential equation (PDE) methods, and Monte Carlo (MC) methods. Since the difficulties in
pricing American options lie in the question of how to evaluate optimal exercise, the key differences
between the methods arise from how they approach the optimal exercise decision. Cox et al. (1979)
proposed the initial binomial tree method, which is fast and reasonably accurate. However, it does not
work in the case of stochastic volatility. Furthermore, a trinomial tree that converges faster than the
binomial tree was developed by Boyle (1986). Tree models rely on constant volatility and determine the
optimal exercise by comparing the immediate exercise value and the discounted probability-weighted
cashflows at each node.

* Depending on the current inventory (i.e., risk position) of the market-making trading desk that is pricing the option, the trading system can
allocate aggressiveness to either the bid or the ask side by adjusting the spread around the fair price. Aggressiveness settings allow a
trading desk to reduce its risk without hedging by attracting a specific direction of transactions.
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To generalize to the non-constant volatility models, researchers developed methods based on
numerical solutions to the Black-Scholes-Merton PDE, which holds in general for both European and
American option styles. PDE methods for pricing American options admit the representation of the
optimal exercise decision as a PDE boundary condition. The PDE with its boundary condition is solved
numerically using various numerical solvers such as modified finite difference, finite element, and
boundary projection methods. One of the pioneers in this area were Brennan and Schwartz (1977), who
priced American put options using a boundary projection method. Later, Ikonen and Toivanen (2004)
proposed an approach using the Crank-Nicolson method (i.e., a type of finite difference method, see
Crank and Nicolson (1947)), which was found to be more efficient than the boundary projection method.
Nevertheless, PDE methods are generally too slow for a market-making environment, especially in the
presence of stochastic interest rates, stochastic volatility models, jump processes, multi-dimensional
options, or derivatives with other complicated features.

Furthermore, researchers analyzed the use of statistical simulation methods known as Monte Carlo
(MC) methods for option pricing. These methods are slower than the other methods mentioned above.
However, they proved to be more flexible in terms of their ability to price derivatives under different
volatility dynamics, more complex path-dependent payoff structures, and further departures from the
basic Black et al. (1973) framework. Initial MC methods for American option pricing suffered under the
curse of dimensionality since the decision process of optimal exercise relied on performing an additional
MC simulation for each in-the-money path as proposed by Boyle et al. (1997). Thus, the number of paths
increased exponentially. Famously, Longstaff and Schwartz (2001) proposed an MC method where the
exercise decision relies upon comparing the current exercise payoff and a least-squares approximation
of the option continuation value. This method circumvents the dimensionality problem of the nested
MC approach and is thus highly effective. However, the Longstaff-Schwartz (LS) method is too slow
for a market-making environment. Recently, the area of rough volatility models has evolved, see Bayer
et al. (2016). Due to the non-Markovian dynamics of rough volatility models, pricing with Monte Carlo
methods is required.

The use of artificial neural networks (ANNs) for option pricing started with Malliaris and Salchenberger
(1993) and Hutchinson et al. (1994). The authors show that the Black-Scholes-based European-style option
valuation can be successfully recovered with a neural network. These works serve as a valuable reference
point that spurred a wide range of future research involving machine learning methods applied to option
pricing and hedging.† Lajbcygier and Connor (1997) study the difference between hybrid neural network-
based option valuation and observed market option prices and show that the pricing bias can be reduced
with bootstrap methods. Anders et al. (1998) show that applying statistical inference techniques to build
neural network pricing models leads to superior out-of-sample pricing performance compared to the
Black-Scholes model. Garcia and Gençay (2000) incorporate financial domain knowledge in the form of a
homogeneous option pricing function directly into the construction of an ANN pricer and show that such an
approach reduces the out-of-sample mean squared prediction error. On a similar note, Dugas et al. (2009)
show that the generalization performance of a learning algorithm can be improved by incorporating prior
knowledge into its architecture. The authors propose new types of function classes that incorporate the
a priori constraints based on the knowledge that the function to be learned is non-decreasing in its two
arguments and convex in one of them. Pricing of S&P-500 European call options with a non-parametric
modular neural network model is investigated in Gradojevic et al. (2009).

† An extensive literature review of the applications of neural networks to option pricing is provided in Ruf and Wang (2020).
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Neural networks have also been studied in the context of option hedging as well as implied volatility
smile and its calibration. The European-style option hedging is investigated in Chen and Sutcliffe (2012)
and Shin and Ryu (2012). More recently, Buehler et al. (2019) present a deep hedging-based framework
for hedging a portfolio of derivatives in the presence of market frictions. The implied volatility smile
is, in a GARCH-neural network approach, studied in Meissner and Kawano (2001). Computation
of implied volatilities is, among others, also studied in Andreou et al. (2010) and Liu et al. (2019b).
More recently, Horvath et al. (2021) propose an application of neural networks in a two-step process
where firstly, the European option pricing map is learned, and secondly, the European option implied
volatility surfaces are calibrated to various parametric models. Deep learning calibration is studied also
in Hernandez (2016), Ferguson and Green (2018), Liu et al. (2019a), and Itkin (2019).

The literature presented up to now studies an application of ANNs to the pricing of European-style
options. Additionally, applying machine learning methods to solving the American option pricing
and hedging problem has already been explored.‡ Kelly (1994) presents the first study of pricing and
hedging American put options using neural networks. A similar analysis is presented also in Pires and
Marwala (2004) and Morelli et al. (2004). More recently, Gaspar et al. (2020) use neural networks
to price American put options on four large U.S. companies. Generally, the American option pricing
approaches fall into the categories of i) regression-enhancement for basket options as in the case of
Kohler et al. (2010), ii) solving the optimal stopping problem as in the case of Becker et al. (2020), or
iii) a mix of both as in Chen and Wan (2021). Moreover, machine learning methods can be used to
approximate value functions emerging in dynamic programming, for example, arising in the American
option pricing problem, see Ye and Zhang (2019). Similarly, Fecamp et al. (2019) apply ANNs to solve
the pricing and hedging problem under market frictions such as transaction costs.

This paper contributes to the literature on option pricing by introducing a direct application of deep
neural networks to price American-style options, which is relevant as the majority of the single stock
options traded on the market are of the American style. In contrast to existing literature that focuses on
European-style options, such as Horvath et al. (2021), we extend our methodology to American-style
options by learning not only asset price dynamics but also the dynamics of a chosen volatility model,
as well as the American option optimal exercise strategy, which has not been explored in the existing
literature. One of the key advantages of our approach is that it learns the direct map between model
parameters and price, providing a more interpretable and transparent approach than previous methods
that rely on an implied volatility surface.

In addition to these contributions, our approach can be seen as an explainable method for pricing
American-style options. By explicitly modeling the dynamics of the assumed volatility model and the
corresponding optimal exercise strategy, our model provides a transparent and intuitive way to understand
how American option prices are determined. Our results demonstrate that the proposed neural network
pricer considerably improves upon the widely-used American-style option pricing models, such as PDE or
Monte Carlo methods, in terms of both parameter interpretability and speed-accuracy trade-off.§ Overall,
our model offers a more interpretable, transparent, and computationally efficient approach for pricing

‡ It should be noted that while our paper focuses on the pricing of American options, other types of options, such as exchange options, have
been thoroughly explored in recent works (Pasricha and He, 2023; He and Lin, 2023a).

§ Speed-accuracy trade-off in terms of derivative pricing, hedging, and fitting has also been confirmed by Spiegeleer et al. (2018). Moreover,
Glau et al. (2020) extend the tensorized Chebyshev interpolation of conditional expectations in the parameter and state space and show that,
at comparable accuracy, the interpolation in American option prices provides a promising gain in computational efficiency, leading to a
speed-accuracy trade-off.
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American-style options, which has the potential to be widely accepted by regulators and applicable in a
market-making environment. In addition to its practical implications, our approach also opens up new
avenues for future research in the field of Artificial Intelligence (AI) in finance.

In the last few years, methods from AI have been successfully applied in the field of finance. As more
and more black-box approaches are being adopted, the demand for transparency from regulators, investors,
developers, and managers has been increasing. This paper presents a contribution by proposing a method
for pricing American-style options that falls within the field of eXplainable AI (XAI).¶ The neural network,
often considered a black-box algorithm, is, in our approach, applied solely as a function approximator that
learns from a training set generated by a chosen (e.g., PDE-based) well-known pricing model. We show
that by doing this, our pricer behaves in an interpretable, tractable, and trustworthy fashion. As such, our
approach can be understood as a machine learning method that produces an accelerated and explainable
option pricing algorithm while maintaining a high level of pricing accuracy. Model explainability is one
of the crucial aspects that would ensure investors and regulators with understanding and trust to use the
proposed machine learning pricing model in a market-making environment.

The remainder of the paper is organized as follows: Section 2 introduces the computational model
and its underlying framework. In Section 3, the numerical results are presented and the speed-accuracy
trade-off is analyzed. Finally, we conclude in Section 4.

2. Model

We propose a method where American-style option prices are generated using a standard pricing
method, and the price data is subsequently utilized for training a neural network over the underlying
parameter space. Since the option prices are constructed with a well-known pricing method, the neural
network learns the pricing map by utilizing the generated training set that is by construction free of
arbitrage. Essentially, this neural network provides the capability to learn the behavior of the American
option price to changes within its parameter space. By generating our own training data and training the
neural network offline (i.e., not during trading hours), the latency in the pricing of American options
during trading hours can be reduced to near-instantaneous. Furthermore, the same neural network
could be used for other purposes such as calculating implied volatilities or calculating the Greeks (i.e.,
a set of derivatives of an option with respect to various parameters), see Larguinho et al. (2022), at
near-instantaneous speeds.

2.1. Deep Explainable Pricing Algorithm

We consider a typical parameter set prevalent in a derivative pricing framework Ψ B (r, q,T −
t,M, ψModel

σ ), where r denotes the interest rate, q the continuous dividend yield, T − t the time-to-maturity,
M the moneyness, and ψModel

σ the set of variables parameterizing a chosen volatility specification. A
standard Black-Scholes-Merton setting represents a trivial case of constant volatility with ψBS

σ B σ0,
whereas under the Heston stochastic volatility model, the parameterization is denoted by ψHeston

σ B

{v0, σ, κ, θ, ρ}, where the parameter definitions are provided in the model description below.
For the purpose of this study, the Heston stochastic volatility model was chosen as the basis

for the proposed approach to pricing American-style options. This choice of a stochastic volatility
model is motivated by the need to capture the dynamic nature of implied volatility, which is crucial for

¶ An extensive review of the literature around XAI is provided in Arrieta et al. (2020).
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pricing options with path-dependent payoffs. Although there are many stochastic volatility models in
the literature, the Heston model is widely studied and well-understood, making it a popular choice in
practice. Additionally, the Heston model is capable of reproducing some of the stylized facts present in
observed financial returns, such as volatility clustering and mean reversion, see Cont (2001). However,
the Heston model does have some limitations in fitting the short-end of the implied volatility surface,
which can be addressed by including jumps (Xie et al., 2021) or a local volatility component (Farkas
et al., 2022). Nonetheless, the Heston model remains a good choice for theoretical tractability and
comparability with other studies in the literature. It is important to note that our proposed method can
be extended to any parametric volatility model, including Lévy-type volatility models (Schoutens, 2003;
Glasserman and Kim, 2011; Barndorff-Nielsen and Stelzer, 2013; Ascione et al., 2023; He and Lin,
2023b; Lin and He, 2023), as long as the volatility model is parametric. Therefore, the choice of the
Heston model is primarily driven by its popularity and theoretical tractability, and our proposed method
can be applied to a broad range of volatility models.

By computing American option prices using, for example, a PDE method on a dense grid across the
parameter set Ψ, we generate a training set over which a neural network pricing functional is trained. As
standard methods are used offline to generate the training data for the neural network, a major component
of this paper is the accurate generation of the training data. Due to various universal approximation
theorems (discussed below), it can be assumed that the neural network is able to approximate the option
pricing dynamics to, at best, the precision of the underlying standard model-generated data. Thus, the
error of the standard model data serves as a lower bound to the neural network error, illustrating the
requirement for accurate standard model input data.

Definition 2.1 (Heston Stochastic Volatility Model). Consider a probability space {Ω,F ,Q} adapted to
a filtration Ft. Let S t and vt denote the asset price and instantaneous variance at time t. Then, according
to the Heston model, as presented in Heston (1993), the asset price and volatility processes are, under
the pricing measure Q, defined by a system of stochastic differential equations (SDEs)

dS t = (r − q)S tdt +
√

vtS tdWt,

dvt = κ[θ − vt]dt + σ
√

vtdZt, (1)
dZtdWt = ρdt,

where κ > 0 denotes the speed of mean reversion, θ > 0 the long term variance of the price process,
σ > 0 the volatility of volatility, −1 ≤ ρ ≤ 1 the correlation coefficient between the geometric Brownian
motion processes Zt and Wt, and S 0, v0 > 0 are the starting values of the stochastic processes S t and vt,
respectively. In order that the instantaneous variance vt > 0 is strictly positive, the parameters need to
obey the Feller condition 2κθ > σ2.

The value of an American call option with maturity T and strike K, is, at time t = 0, given by

V(S 0, 0) = sup
τ∈T (T )

EQ
[
e−rτ(S τ − K)+

]
, (2)

where T (T ) denotes the set of stopping times τ with values in [0,T ]. Assuming the system of SDEs
from Equation (1), one can derive the solution to Equation (2) in terms of a PDE. The resulting Heston
American call option PDE (expressed in terms of the option price) is given by

∂V
∂t
+

1
2

vS 2∂
2V
∂S 2 + ρσvS

∂2V
∂v∂S

+
1
2
σ2v

∂2V
∂v2 − rV + (r − q)S

∂V
∂S
+ [κ(θ − v) − λ(S , v, t)]

∂V
∂v
= 0, (3)
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in the regionD = {0 ≤ t ≤ T, 0 ≤ S t ≤ b (v, t) , 0 ≤ v < ∞}, subject to the boundary conditions

V (S , v,T ) = (S − K)+,
V (b (v, t) , v, t) = b (v, t) − K,

lim
S→b(v,t)

∂V
∂S
= 1,

lim
S→b(v,t)

∂V
∂v
= 0,

where b (v, t) represents the early exercise boundary at time t for the Heston volatility v, and λ(S , v, t)
denotes the corresponding market price of volatility risk. See Heston (1993) and AitSahlia et al. (2010)
for a detailed proof and more information.

Algorithm 1 Neural network-based American option pricer under stochastic volatility

Input: Chosen parameter ranges for r, q, v0, σ, κ, θ, ρ, M, and T − t.
Output: Current price of an American-style option per underlying applicable in a market-making
environment.

(a) Training data generation: Evaluation of American option prices using a chosen standard pricing
method across an entire parameter space Ψ.
(b) Learning: Offline training of a neural network over a parameter-price data set.
(c) Pricing: Application of a neural network pricer in a market-making environment.

In Algorithm 1, the proposed American option pricing methodology is summarized in a three-step
process that generates a direct explainable neural network pricer. In the case when the training data is
generated with a standard PDE method, Step (A) reduces to solving the Heston PDE from Equation (3)
using a finite difference method. The parameter ranges over which the learning takes place need to be
chosen in this step. In our case, these are the Heston model parameters whereas the same algorithm
works for any other parametric specification. We detail the chosen parameter ranges (assuring that the
Feller condition is satisfied) in Section 3.1. Note that the chosen parameter ranges largely depend on the
available computational capabilities. In Step (B), offline training takes place. One needs to choose the
structure of the neural network and the corresponding hyperparameters in this step of the algorithm.
We detail the architecture of our chosen neural network in Section 2.2 and provide the analysis of
the training process in Section 3.1. The deep neural network here is utilized merely as a tool to learn
the pricing map between the chosen standard (e.g., PDE-based) pricing method in Step (A) and the
corresponding American option prices. Such an approach enhances the trust and transparency of our
algorithm. Even though a neural network is applied, the algorithm itself is not a black box. As shown in
the next section, our algorithm simply accelerates the computation of American option prices obtained
by a well-understood pricing approach chosen in Step (A) of the algorithm. Finally, after the offline
learning process from Step (B) is completed, the deep explainable (i.e., Heston-based) neural network
pricer can be employed in a market-making environment in Step (C) of the algorithm. Given our aim
for computational explainability, the proposed algorithm has a large potential of being understandable
and trusted by humans, and as such accepted by regulators and investors.

Since this neural network is targeted for market making, a key responsibility of any algorithm in
a trading environment is its compliance with regulation such as the Markets in Financial Instruments
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Directive (MiFID) or Securities and Exchange Commission (SEC) guidelines. For example, MiFID
specifically states that banks employing algorithms in trading should be able to “reconstruct efficiently
and evaluate the strategies that algorithmic traders employ”, see Directive-65/EU (2014). This implies
a requirement that black-box pricing algorithms such as neural networks need to have an explainable
element. As such, we find it important to stress that our XAI-based pricing method indeed fulfills this
requirement since we can show, see Section 3.2, that the error is bounded on the underlying (i.e., Heston)
parameter space.

Note that one can use any underlying data-generating process as well as any American option
pricing method for the training data generation since the calibration of the deep neural network works
independently of the training price generation. As such, we provide a possible extension of the algorithm
proposed above to pricing under the rough Bergomi volatility specification in Appendix A.∥

To improve upon the computationally slower standard American option pricing algorithms, we apply
neural networks to serve as the functional evaluators–essentially substituting the underlying numerical
pricing algorithm. This is primarily due to the ability of neural networks to model complex non-linear
dynamics, differentiability, fast execution, and the ability to be evaluated using very basic low-level
functionals. Furthermore, given the universal approximation properties of neural networks, there exists a
neural network (trained upon a chosen basic pricing method) that is able to price American-style options to
any desired accuracy up to the pricing error imposed by the generated training data.

We aim to improve the process of American option pricing with respect to the speed-accuracy trade-
off compared to the standard American option pricers. The motivation for improving the speed-accuracy
trade-off lies in the ability of the neural network to learn the American option pricing map offline.
Because of the simplicity of the neural network representation, their evaluation speed is unparalleled
to the speed of other option pricing models. The boost in speed of the computation and the algorithm
interpretability are the main arguments granting our approach a suitable candidate improving upon the
currently used market-making pricing systems.

2.2. Deep Neural Network Structure

We exploit a feed-forward neural network with a rectified linear unit (ReLU) activation function
merely as a tool to map from a given parameter space to the American option prices. The near-
instantaneous evaluation of neural networks and their ability to approximate continuous functions
provide for the above-mentioned speed advantages over standard pricing methods. Neural networks
can evaluate option prices in less than milliseconds, whereas PDE methods, binomial methods, or MC
methods have significantly slower evaluation speeds. The deep neural network we employ is structured
as a generic multi-layer perceptron as described in Caterini and Chang (2018).

Definition 2.2 (Multi-Layer Perceptron). Given a data set with an input dimension of k and an output
dimension of m, a multi-layer perceptron is defined as the neural network with an input layer of
dimension n0 := k and an output layer of dimension nL+1 := m, where L specifies the number of hidden
layers between the input and the output layer. Analogously, each layer between layers 0 and L + 1 is of
dimension ni. For each layer i, we denote the weight and bias matrices by Wi ∈ R

ni+1×ni and bi ∈ R
ni+1 ,

respectively. Per layer, the following function is applied to provide the input to the subsequent layer:
∥ Rough Bergomi model improves upon the classical stochastic volatility counterparts by reflecting the implied volatility surface dynamics

more accurately (e.g., especially for short maturities). Under the rough Bergomi model, derivative pricing must be performed via Monte
Carlo simulations. Thus, the computation time could potentially be greatly reduced using our proposed accelerated pricing method.
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gi(xi; Wi, bi) = γi(Wi · xi + bi), where xi ∈ R
ni+1 and γi denotes the corresponding activation function of

the layer.

Some of the fundamental theorems of deep neural networks postulate that under a specific set
of criteria, neural networks can approximate continuous functions to any degree of accuracy. These
theorems are known as universal approximation theorems. Some of them focus on the depth (i.e., a
number of hidden layers) of a neural network, and others on the width (i.e., the number of nodes per
hidden layer). A widely known universal approximation theorem from Hornik et al. (1989) specifies
that a neural network can approximate any continuous real-valued function on a compact set to an
arbitrary accuracy ϵ > 0 provided certain criteria for activation functions and depth hold. This is known
as the depth-bounded universal approximation theorem. Extensions of this universal approximation
theorem for ReLU activation functions are provided in Stinchcombe and White (1989). Moreover, Lu
et al. (2017) propose a specific universal approximation function that provides an upper bound to the
width of a neural network with ReLU activation functions. This result is relevant for this paper since we
use the ReLU activation functions on the neural network’s hidden layers. The corresponding theorem is
stated below.

Theorem 2.1 (Width-Bounded Universal Approximation Theorem for ReLU Networks). For any
Lebesgue-integrable function f: Rn → R and any ϵ ≥ 0, there exists a fully-connected ReLU network G
with width dL ≤ n + 4, such that the neural network function FG approximating f satisfies:∫

Rn
| f (x) − FG| dx < ϵ. (4)

Our choice of the ReLU activation function relies on some of its special properties. ReLU activation
functions are special since for x < 0, the activation function does not fire**—causing a sparser neural
network. Furthermore, as x becomes large, the neurons do not become saturated†† as in popular sigmoid
activation functions. Lastly, ReLU functions are known to train faster compared to other activation
functions, as shown by Krizhevsky et al. (2017). One problem with ReLU activation functions noted by
Caterini and Chang (2018) is that neurons can easily die, becoming what are known as “dead neurons”
or neurons that always give a zero weight—a downside of allowing a sparse structure. This problem can
be fixed by using a leaky ReLU activation function defined by

γ (x) B
{

x, x > 0
0.01x, x ≤ 0

}
, (5)

which returns a small negative value for x < 0, allowing the neurons to recover.
Following standard literature, we utilize the ADAM optimizer‡‡ for the training with the Mean

Absolute Error (MAE) cost function:

MAE B
1
n

∑
Ψ

|VNN(ψk) − VTS (ψk)| , (6)

** The so-called ‘firing’ of a node in a neural network is etymologically derived from the biological definition of neurons firing, i.e., sending
a non-null impulse when an input is received.

†† Saturated means that for a very large positive or negative number, the gradient of the sigmoid activation function is near zero.
‡‡ ADAM optimizer offers many advantages compared to the typical stochastic gradient descent, see Kingma and Ba (2014) for more details.
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where n is the number of price samples, ψk ∈ Ψ is a particular parameter specification, VNN(ψk) is the
output of the neural network at each training iteration for a respective parameter combination ψk, and
VTS (ψk) is the training data set for a respective parameter combination ψk. We decided to train with
the MAE cost function because using an alternative cost function, for example, the widely-used mean
squared error (MSE), would exaggerate the contribution induced by outliers by squaring their error in
the cost function. This is relevant in our case since prices can vary widely within the parameter ranges
(e.g., from 0.5 USD to 30 USD) and, consequently, the error varies as well.§§

3. Numerical experiments

3.1. Training process

The training of the neural network consists of the determination of the hyperparameters such as the
learning rate, exponential learning rate adjustment (ELRA), batch size, epochs, and depth and width of
the hidden layers. The final neural network structure is set to four hidden layers with 40 nodes per layer.
We follow Horvath et al. (2021) and Liu et al. (2019b) in that we decide to use a neural network with four
hidden layers ensuring that the depth requirement for the universal approximation theorems is reached.

We generate the training sample (TS) parameter set ΨTS by choosing 12 equally spaced points
for the parameter ranges M ∈ [90, 110], T − t ∈ [1, 255], κ ∈ (0, 5], ρ ∈ [−1, 0], and σ ∈ (0, 1], and
12 logarithmically spaced points for θ ∈ (0, 0.41] and v0 ∈ (0, 0.41], since the long-term variance
and the initial variance levels prevalently undertake lower (i.e., less than 50%) values.¶¶ Using this
parameter set ΨTS as an input to the finite difference PDE method, we generate the training set on a
very fine mesh of 400 points in time, 400 points in price space, and 100 points in volatility space (i.e.,
400 × 400 × 100). This results in 127 price samples prior to the application of the Feller condition.
Following the application of the Feller condition, we are left with a training set consisting of 24,634,368
parameter-price pairs. Moreover, our training set parameter ranges are in line with the ones studied in
the existing literature, see Spiegeleer et al. (2018).

To prepare the data for training, we standardize the input parameter data ΨTS as is a typically
required practice in the training of neural networks since different input data have different absolute
scales. We apply the same standardization (i.e., same mean and variance) to the parameter sets for all
validation and test input data. Then, by applying the ADAM optimizer on the MAE cost function with
the leaky ReLU activation function as described above, we train the neural network using an exponential
learning rate adjustment. The training stops when the validation error does not improve for another
1000 iterations after reaching a running minimum. Naturally, during training, the difference between the
validation and the training error is closely observed in order to prevent over-fitting to the input data.

Due to instabilities in the ADAM optimizer, one typically applies an exponential learning rate
adjustment that exponentially decreases the learning rate during the training session. This allows the
optimizer to initially explore the cost function surface for the minima, and subsequently, by slowly
reducing the learning rate, the likelihood that the optimizer jumps out of the minimum is reduced. In
Figure 1, the effect of this adjustment for a sample training session is illustrated.

§§ We also performed training with a Vega-Weighted Absolute Error (VWAE) cost function as presented in Hamida and Cont (2005).
Thereby, the vega weight “converts” the errors in price into errors in implied volatility. The results, however, did not improve compared to
the use of the conventional MAE cost function.

¶¶ Note that r and q have been fixed to be 1% and 3%, respectively. We set r and q to be constant since they are parameters that should not
change on an hour-by-hour basis. If necessary, the neural network can be retrained when necessary.
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Figure 1. Training (in blue) and validation error (in red) per ADAM iteration with (upper
subplot) and without (lower subplot) the exponential learning rate adjustment. The same
pattern continues also after the 7000th iteration.

After 23,000 iterations over the entire training set, the stopping rule was satisfied and the training
was stopped. The applied neural network structure is presented in Table 1.

3.2. Pricing results

Having trained the neural network offline, we test its out-of-sample performance in this section.
We generate the out-of-sample (OOS) parameter set ΨOOS by using the finite difference PDE pricer with
the same mesh size as the one used for the training set, 400 × 400 × 100. Note that the OOS parameter
set ΨOOS is independent of the training sample parameter set ΨTS so that the error bias is avoided.
Using ΨOOS , we evaluate the neural network-based prices VNN and the corresponding near-exact (i.e.,
PDE-based) VPDE prices. By “exact” we imply that a highly fine-meshed finite difference method

Table 1. This table presents the chosen neural network hyperparameters.

Neural Network Structure:
n 24,634,368
Batch Size 1,231,719
Initial Learning Rate 0.5
ELRA 0.997
Hidden Layers (Depth) 4
Nodes per Layer (Width) 40
Parameters to Train 5281
Epoch Size 23,000
Training Time 41 hours
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was applied to construct the option prices. In Table 2, the neural network prices are compared to the
near-exact PDE prices in terms of mean absolute error (MAE), mean absolute percentage error (MAPE),
and absolute percentage error (APE).

Table 2. Model Summary under the Heston Stochastic Volatility Model.

Heston Stochastic Volatility Case:
OOS n 14336 FD Grid Density 400 × 400 × 100
NN OOS MAE 0.02 USD NN OOS MAPE 0.26%
NN OOS SD of Error 0.014 USD Evaluation Time for OOS n 0.000026 sec.
NN OOS Min APE 0.0000236% NN OOS Max APE 3.26%

Now that we have an overview of the average performance of the neural network pricer, we take
a closer look at how it performs for each area of the parameter space Ψ. Consider a regular pricing
environment with parameter values of v0 = 5%, θ = 15%, σ = 0.3, κ = 0.8, ρ = −0.5, T − t = 165 (i.e.,
in days), and M = 100%. In Figure 2, we vary one parameter at a time over its respective parameter
space and plot the resulting neural network price in comparison to the near-exact price as computed by
the PDE method. Such an analysis demonstrates the explainability nature of our pricing algorithm.

Notice that the neural network is able to learn the pricing function under the Heston stochastic
volatility specification. Moreover, the well-studied Heston parametric structure is inherited by the
deep explainable pricer with overall low relative pricing errors. Being able to provide such parametric
interpretations positions our model in the field of XAI. Nevertheless, the neural network underperforms
in some specific areas of the parameter space. Notice that, for example, ρ > −0.4, M < 95%, T − t < 20,
v0 < 0.05, and σ all exhibit above-average errors. One can tackle this issue by simulating more
parameter-price pairs, especially in the under-performing parameter regions, and consequently improve
the accuracy of the NN-based pricer. Moreover, one can also experiment with different cost functions or
even train multiple neural networks for different parameter regions (e.g., one NN in the short time to
maturity region and other for the rest). Given the stochastic nature of the learning algorithm, a certain
level of pricing error is inevitable. However, as shown in Figure 2, the NN-based pricer learns the
American option pricing map under the Heston stochastic volatility model with a low relative error and,
above all, performs pricing in an explainable and interpretable fashion. Given the increasing demand
for transparency from investors and regulators, this is an influential finding facilitating the potential
compliance of the proposed pricing algorithm with regulatory guidelines.

Figure 3 shows the implied volatility surface as computed by the deep explainable pricer and its
PDE-based benchmark. One can observe that the deep explainable pricer reproduces the shape of the
implied volatility surface by training from the data generated by the PDE-based pricer. The right subplot
presents the error calculated as the value of the implied volatility as computed by the deep explainable
pricer minus the value computed by the PDE-based pricer. Note that the errors are generally very low.
The only area with larger deviations are the points close to maturity.

3.3. Computational Speed Comparison

The main incentive for applying neural networks in pricing American options are the benefits in terms
of pricing speed. Next, we perform an analysis comparing the speed of evaluation of the proposed neural
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Figure 2. The left part of the figure depicts a comparison between the prices computed by
the neural network (NN) under the Heston stochastic volatility—in blue—and the training
sample computed by the finite difference method (FDM)—in red—in dependence of different
model parameters. The right part of the figure equivalently shows the relative error of the NN
approach in comparison to the FDM.

network pricer (over a set of 14,366 input parameter sets) with the speeds of standard methods such as the
finite difference method, Monte Carlo simulation of Longstaff and Schwartz (2001), and binomial method of
Cox et al. (1979) in Table 3. The computations were performed on an Intel Xeon Gold 6126 2.60GHz CPU.

The PDE method is implemented as proposed by Ikonen and Toivanen (2007) for an option of
T = 0.25. Naturally, the methods’ speed differs given different maturities, step sizes, iterations, and a
number of paths. Nevertheless, no other method is able to evaluate an American option price nearly as
fast as the neural network pricer.
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Figure 3. The left subplot depicts the implied volatility surface as computed by the deep
explainable pricer. The middle subplot shows the implied volatility surface as computed by
the benchmark PDE-based pricer. The right subplot presents the error in the implied volatility
surface of the neural network pricer computed as the difference between the deep explainable
and PDE-based implied volatility surfaces.

Table 3. Evaluation speed of the neural network pricer in comparison to other pricing methods
for Heston stochastic volatility.

Pricing Method Average Evaluation Speed (secs) Compared to Neural Network Speed
Neural Network Method 0.000026 —
Finite Difference PDE Method 0.61 23,461 times slower
Binomial Method (Constant Volatility) 7.3 280,769 times slower
Longstaff-Schwartz Method 139.2 53,538,461 times slower

To illustrate the speed-accuracy trade-off, we choose the FDM method (i.e., the fastest competitor
of the NN) and reduce the fineness of its grid such that, on average, the mean absolute error of the
neural network is matched with the FDM-based error. By comparing the two methods at the same error
level, we analyze the practicality of both pricing approaches in a market-making environment where
both speed and accuracy are of utmost importance. Table 4 shows that at the same level of accuracy, the
neural network pricer exhibits a considerable speed improvement over the FDM-based pricing method.
In particular, the FDM method is, at the same level of accuracy, 58 times slower compared to the deep
explainable American option pricer proposed in this paper.

Table 4. Speed-accuracy trade-off of the neural network pricer in comparison to the FDM
pricing method for Heston stochastic volatility.

Model: Error Average Speed(secs)
Neural Network 26bps 0.000026
FDM (26 × 26) 26bps 0.0015

Figure 4 depicts the overall speed-accuracy spectrum for constant volatility (CV) and Heston
stochastic volatility specifications compared to the deep explainable pricer. Speed is measured in terms
of the number of pricings per second and accuracy is given in terms of relative error expressed in
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basis points against a “true” value defined as the PDE method (for CV or Heston) with a very fine
mesh grid. One can observe the outperformance of the neural network with respect to the alternative
pricing methods. The deep explainable pricer not only significantly outperforms the PDE Heston
benchmark, but also outperforms PDE, Longstaff-Schwartz, and binomial methods under constant
volatility. Moreover, with an enhanced training set and longer training times, further improvements in
error could be achieved–shifting the neural network point far to the left since the evaluation speed of a
neural network is approximately constant. These results show that the proposed deep explainable pricer
achieves a reasonable accuracy of computation while greatly reducing the speed of the computation. As
such, it serves as a speedy alternative to more classical American option pricing methods currently used
in a market-making environment.

Figure 4. Speed-accuracy trade-off for various American option pricing methods in both
constant volatility (CV) and Heston stochastic volatility environments compared to our neural
network (NN) pricer.

4. Conclusions

Market-making in the equity derivatives markets requires high-precision and fast pricing algorithms.
If the prices are not adjusted accurately and instantaneously, arbitrage opportunities occur. This paper
presents an American-style option pricing method based on a deep neural network that accelerates the
pricing while maintaining sufficient accuracy for market-making applicability.

The proposed model is based on generating training data by using a standard American option
pricing method. We utilize a PDE-based method and price under the Heston stochastic volatility model
in order to construct the training data. The obtained training data is subsequently utilized to train a deep
neural network over the underlying parameter space offline. Consequently, the underlying (i.e., Heston)
parameter interpretability is inherited by the neural network pricer. Such interpretability improves the
trust and transparency of the proposed deep explainable pricer, significantly increases the speed of
American-style option pricing, and associates our algorithm with the area of XAI for finance.
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The simulation analysis shows that our approach provides a substantial improvement with respect to
the speed-accuracy trade-off over standard American option pricers. The improvement primarily arises
due to the ability of neural networks to learn the American option pricing map offline. Moreover, given
the simplicity of neural network representations, their evaluation speed is considerably higher compared
to the speed of standard option pricing models. This speed increase is naturally more pronounced for
Monte Carlo methods than for PDE methods due to the complexity of simulation methods. Also, we
show that this increase in speed occurs without a significant loss in accuracy when methods are compared
at the same precision level. Therefore, our model exhibits the speed-accuracy and explainability features
required in a challenging market-making environment.

Furthermore, potentially increased computing resources and the universal approximation properties
of neural networks imply that the level of accuracy presented in this paper could be improved by i)
increasing the number of simulated parameter-price data points over which the training is performed, ii)
experimenting with alternative neural network architectures, iii) further optimizing the neural network
hyperparameters, iv) experimenting with alternative cost functions, or v) training multiple neural
networks at different parameter regions.

While these steps could potentially improve the accuracy of the neural network pricer, other
interesting areas of future research could expand the presented deep explainable pricing framework.
Particularly, since the speed improvements are greatest when compared to Monte Carlo methods, any
pricing model that relies purely on MC methods would be a perfect candidate for neural network
acceleration. One could, for example, expand the model to utilize large-deviation MC techniques for
out-of-the-money and short-maturity options. Moreover, one could also consider alternative dynamics
for the underlying asset and volatility processes, such as the rough volatility, possibly including cash
dividends and more complex payoffs that are priceable only by the MC techniques.
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A. Appendix: Deep Explainable Pricing Algorithm - Rough Volatility Extension

Definition A.1 (Rough Bergomi Volatility Model). Let S t and vt denote the asset price and instantaneous
variance at time t. The rough Bergomi model, introduced by Gatheral et al. (2018), is, under a pricing
measure, defined by a system of stochastic differential equations

dS t

S t
= (r − q)dt +

√
vt(ρ dWt +

√
1 − ρ2 dW⊥

t ),

vt = ξ0(t)E(ηWα)t,

where r is the interest rate, q the is continuous dividend yield, Wt and W⊥
t are independent Brownian

motions, −1 ≤ ρ ≤ 1, and the instantaneous variance vt is a product of a forward variance curve
t 7→ ξ0(t), known at time 0, and the Wick exponential E(ηWα)t = exp(ηWα

t −
1
2Var(ηWα

t )) for η > 0 and
a Gaussian random variable Wα

t . The random variable Wα
t is given by the Gaussian Riemann–Liouville

process

Wα
t =
√

2α + 1
∫ t

0
(t − s)αdWs, t ≥ 0,

where the parameter −1
2 < α < 0 controls the roughness of paths. The corresponding paths have a

Hölder regularity of α + 1
2 and locally behave like the paths of a fractional Brownian motion with

H = α + 1
2 . The three time-homogeneous parameters, η, ρ, and α, can be interpreted as the smile, the

skew, and the near-maturity explosion of the smile and the skew, expressed in terms of the implied
volatility surface.

In the case of rough Bergomi volatility, a Monte Carlo simulation is required to generate the initial
training data needed for the neural network calibration. This means that the gains in speed due to
training a neural network price evaluator are potentially greater than in the case of the Heston stochastic
volatility model.

In Algorithm 2, a neural network pricer for the case of Monte Carlo generated training data set is
presented. In Step (A), the Euler-Maruyama method, see Maruyama (1955), is applied to simulate paths
of the volatility and price processes for a fine mesh across the parameter set Ψ. On each path, optimal
exercise opportunities are evaluated, and a corresponding payoff for each path is determined.

For the evaluation of optimal exercise opportunities in Step (B), the methodology presented in
Andersen et al. (2016) can be utilized. Their method of approximating the early exercise boundary
allows for the computation of an early exercise boundary value for every point along the MC paths.
The optimal exercise strategy is calculated by comparing the current simulated spot price level with the
Andersen boundary value. By discounting and averaging over the payoffs of the simulated paths for
each parameter combination, a Monte Carlo estimator of the American option price is obtained. Finally,
by repeating this procedure for all combinations of parameters across Ψ, one arrives at a set of American
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Algorithm 2 Neural network-based American option pricer under rough volatility

Input: ξ0, η, α, ρ, M, T − t.
Output: Current price of an American-style option per underlying applicable in a market-making
environment.

(a) Simulation: Simulation of the volatility and price processes.
(b) Optimal exercise: Evaluation of optimal exercise strategies for each simulated path.
(c) Training data generation: Evaluation of American option prices across an entire parameter space
Ψ.
(d) Learning: Offline training of a neural network over a parameter-price data set.
(e) Pricing: Application of a neural network pricer in a market-making environment.

option prices across the entire parameter space – Step (C). In Step (D), the offline training occurs, and
the deep neural network rough Bergomi-based pricer can potentially be employed in a market-making
environment in Step (E).

As mentioned in Bayer et al. (2020), under rough volatility models, the optimal exercise strategy
should depend on past observations of the spot price and not only the current price. However, the
authors concluded that there is no significant difference in the computed price due to including past
spot prices in the exercise decision. Based on this reasoning, one could assume that the current spot
price contains sufficient information to decide upon the American option exercise. However, further
investigation is necessary.
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