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Abstract: In this paper, two comprehensive mathematical approaches: cubic piecewise polynomial 

function (CPPF) model and the Fourier Flexible Form (FFF) model are built into asset pricing models 

to explore the stock market risk, commodity market risk and overall business conditions in relation 

to US stock returns as a modelling experiment. A selection of knots and orders are applied on the 

models to determine the best fit coefficients, respectively, based on Akaike Information Criteria 

(AIC). The classic risk coefficient along with downside and upside counterparts are estimated in a 

non-linear time-weighted fashion and are subsequently adopted as risk factors to investigate the 

explanatory and predictive power to stock returns. It is found that time-weighted classic, downside 

and upside risk coefficients of all three domains provide significant explanatory power to current 

stock returns, while the predictive power appears to be weak. The findings fill the gap in literature, 

specifically on both investigating and pricing the time-weighted risk. This paper innovatively 

employs the Aruoba-Diebold-Scotti (ADS) real business index to measure the business conditions 

in macroeconomics context. The methodology proposed in this paper embeds advanced 

mathematical approaches to provide robust regression estimation. The application of proposed 

models enriches the dimension in pricing risk in stock market and wider financial market . 
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1. Introduction 

Among numerous asset pricing models, market factor has long been the primary focus. Along 

with the fast-evolving asset pricing techniques, additional risk factors have been considered, while 

limited studies focused on two aspects: firstly, applying comprehensive quantitative approach to 

generate time weighted risk factor coefficients (e.g., time-weighted beta); secondly, little consideration 

has been given to introduce a risk factor which could measure the overall business condition in 

macroeconomics context. To bridge the gap in literature, in this study, to investigate how broad 

macroeconomic factors impact stock returns, comprehensive quantitative approaches are applied on 

two multi-factor models, namely the cubic piecewise polynomial function (CPPF) model and Fourier 

Flexible Form (FFF) model with various knots and orders employed to examine the significance of 

classic, downside and upside risks in relation to the US stock returns as an asset pricing modelling 

experiment. Adopting the CPPF and FFF models allows the beta estimates to be time-varying and to 

present the time-weighted relationship between variables at each point in time. This study innovatively 

considers a market portfolio, the Aruoba-Diebold-Scotti (ADS) real business index and a commodity 

price index simultaneously, as risk factors, where ADS index proxies overall business condition and 

commodity price index measures price level of essential goods. The Akaike information criteria (AIC) 

(Akaike, 1974) is adapted to uncover the most appropriate number of knots and orders for the sample. 

With the AIC, the best fit the classic, downside and upside risk estimates for both models are generated. 

These estimates are sorted into portfolios to examine the risk-return relationship. Fama-Macbeth 

regressions are performed to investigate the significance of the estimates cross-sectionally. We find 

that all three factors have significant impact on individual stock returns. Moreover, downside and 

upside estimates provide more explanatory power than classic estimates. However, the predictive 

power of all estimates is found to be poor. 

This paper is arranged as follows: Section 2 provides literature reviews of both models, followed 

by Section 3 describes the data. Section 4 explains the econometric models and methodology. Section 

5 provides the empirical results and analysis. Section 6 concludes. 

2. Literature review 

There has been a long history of literature suggesting that the market factor is not sufficient to 

explain the risk-return relationship of stocks. Rose (1951) pointed out that economic news and 

information can be quantified and treated as an additional risk factor for stock returns. Moreover, the 

APT model assumes asset returns follow a multi-factor return generating process (Ross, 1976). 

Among numerous multi-factor asset pricing studies, macroeconomic variables are the most 

popular ones to be employed within this context. There are quite a number of studies that investigate 

the relationship between stock returns and inflation. For instance, in the studies by Bodie (1976), Jaffe 

and Mandelker (1976), Nelson (1976), Fama and Schwert (1977), Fama (1981), and Fama and Gibbons 

(1982), inflation is employed as a common factor, and all of them found a negative relationship 

between stock returns and inflation with strong evidence provided. Apart from inflation, other 

macroeconomic variables have been employed as a risk factor. Chen et al. (1986) showed that industrial 

production, the spread between long and short interest rates, expected and unexpected inflation and 

the spread between high and low grade bonds are significantly priced. They find that neither aggregate 

consumption nor oil price differences are priced separately. 
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Fama (1990) used the economic growth rate to proxy the shock to cash flows, and he showed that 

the variance of stock returns is well explained by the economic growth rate. In Chen’s (1991) later 

study, more variables are employed. The results indicate that the lagged production growth rate and 

the market dividend to price ratio are significantly priced, and they are positively correlated with future 

market excess returns. Bilson et al (2001) attempted to use macroeconomic variables to proxy local 

risk factors in emerging markets to explain the volatility of stock returns, with moderate evidence 

found to support the hypothesis. Flannery and Protopapadakis (2002) employed seventeen 

macroeconomic factors as independent variables in a GARCH model, and found that the consumer 

price index (CPI), producer price index (PPI), monetary aggregate, balance of trade, unemployment 

rate and housing starts are significantly priced. Duca (2007) applied Granger causality teste on the 

stock market excess return and GDP, (GDP is a component of the ADS index) with the results showing 

strong evidence that GDP Granger causes excess market returns. Also, Gay (2008) failed to find any 

significant influence of exchange rates on stock returns in emerging markets. 

Moreover, Gan et al. (2006), Rjoub et al. (2009) and Singh et al. (2011) employed various 

macroeconomic variables to explain the movement of their local stock markets with only weak 

evidence found to support their proposed ideas. Although there are large number of studies employing 

macroeconomic variables in asset pricing models, few studies employ a macroeconomic factor which 

can measure the real economy (business) from all aspects (GDP is a commonly accepted indicator, 

however, it fails to measure the employment rate and other key aspects). The reason for that is obvious, 

to measure all aspects of the economy, there are numerous variables to be employed, and there are few 

variables available which can measure all aspects. 

The innovation in this study is that it employs the ADS business conditions index, which measures 

the real economy from most aspects. The index itself is measured over a daily frequency but is computed 

using a number of macroeconomic variables with various frequencies. The constituents of the ADS index 

have been extended and modified ever since it was proposed, and the components and computing method 

were last fixed in 2011.1 There are six macro components of the ADS index. At a weekly frequency, 

there are initial jobless claims; at a monthly frequency, there are payroll employment, industrial 

production, personal income less transfer payments and manufacturing and trade sales; and at a quarterly 

frequency, real GDP (adjusted for inflation and deflation) is employed. It would be possible to employ 

individual macroeconomic factors rather than the ADS index. However, since each individual factor is 

measured over a different frequency, using the ADS index is an optimal choice. 

Apart from macroeconomic variables, commodity prices as an indicator of the price level of 

essential goods have long been employed in asset pricing studies. For instance, Hirshleifer (1989) 

found that the variability of stock market returns would increase the premium of hedging in the 

commodity market. Buyuksahin et al. (2010) failed to find any evidence to support the co-movement 

between a commodity index and stock returns. Buyuksahin and Robe (2014) pointed out that the 

commodity index and stock prices are correlated more closely when hedge funds perform actively in 

the market, while the correlation is much lower during a financial crisis. Hong and Yogo (2012) argue 

that commodity future prices are a good predictor of commodity returns. However, there is only weak 

evidence that commodity prices are a significant factor in the stock market. 

 
1The ADS index was set to start on 29th February 1960, and was re-estimated on 18th August 2011 due to the full release of 

manufacturing and trade sales in US. 
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Moreover, as energy, especially crude oil becomes more valuable, oil prices become more of a 

focus in asset pricing. There are quite a few studies that focus on the relationship between the oil price 

and stock returns. Sadorsky (1999) finds a significant negative relationship between oil price shocks 

and the US stock market. Papapetrou (2001) pointed out that oil prices can affect both stock returns 

and the real economy, while stock returns only appear to have a weak influence on oil prices and the 

real economy. Miller and Ratti (2009) state that stock returns and oil prices are cointegrated, however, 

they failed to explain why stock returns and oil prices grew apart during several sub-periods. Kilian 

and Parker (2009) proposed that changes in stock prices differ significantly depending on whether the 

change of oil price is driven by supply or demand. They found that the change in stock prices is always 

consistent with the change in oil prices when it was driven by a drop in demand. However, when the 

change in oil price is driven by supply, stock prices move randomly and are difficult to predict. Notably, 

as one of the key macroeconomic factors, inflation, is not employed by the ADS index. This study 

therefore also employs a commodity price index as a risk factor to represent the whole commodity 

market and as a measure of inflation. 

Although literature is sufficient on separate risk factors in relation to asset returns and multifactor 

asset pricing models are widely accepted, there is little consideration on time-weighted risk factors 

coefficients and their premia. This study is aiming to fill the gap by introducing two comprehensive 

multi-factor asset pricing models. 

3. Data and data transformation 

The data used in this study are taken from the CRSP database. This study focuses on the ordinary 

common stocks listed on the New York Stock Exchange (NYSE), American Stock Exchange (AMEX) 

and NASDAQ measured on a monthly frequency from January 1960 to December 2010.2 American 

depositary receipts (ADR), real estate investment trust (REIT), closed-end funds, foreign firms and 

other securities which do not have a CRSP share code of 10 or 11 are excluded from the sample. 

Each stock is required to have at least 5 years of consecutive monthly adjusted return observations 

with at most 5 missing observations. The return of each stock is adjusted for stock splits, mergers 

and acquisitions, and dividends (dividends are subtracted from stock prices for adjustment), giving 

13557 stocks. The value-weighted return of all listed stocks is taken as a measure of the market 

portfolio, and the one-month Treasury bill rate represents the risk-free rate.3 Summary statistics of 

stocks are shown in Table 1. 

The ADS index is collected from the Federal Reserve Bank of Philadelphia website. It is a 

dynamic daily index starting from 1st March 1960 to date. This index is derived from and updated by 

the aforementioned six macroeconomic variables to track the real business conditions of the US with 

a mean of zero.4 Therefore, if the value of the ADS index is below zero, it means that at that point in 

time, the business conditions are worse than average, and vice versa. Since monthly data are used in 

this study, the last observation of each month of the ADS index is used. 

 

 
2The NASDAQ data are only available from January 1972. 

3Using the same criteria Ang et al. (2007) used and no filtering out outliers aims to follow their study. 

4Subject to the availability of the variables when updating. 
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Table 1. Summary of stocks. 

Stock Exchange Number of 

Stocks 

Percentage to whole 

Sample 

Average Annualized 

Return 

Standard 

Deviation 

NYSE 2198 16.21% 10.59% 10.99% 

NASDAQ 7636 56.33% 12.32% 20.13% 

AMEX 1105 8.15% 10.98% 16.91% 

NYSE & NASDAQ 1031 7.60% 14.12% 13.55% 

NYSE & AMEX 556 4.10% 14.10% 13.72% 

NASDAQ & AMEX 829 6.11% 11.24% 20.17% 

NYSE & NASDAQ & 

AMEX 

202 1.49% 14.61% 16.15% 

Total Sample 13557 100% 12.08% 17.06% 

Note: This table summarizes the constituents of US stocks, average annual returns and volatility, the sample 

size is from March 1960 to December 2010. 

The commodity price index is provided by the Commodity Research Bureau and collected from 

Datastream. This index is a commodity spot price index measured at monthly frequency and has an 

initial value of zero in year 1967. In order to conduct the analysis, continuous compounded returns of 

the commodity price index are derived as follows: 

 𝐶𝑅𝑡 = 𝑙𝑛( 𝐶𝑃𝑡) − 𝑙𝑛( 𝐶𝑃𝑡−1) (1) 

whereas 𝐶𝑃𝑡 is the continuously compounded return of the commodity price index at time t, 𝐶𝑃𝑡 is 

the commodity price index at time t, and ln is the natural logarithm. 

4. Methodology and models 

In this section, two comprehensive multi-factor asset pricing models CPPF and FFF models are 

introduced. The beauty of these two models attribute to their time-vary nature, which allow the risk 

factor coefficients to be time-weighted to reflective the true context of risk premia. 

4.1. The CPPF model 

The advantages of the CPPF approach are, firstly, data are flexibly adjusted without considering 

the sample size. Secondly, for research with particular focus on data smoothing and weighting, it allows 

time weight to be considered when estimating among various selected knots. Thirdly, apart from the 

time weight, the nature of the original data is retained and there are no extra functions or patterns to be 

built into the model which fits the purpose of this study. By using the CPPF model, all risk factors 

(excess return on the market portfolio xRM,5 excess return on the commodity market xCR,6 and the 

ADS business index ADS) are divided into series depending on the numbers of knots selected. Up to 5 

knots are employed (Huang et al., 2021) and the placement of knots follows the quintile method 

proposed by Stone (1986). 

 
5Defined as the difference between the return of market portfolio RM and risk free rate Rf. 

6We define xCR = CR - Rf. 
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The models used in this study take full advantage of the CPPF approach, building on the classic 

market model. To estimate the coefficients of the risk factors for each stock, the augmented market 

model can be written as: 

 
𝑥𝑅𝑖 = 𝛼𝑖 + 𝑏𝑖 ⋅ (𝑥𝑅𝑀 ⊙ 𝑆𝑁) + 𝑐𝑖 ⋅ (𝑥𝐶𝑅 ⊙ 𝑆𝑁) + 𝑑𝑖 ⋅ (𝐴𝐷𝑆 ⊙ 𝑆𝑁) + 𝜀𝑖 

N = 0, 1, 2, 3, 4, 5. 
(2) 

where (xRM ʘ SN), (xCR ʘ SN) and (ADS ʘ SN) are all in dimension of (t×n), bi, ci and di are the OLS 

coefficients of market factor, commodity factor and ADS factor, respectively, measuring the co-

movement between the risk factor and stock returns, and SN is cubic piecewise polynomial matrix with 

N knots. The expression for SN can be found in Equation A.1–A.6 in Appendix. 

The OLS regression is applied to each stock to estimate the vectors of coefficients, with each 

coefficient vector having the dimension n×1. Subsequently, using the cubic piecewise polynomial 

matrix multiplied by the vectors of coefficients estimates, the time-varying coefficient estimates for 

each risk factor of a stock bs, cs, and ds (Bs, Cs and Ds in vector form respectively) can be obtained, 

as follows: 

 𝐵𝑠,𝑖 = 𝑆𝑁 ∙ 𝐵𝑖 (3) 

 𝐶𝑠,𝑖 = 𝑆𝑁 ∙ 𝐶𝑖 (4) 

 𝐷𝑠,𝑖 = 𝑆𝑁 ∙ 𝐷𝑖 (5) 

where Bi Ci and Di are vector forms of bi, ci and di, respectively. It can be seen from Equations (3 to 5) 

that Bs,i, Cs,i and Ds,i are products of the piecewise polynomial matrix SN with the dimension t×n and 

the coefficient vector with the dimension n×1. Therefore, regardless of the number of knots placed in 

the function, the dimension of Bs,i, Cs,i and Ds,i will always be t×1. In other words, the coefficient 

estimates are always time-varying. Since the number of knots varies from 0 to 5, there will be 6 groups 

of bi, ci and di for each stock, one for each corresponding number of knots. In order to find the best 

estimates of  𝑏𝑆
∗, 𝑐𝑆

∗ and  𝑑𝑆
∗ for each stock, AIC is an appropriate indicator to decide the best fit of 

bi, ci and di. 

To calculate the downside and upside estimates by using the CPPF model, the same approach to 

conducting  𝑏𝑆
∗, 𝑐𝑆

∗ and  𝑑𝑆
∗ is followed, with Equation (2) is modified accordingly. As in Ang et al. 

(2006), the downside beta and upside estimates in this study are calculated as: 

 𝑏𝑖
− =

𝑐𝑜𝑣( 𝑥𝑅𝑖 , 𝑥𝑅𝑀|𝑥𝑅𝑀 < 𝑥𝑅𝑀)

𝑣𝑎𝑟( 𝑥𝑅𝑀|𝑥𝑅𝑀 < 𝑥𝑅𝑀)
 (6) 

 𝑏𝑖
+ =

𝑐𝑜𝑣( 𝑥𝑅𝑖 , 𝑥𝑅𝑀|𝑥𝑅𝑀 ≥ 𝑥𝑅𝑀)

𝑣𝑎𝑟( 𝑥𝑅𝑀|𝑥𝑅𝑀 ≥ 𝑥𝑅𝑀)
 (7) 

 𝑐𝑖
− =

𝑐𝑜𝑣( 𝑥𝑅𝑖 , 𝑥𝐶𝑅|𝑥𝐶𝑅 < 𝑥𝐶𝑅)

𝑣𝑎𝑟( 𝑥𝐶𝑅|𝑥𝐶𝑅 < 𝑥𝐶𝑅)
 (8) 
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 𝑐𝑖
+ =

𝑐𝑜𝑣( 𝑥𝑅𝑖 , 𝑥𝐶𝑅|𝑥𝐶𝑅 ≥ 𝑥𝐶𝑅)

𝑣𝑎𝑟( 𝑥𝐶𝑅|𝑥𝐶𝑅 ≥ 𝑥𝐶𝑅)
 (9) 

 𝑑𝑖
− =

𝑐𝑜𝑣( 𝑥𝑅𝑖 , 𝐴𝐷𝑆|𝐴𝐷𝑆 < 𝐴𝐷𝑆)

𝑣𝑎𝑟( 𝐴𝐷𝑆|𝐴𝐷𝑆 < 𝐴𝐷𝑆)
 (10) 

 𝑑𝑖
+ =

𝑐𝑜𝑣( 𝑥𝑅𝑖 , 𝐴𝐷𝑆|𝐴𝐷𝑆 ≥ 𝐴𝐷𝑆)

𝑣𝑎𝑟( 𝐴𝐷𝑆|𝐴𝐷𝑆 ≥ 𝐴𝐷𝑆)
 (11) 

where 𝑥𝑅𝑀, 𝑥𝐶𝑅 and 𝐴𝐷𝑆 are the average market excess return, average commodity market excess 

return and average ADS business index value, respectively, over the sample period, and all other notation 

remains the same. In light of Ang et al. (2006), dummy variables (vectors) D1, xRM, D2, xRM, D1, xCR, D2, xCR, 

D1, ADS and D2, ADS, are created and employed for each stock. These dummy variables can be expressed 

as (time subscript t is used): 

 D1, xRM = 1 and D2, xRM = 0 if 𝑥𝑅𝑀,𝑡 < 𝑥𝑅𝑀 (12) 

 D1, xCR = 1 and D2, xCR = 0 if 𝑥𝐶𝑅𝑡 < 𝑥𝐶𝑅 (13) 

 D1, ADS = 1 and D2, ADS = 0 if 𝐴𝐷𝑆𝑡 < 𝐴𝐷𝑆 (14) 

and 

 D1, xRM = 0 and D2, xRM = 0 if 𝑥𝑅𝑀,𝑡 < 𝑥𝑅𝑀 (15) 

 D1, xCR = 0 and D2, xCR = 0 if 𝑥𝐶𝑅𝑡 < 𝑥𝐶𝑅 (16) 

 D1, ADS = 0 and D2, ADS = 0 if 𝐴𝐷𝑆𝑡 < 𝐴𝐷𝑆 (17) 

It can be seen from Equations (12) to (17) that D1, xRM, D1, xCR and D1, ADS represent the downside stock 

market, commodity market and real business condition dummies, respectively, while D2, xRM, D2, xCR and 

D2, ADS represent the upside ones, respectively. 

The CPPF augmented market model can be written as: 

 

𝑥𝑅𝑖 = 𝑏𝑖
− ⋅ (𝐷1,𝑥𝑅𝑀 ⊙ 𝑥𝑅𝑀 ⊙ 𝑆𝑁) + 𝑏𝑖

+ ⋅ (𝐷2,𝑥𝑅𝑀 ⊙ 𝑥𝑅𝑀 ⊙ 𝑆𝑁) + 𝑐𝑖
− ⋅ (𝐷1,𝑥𝐶𝑅 ⊙ 𝑥𝐶𝑅 ⊙ 𝑆𝑁) 

+𝑐𝑖
+ ⋅ (𝐷2,𝑥𝐶𝑅 ⊙ 𝑥𝐶𝑅 ⊙ 𝑆𝑁) + 𝑑𝑖

− ⋅ (𝐷1,𝐴𝐷𝑆 ⊙ 𝐴𝐷𝑆 ⊙ 𝑆𝑁) + 𝑑𝑖
+ ⋅ (𝐷2,𝐴𝐷𝑆 ⊙ 𝐴𝐷𝑆 ⊙ 𝑆𝑁) + 𝜀𝑖 

N = 0, 1, 2, 3, 4, 5. 

(18) 

It can be seen from Equation (18) that in order to avoid multi-collinearity, there is no constant 

term. The value of D1, xRM ʘxRM is xRM if the value of xRM is below the mean, and zero otherwise. On 

the other hand, the value of D2, xRM ʘxRM is xRM if the value of xRM is equal or above the mean, and 

zero otherwise. 

The parameters 𝑏𝑖
− , 𝑐𝑖

− and 𝑑𝑖
−  are the downside risk estimate coefficients while 𝑏𝑖

+ , 𝑐𝑖
+  and 𝑑𝑖

+ 

are the upside risk estimate coefficients associated with stock i. In terms of the matrices, all of the estimates 

are column vectors with a dimension of n×1. Since the number of knots varies from 0 to 5, there will be 6 
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pairs of downside and upside vectors for each stock, with each pair of vectors having an associated AIC 

value. Among the 6 AICs, the lowest one indicates the best fitting pair of estimates, in addition, the 

associated best fitting time-varying downside and upside estimate coefficients for stock i, 𝑏𝑆,𝑖
−∗, 𝑐𝑆,𝑖

−∗, 𝑑𝑆,𝑖
−∗ 

and 𝑏𝑆,𝑖
+∗, 𝑐𝑆,𝑖

+∗, 𝑑𝑆,𝑖
+∗ (𝐵𝑆,𝑖

−∗, 𝐶𝑆,𝑖
−∗, 𝐷𝑆,𝑖

−∗ and 𝐵𝑆,𝑖
+∗, 𝐶𝑆,𝑖

+∗, 𝐷𝑆,𝑖
+∗ in vector form) can be calculated as follows: 

 𝐵𝑆,𝑖
−∗ = 𝑆𝑁 ⋅ 𝐵𝑆,𝑖

−  (19) 

 𝐶𝑆,𝑖
−∗ = 𝑆𝑁 ⋅ 𝐶𝑆,𝑖

−  (20) 

 𝐷𝑆,𝑖
−∗ = 𝑆𝑁 ⋅ 𝐷𝑆,𝑖

−  (21) 

 𝐵𝑆,𝑖
+∗ = 𝑆𝑁 ⋅ 𝐵𝑆,𝑖

+  (22) 

 𝐶𝑆,𝑖
+∗ = 𝑆𝑁 ⋅ 𝐶𝑆,𝑖

+  (23) 

 𝐷𝑆,𝑖
+∗ = 𝑆𝑁 ⋅ 𝐷𝑆,𝑖

+  (24) 

where 𝐵𝑆,𝑖
− , 𝐶𝑆,𝑖

− , 𝐷𝑆,𝑖
−  and 𝐵𝑆,𝑖

+ , 𝐶𝑆,𝑖
+ , 𝐷𝑆,𝑖

+  are the vector forms of 𝑏𝑖
−, 𝑐𝑖

−, 𝑑𝑖
− and 𝑏𝑖

+, 𝑐𝑖
+, 𝑑𝑖

+. As 

mentioned in the previous paragraph, regardless of the number of knots placed in the function, the 

dimension of 𝐵𝑆,𝑖
−∗, 𝐶𝑆,𝑖

−∗, 𝐷𝑆,𝑖
−∗ and 𝐵𝑆,𝑖

+∗, 𝐶𝑆,𝑖
+∗, 𝐷𝑆,𝑖

+∗ are always t×1. 

4.2. The FFF model 

As an alternative way of generating time-varying risk estimate coefficients, the FFF model is 

presented. The advantages of the FFF approach are: firstly, in the context of normal and high frequency 

data, the macroeconomic news announcement effect has been filtered by the periodic pattern of the 

FFF, therefore it is not essential to model the macroeconomic news announcement effect; secondly, 

the FFF approach creates a smooth pattern for volatility dynamics and changes; thirdly, the FFF 

approach is based on sound mathematics and the fitness of the periodicity of financial data is widely 

agreed. By using the FFF model, all risk factors are divided into series depending on the order number. 

In light of Andersen and Bollerslev (1998), Andersen et al. (2000), Bollerslev et al. (2000), and 

Evans and Speight (2010a), the FFF market model employed in this study is given by: 

 

𝑥𝑅𝑖 = 𝛼𝑖 + ∑[

𝑃

𝑝=1

𝑏𝑐𝑜𝑠,𝑝,𝑖 ⋅ (𝑐𝑜𝑠
𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝑅𝑀) + 𝑏𝑠𝑖𝑛, 𝑝,𝑖 ⋅ (𝑠𝑖𝑛

𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝑅𝑀)] + ∑[

𝑃

𝑝=1

𝑐𝑐𝑜𝑠,𝑝,𝑖

⋅ (𝑐𝑜𝑠
𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝐶𝑅) + 𝑐𝑠𝑖𝑛, 𝑝,𝑖 ⋅ (𝑠𝑖𝑛

𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝐶𝑅)] + ∑[

𝑃

𝑝=1

𝑑𝑐𝑜𝑠,𝑝,𝑖

⋅ (𝑐𝑜𝑠
𝑝2𝜋

𝑁
𝑛 ⋅ 𝐴𝐷𝑆) + 𝑑𝑠𝑖𝑛, 𝑝,𝑖 ⋅ (𝑠𝑖𝑛

𝑝2𝜋

𝑁
𝑛 ⋅ 𝐴𝐷𝑆)] + 𝜀𝑖 

(25) 

whereas αi is the constant term, 𝑏𝑐𝑜𝑠,𝑝,𝑖 , 𝑏𝑠𝑖𝑛, 𝑝,𝑖 , 𝑐𝑐𝑜𝑠,𝑝,𝑖 , 𝑐𝑠𝑖𝑛, 𝑝,𝑖 , 𝑑𝑐𝑜𝑠,𝑝,𝑖 and 𝑑𝑠𝑖𝑛, 𝑝,𝑖 , are the 

coefficients to be estimated of each factor for stock i, N is the total number of observations of stock i, 

n is the order of observations with n = {1, 2, 3…T}, p is the order of the FFF model and the remaining 

notation remains the same. According to Andersen and Bollerslev (1998), the order of the FFF could 

vary from 1 to infinity. However, in order to improve the efficiency of the estimates, we follow their 

lead and chose 4 as the appropriate order. In this study, orders from 1 to 4 are considered. 
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The OLS regression is applied to each stock to obtain the estimated risk factor coefficient vector 

produced from Equation (25). The AIC is then computed for each regression. Since the orders of 1 to 4 

are considered, there are 4 AICs for each stock. Taking advantage of the nature of the AIC, the regression 

that produces the lowest AIC gives the best fit. To calculate the best fitting time-varying coefficients 𝑏𝐹,𝑖
∗ , 

𝑐𝐹,𝑖
∗  and 𝑑𝐹,𝑖

∗  for each stock, the minimum AIC estimated vector for stock i are calculated as follows: 

 𝑏𝐹,𝑖
∗ = ∑(𝑏𝑐𝑜𝑠,𝑝,𝑖 ⋅ 𝑐𝑜𝑠

𝑝2𝜋

𝑁
𝑛 + 𝑏𝑠𝑖𝑛, 𝑝,𝑖 ⋅ 𝑠𝑖𝑛

𝑝2𝜋

𝑁
𝑛)

𝑃

𝑝=1

 (26) 

 𝑐𝐹,𝑖
∗ = ∑(𝑐𝑐𝑜𝑠,𝑝,𝑖 ⋅ 𝑐𝑜𝑠

𝑝2𝜋

𝑁
𝑛 + 𝑐𝑠𝑖𝑛, 𝑝,𝑖 ⋅ 𝑠𝑖𝑛

𝑝2𝜋

𝑁
𝑛)

𝑃

𝑝=1

 (27) 

 𝑑𝐹,𝑖
∗ = ∑(𝑑𝑐𝑜𝑠,𝑝,𝑖 ⋅ 𝑐𝑜𝑠

𝑝2𝜋

𝑁
𝑛 + 𝑑𝑠𝑖𝑛, 𝑝,𝑖 ⋅ 𝑠𝑖𝑛

𝑝2𝜋

𝑁
𝑛)

𝑃

𝑝=1

 (28) 

In order to calculate the downside and upside estimates by using the above FFF model, the same 

procedure used above is followed. The dummy variables D1, xRM, D2, xRM, D1, xCR, D2, xCR, D1, ADS and 

D2, ADS used in Equation (18) are created and employed again for each stock in the new FFF model. 

The new model is defined as: 

 

𝑥𝑅𝑖 = ∑[

𝑃

𝑝=1

𝑏𝑐𝑜𝑠, 𝑝,𝑖
− ⋅ (𝑐𝑜𝑠

𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝑅𝑀 ⊙ 𝐷1,𝑥𝑅𝑀) + 𝑏𝑠𝑖𝑛, 𝑝,𝑖

− ⋅ (𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝑅𝑀 ⊙ 𝐷1,𝑥𝑅𝑀)] 

+ ∑[

𝑃

𝑝=1

𝑏𝑐𝑜𝑠, 𝑝,𝑖
+ ⋅ (𝑐𝑜𝑠

𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝑅𝑀 ⊙ 𝐷2,𝑥𝑅𝑀) + 𝑏𝑠𝑖𝑛, 𝑝,𝑖

+ ⋅ (𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝑅𝑀 ⊙ 𝐷2,𝑥𝑅𝑀)] 

+ ∑[

𝑃

𝑝=1

𝑐𝑐𝑜𝑠, 𝑝,𝑖
− ⋅ (𝑐𝑜𝑠

𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝐶𝑅 ⊙ 𝐷1,𝑥𝐶𝑅) + 𝑐𝑠𝑖𝑛, 𝑝,𝑖

− ⋅ (𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝐶𝑅 ⊙ 𝐷1,𝑥𝐶𝑅)] 

+ ∑[

𝑃

𝑝=1

𝑐𝑐𝑜𝑠, 𝑝,𝑖
+ ⋅ (𝑐𝑜𝑠

𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝐶𝑅 ⊙ 𝐷2,𝑥𝐶𝑅) + 𝑐𝑠𝑖𝑛, 𝑝,𝑖

+ ⋅ (𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛 ⋅ 𝑥𝐶𝑅 ⊙ 𝐷2,𝑥𝐶𝑅)] 

+ ∑[

𝑃

𝑝=1

𝑑𝑐𝑜𝑠, 𝑝,𝑖
− ⋅ (𝑐𝑜𝑠

𝑝2𝜋

𝑁
𝑛 ⋅ 𝐴𝐷𝑆 ⊙ 𝐷1,𝐴𝐷𝑆) + 𝑑𝑠𝑖𝑛, 𝑝,𝑖

− ⋅ (𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛 ⋅ 𝐴𝐷𝑆 ⊙ 𝐷1,𝐴𝐷𝑆)] 

+ ∑[

𝑃

𝑝=1

𝑑𝑐𝑜𝑠, 𝑝,𝑖
+ ⋅ (𝑐𝑜𝑠

𝑝2𝜋

𝑁
𝑛 ⋅ 𝐴𝐷𝑆 ⊙ 𝐷2,𝐴𝐷𝑆) + 𝑑𝑠𝑖𝑛, 𝑝,𝑖

+ ⋅ (𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛 ⋅ 𝐴𝐷𝑆 ⊙ 𝐷2,𝐴𝐷𝑆)] + 𝜀𝑖 

(29) 

Whereas 𝑏𝑐𝑜𝑠,𝑝,𝑖
− , 𝑏𝑠𝑖𝑛,𝑝,𝑖

− , 𝑐𝑐𝑜𝑠,𝑝,𝑖
− , 𝑐𝑠𝑖𝑛,𝑝,𝑖

− , 𝑑𝑐𝑜𝑠,𝑝,𝑖
− , and 𝑑𝑠𝑖𝑛,𝑝,𝑖

− , are the downside coefficients to be 

estimated for stock i, while 𝑏𝑐𝑜𝑠,𝑝,𝑖
+ , 𝑏𝑠𝑖𝑛,𝑝,𝑖

+ , 𝑐𝑐𝑜𝑠,𝑝,𝑖
+ , 𝑐𝑠𝑖𝑛,𝑝,𝑖

+ , and 𝑑𝑐𝑜𝑠,𝑝,𝑖
+ , and 𝑑𝑠𝑖𝑛,𝑝,𝑖

+  are the upside 

coefficients to be estimated for stock i. For the same reason as for Equation (24), there is no 

conventional constant term in the model to avoid multi-collinearity. Since the order of the FFF 

examined varies from 1 to 4, there will be 4 groups of estimated risk factor coefficient vectors for each 

stock. The best fit time-varying downside and upside estimates for stock i, 𝑏𝐹,𝑖
−∗, 𝑏𝐹,𝑖

+∗, 𝑐𝐹,𝑖
−∗, 𝑐𝐹,𝑖

+∗, 𝑑𝐹,𝑖
−∗ 

and 𝑑𝐹,𝑖
+∗ can be calculated as follows: 



442 

Quantitative Finance and Economics  Volume 6, Issue 3, 433–458. 

 𝑏𝐹,𝑖
−∗ = ∑(𝑏𝑐𝑜𝑠, 𝑝,𝑖

− ⋅ 𝑐𝑜𝑠
𝑝2𝜋

𝑁
𝑛 + 𝑏𝑐𝑜𝑠, 𝑝,𝑖

− ⋅ 𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛)

𝑃

𝑝=1

 (30) 

 𝑏𝐹,𝑖
+∗ = ∑(𝑏𝑐𝑜𝑠, 𝑝,𝑖

+ ⋅ 𝑐𝑜𝑠
𝑝2𝜋

𝑁
𝑛 + 𝑏𝑐𝑜𝑠, 𝑝,𝑖

+ ⋅ 𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛)

𝑃

𝑝=1

 (31) 

 𝑐𝐹,𝑖
−∗ = ∑(𝑐𝑐𝑜𝑠, 𝑝,𝑖

− ⋅ 𝑐𝑜𝑠
𝑝2𝜋

𝑁
𝑛 + 𝑐𝑐𝑜𝑠, 𝑝,𝑖

− ⋅ 𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛)

𝑃

𝑝=1

 (32) 

 𝑐𝐹,𝑖
+∗ = ∑(𝑐𝑐𝑜𝑠, 𝑝,𝑖

+ ⋅ 𝑐𝑜𝑠
𝑝2𝜋

𝑁
𝑛 + 𝑐𝑐𝑜𝑠, 𝑝,𝑖

+ ⋅ 𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛)

𝑃

𝑝=1

 (33) 

 𝑑𝐹,𝑖
−∗ = ∑(𝑑𝑐𝑜𝑠, 𝑝,𝑖

− ⋅ 𝑐𝑜𝑠
𝑝2𝜋

𝑁
𝑛 + 𝑑𝑐𝑜𝑠, 𝑝,𝑖

− ⋅ 𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛)

𝑃

𝑝=1

 (34) 

 𝑑𝐹,𝑖
+∗ = ∑(𝑑𝑐𝑜𝑠, 𝑝,𝑖

+ ⋅ 𝑐𝑜𝑠
𝑝2𝜋

𝑁
𝑛 + 𝑑𝑐𝑜𝑠, 𝑝,𝑖

+ ⋅ 𝑠𝑖𝑛
𝑝2𝜋

𝑁
𝑛)

𝑃

𝑝=1

 (35) 

It can be seen from Equation (30) to (35) that regardless the order of the model, 𝑏𝐹,𝑖
−∗, 𝑏𝐹,𝑖

+∗, 𝑐𝐹,𝑖
−∗, 

𝑐𝐹,𝑖
+∗, 𝑑𝐹,𝑖

−∗ and 𝑑𝐹,𝑖
+∗ always have the dimension t×1. 

5. Empirical results 

Based on the methods explained in the previous section, the best estimates for both the CPPF 

model and the FFF model are obtained. To summarize the estimation details, distribution of the best 

fitting knots and orders are presented in Table 2a and Table 2b. 

For the CPPF model, it can be seen from Table 2a that 7307 stocks (53.90% of the sample) 

construct 𝑏𝑆
∗, 𝑐𝑆

∗ and 𝑑𝑆
∗, when no knots are placed. When the number of knots varies from 1 to 4, a 

much lower number of best fit estimates are produced. However, 4223 stocks obtain the best estimates 

with 5 knots placed (31.15% of the sample). On the other hand, to construct downside and upside risk 

factor coefficients, unlike the classic risk factor coefficients, no knots are used for only 3923 stocks 

(28.94% of the sample). Similar to classic risk estimates, a much lower number of best fit estimates 

are produced when 1 to 4 knots are placed. Surprisingly, 5900 stocks obtain best fit estimates when 5 

knots are placed (more than 40% of the sample). 

For the FFF model, it is clear from Table 2b that to construct 𝑏𝐹
∗ , 𝑐𝐹

∗  and 𝑑𝐹
∗ , 8999 stocks used 

order 1 (66.38% of the sample). Stocks with orders 2, 3 and 4, however, produce a lower number of 

best estimates. It is considerably consistent when constructing downside and upside estimates. 
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Table 2a. Knots of CPPF model selected to construct best fit estimates. 

Knots  0 1 2  3 4 5 

Classic estimates  Number of Stocks 7307 587 288 328 824 4223 

 Percentage of Whole 

sample 

53.90

% 

4.33

% 

2.12

% 

2.42

% 

6.08% 31.15

% 

Downside and upside 

estimates 

Number of Stocks 3923 350 494 909 1981 5900 

 
Percentage of Whole 

sample 

28.94

% 

2.58

% 

3.64

% 

6.71

% 

14.61

% 

43.52

% 

Note: This table reports the number and percentage of stocks with different knots to construct the best fit 

estimates of the CPPF model. 

Table 2b. The order of the FFF model selected to construct best fit estimates. 

Order 
 

1 2 3  4  

Classic estimates Number of Stocks 8999 2164 1205 1189  
Percentage of 

Whole sample 

66.38% 15.96% 8.89% 8.77% 

Downside and upside estimates Number of Stocks 9079 1414 742 2322  
Percentage of Whole sample 66.97% 10.43% 5.47% 17.13% 

Note: This table reports the number and percentage of stocks in different order to construct the best fit estimates 

of the FFF model. 

Furthermore, the relations among stock returns and classic, downside and upside estimates of 

both the CPPF model and the FFF model betas are examined. In order to present the relationship in a 

cross-sectional fashion, stocks at each point in time are cross-sectionally assigned to five portfolios 

according to the value of the risk estimates. Since the classic, downside and upside beta estimates are 

not independent of each other due to the nature of the calculation, to distinguish the effects among 

them, more statistics are introduced. Specifically, we consider, for the CPPF model, the relative 

estimates denoted by (𝑏𝑆
−∗-𝑏𝑆

∗), (𝑐𝑆
−∗-𝑐𝑆

∗) and (𝑑𝑆
−∗-𝑑𝑆

∗) for the downside market, and (𝑏𝑆
+∗-𝑏𝑆

∗), (𝑐𝑆
+∗-𝑐𝑆

∗) 

and (𝑑𝑆
+∗-𝑑𝑆

∗) for the upside market. Similarly, for the FFF model, (𝑏𝐹
−∗-𝑏𝐹

∗ ), (𝑐𝐹
−∗-𝑐𝐹

∗) and (𝑑𝐹
−∗-𝑑𝐹

∗ ) for 

the downside market, and (𝑏𝐹
+∗ -𝑏𝐹

∗  ), (𝑐𝐹
+∗ -𝑐𝐹

∗  ) and (𝑑𝐹
+∗ -𝑑𝐹

∗  ) for the upside market are computed. 

Introducing these statistics aims to illustrate the impact of downside and upside estimates after 

controlling for classic estimates. 

To sort the portfolio, at each point in time, all stocks are sorted into five quintiles according to the 

value of the target estimate. When stocks are sorted into 5 portfolios at each point of time (since 

monthly data are used in this study, and the whole sample is from March 1960 to December 2010, so 

there should be 610 time points), the equally weighted average of the estimate for each portfolio and 

the corresponding same period average annualized stock returns and average values of the risk 

estimates are calculated. The results of both models are summarized in Table 3 to Table 8. 

5.1. Empirical results: the CPPF model 

For the CPPF model, Table 3 presents the results pertaining to the relationship between annualized 

excess stock returns and estimates of market beta. It can be seen from Panel 1 that when stocks are 
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sorted by 𝑏𝑆
∗, portfolio 1 has an average 𝑏𝑆

∗ value of −0.40, while on the other hand, portfolio 5 shows 

an average 𝑏𝑆
∗ value of 2.15. Consistent with the classic literature, the average annualized return of 

each portfolio increases with 𝑏𝑆
∗, portfolio 1 yields a return of 4.40% while portfolio 5 yields a return 

of 20.74%. The average 𝑏𝑆
−∗ and  𝑏𝑆

+∗ values of each portfolio follow the same trend as 𝑏𝑆
∗, with 

average 𝑏𝑆
−∗ equaling −0.91 in portfolio 1 and increasing to 1.81 in portfolio 5. Similarly, average 

𝑏𝑆
+∗ is −0.92 in portfolio 1 and increases to 2.01 in portfolio 5. 

When stocks are sorted by 𝑏𝑆
−∗, it can be seen from Panel 2 that the average returns generally 

drop from 14.02% to 8.19%, however from portfolio 2 to portfolio 4, returns 

present a U-shaped pattern. When stocks are sorted by 𝑏𝑆
+∗ , both returns and 𝑏𝑆

∗  increase 

dramatically from portfolio 1 to portfolio 5, with a negligible drop in 𝑏𝑆
∗ in portfolio 2. 𝑏𝑆

−∗ slumps 

from 1.82 to −1.41 along with the increase of 𝑏𝑆
+∗. 

When controlling for 𝑏𝑆
∗, returns drop from 14.39% to 7.27% when stocks are sorted by (𝑏𝑆

−∗-𝑏𝑆
∗). 

In contrast, it is clear from Panel 5 that returns increase gradually from 8.23% to 14.5% when stocks 

are sorted by (𝑏𝑆
+∗-𝑏𝑆

∗). It can be seen from Panel 6 that only 𝑏𝑆
−∗ increases from −1.79 to 2.11, while 

returns drop from 14.76% to 7.36%. 

Table 3. Excess stock returns sorted by stock market factor loadings of CPPF model. 

Panel 1 Stocks Sorted by 𝑏𝑆
∗ Panel 2 Stocks Sorted by 𝑏𝑆

−∗ 

Portfolio Return 𝑏𝑆
∗ 𝑏𝑆

−∗ 𝑏𝑆
+∗ Portfolio Return 𝑏𝑆

∗ 𝑏𝑆
−∗ 𝑏𝑆

+∗ 

1 Low 4.40% −0.40 −0.91 −0.92 1 Low 14.02% 1.06 −1.03 1.62 

2 7.62% 0.62 0.91 0.55 2 9.62% 0.72 0.22 0.96 

3 9.41% 0.99 1.29 1.06 3 10.40% 1.01 1.02 0.98 

4 11.64% 1.44 1.53 1.51 4 11.56% 1.40 1.99 0.92 

5 High 20.74% 2.15 1.81 2.01 5 High 8.19% 1.61 2.15 −1.94 

High-Low 16.34% 2.55 2.72 2.93 High-Low −5.83% 0.55 3.18 −3.56 

Panel 3 Stocks Sorted by 𝑏𝑆
+∗ Panel 4 Stocks Sorted by (𝑏𝑆

−∗ − 𝑏𝑆
∗) 

Portfolio Return 𝑏𝑆
∗ 𝑏𝑆

−∗ 𝑏𝑆
+∗ Portfolio Return 𝑏𝑆

∗ 𝑏𝑆
−∗ 𝑏𝑆

+∗ 

1 Low 5.23% 0.66 1.82 −0.39 1 Low 14.39% 1.98 −1.74 1.84 

2 7.54% 0.63 1.13 0.10 2 13.54% 1.17 0.48 1.54 

3 10.05% 0.95 0.97 0.91 3 9.88% 0.94 0.98 0.90 

4 12.64% 1.43 1.03 1.85 4 8.71% 0.98 1.77 0.43 

5 High 18.34% 2.13 −1.41 2.30 5 High 7.27% −0.26 2.46 −1.39 

High-Low 13.11% 1.47 −3.23 2.68 High-Low −7.13% −2.24 4.20 −3.24 

Panel 5 Stocks Sorted by (𝑏𝑆
+∗ − 𝑏𝑆

∗) Panel 6 Stocks Sorted by (𝑏𝑆
−∗ − 𝑏𝑆

∗) 

Portfolio Return 𝑏𝑆
∗ 𝑏𝑆

−∗ 𝑏𝑆
+∗ Portfolio Return 𝑏𝑆

∗ 𝑏𝑆
−∗ 𝑏𝑆

+∗ 

1 Low 8.23% 1.70 1.93 −2.06 1 Low 14.76% 1.64 −1.79 2.19 

2 9.15% 1.07 1.61 0.31 2 12.88% 1.15 0.50 1.63 

3 10.05% 0.94 0.97 0.91 3 9.94% 0.97 0.98 0.91 

4 11.86% 1.08 0.64 1.66 4 8.85% 0.99 1.76 0.35 

5 High 14.50% −0.46 −1.47 2.24 5 High 7.36% −1.06 2.11 −1.94 

High-Low 6.28% −2.16 −3.40 4.30 High-Low −7.40% −2.70 3.90 −4.13 

Note: This table presents the relationship between excess stock returns and stock market factor loadings associated 

with the CPPF model. The column labeled “return” reports the annual average stock returns over the one-month 

T-bill rate. “High-Low” reports the difference between portfolio 5 and portfolio 1. 
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Table 3 presents the relationship between excess stock returns and estimates of commodity market 

risk. It can be seen from Panel 1 that when stocks are sorted by 𝑐𝑆
∗, portfolio 1 has an average 𝑐𝑆

∗ value 

of −1.82. On the other hand, portfolio 5 shows an average 𝑐𝑆
∗ value of 1.78. Unlike Panel 1 in Table 3 

the average annualized return of each portfolio declines along with the increase of 𝑐𝑆
∗, portfolio 1 yields 

a return of 15.31% while portfolio 5 yields a return of 7.85%. The average 𝑐𝑆
−∗  and 𝑐𝑆

+∗  of each 

portfolio follows the same trend as 𝑐𝑆
∗, the average 𝑐𝑆

−∗ is −1.43 in portfolio 1 and increases to 1.8 in 

portfolio 5. Similarly, the average 𝑐𝑆
+∗ is −1.52 in portfolio 1 and increases to 2.22 in portfolio 5. 

When stocks are sorted by 𝑐𝑆
−∗, it can be seen from Panel 2 that the average returns decrease from 

16.66% to 5.82%. 𝑐𝑆
∗ presents a reversed U−shaped pattern along with the increase of 𝑐𝑆

−∗, starting at 

−1.36 in portfolio 1 and finishing at 0.26 in portfolio 5, reaching a peak at 0.56 in portfolio 4. Moreover, 

𝑐𝑆
+∗ drops dramatically from 1.71 to −1.94. When stocks are sorted by 𝑐𝑆

+∗, returns increase dramatically 

from portfolio 1 to portfolio 5 and 𝑐𝑆
∗ increases gradually from portfolio 1 to portfolio 4, with a drop in 

portfolio 5. While 𝑐𝑆
−∗ slumps from 1.43 to −0.64 along with the increase of 𝑐𝑆

+∗. 

Table 4. Excess stock returns sorted by commodity market factor loadings of CPPF model. 

Panel 1 Stocks Sorted by 𝑐𝑆
∗ Panel 2 Stocks Sorted by 𝑐𝑆

−∗ 

Portfolio Return 𝑐𝑆
∗ 𝑐𝑆

−∗ 𝑐𝑆
+∗ Portfolio Return 𝑐𝑆

∗ 𝑐𝑆
−∗ 𝑐𝑆

+∗ 

1 Low 15.31% −1.82 −1.43 −1.52 1 Low 16.66% −1.36 −1.45 1.71 

2 11.29% −0.34 −1.29 −1.28 2 12.49% −0.19 −1.30 0.49 

3 10.17% 0.10 −0.57 −1.01 3 10.00% 0.07 0.05 0.15 

4 9.18% 0.60 0.27 1.95 4 8.81% 0.56 1.61 −0.35 

5 High 7.85% 1.78 1.80 2.22 5 High 5.82% 0.26 2.17 −1.94 

High-Low −7.46% 3.60 3.23 3.75 High-Low −10.84% 1.62 3.62 −3.65 

Panel 3 Stocks Sorted by 𝑐𝑆
+∗ Panel 4 Stocks Sorted by (𝑐𝑆

−∗−𝑐𝑆
∗) 

Portfolio Return 𝑐𝑆
∗ 𝑐𝑆

−∗ 𝑐𝑆
+∗ Portfolio Return 𝑐𝑆

∗ 𝑐𝑆
−∗ 𝑐𝑆

+∗ 

1 Low 7.87% −1.03 1.43 −1.41 1 Low 11.14% 1.83 −1.46 1.35 

2 8.74% −0.25 0.84 −1.06 2 10.80% 0.34 0.67 1.19 

3 10.02% 0.07 −0.04 0.09 3 10.17% 0.10 1.18 1.09 

4 12.45% 0.35 −0.48 1.72 4 10.14% −0.09 1.50 0.15 

5 High 14.71% 0.19 −0.64 1.92 5 High 11.53% −1.83 1.94 −0.78 

High-Low 6.84% 1.22 −2.07 3.33 High-Low 0.39% −3.67 3.40 −2.12 

Panel 5 Stocks Sorted by (𝑐𝑆
+∗−𝑐𝑆

∗) Panel 6 Stocks Sorted by (𝑐𝑆
−∗−𝑐𝑆

+∗) 

Portfolio Return 𝑐𝑆
∗ 𝑐𝑆

−∗ 𝑐𝑆
+∗ Portfolio Return 𝑐𝑆

∗ 𝑐𝑆
−∗ 𝑐𝑆

+∗ 

1 Low 7.96% 1.58 1.61 −1.94 1 Low 14.36% −0.85 −1.63 1.78 

2 7.56% 0.26 0.67 −1.46 2 13.48% 0.13 −1.06 1.48 

3 10.27% 0.07 −0.34 0.10 3 10.26% 0.05 0.02 0.10 

4 13.60% 0.02 −0.87 1.56 4 8.02% 0.15 1.38 −1.35 

5 High 14.39% −1.58 −1.25 1.95 5 High 7.67% −0.14 1.97 −1.71 

High-Low 6.44% −3.16 −2.86 3.89 High-Low −6.69% 0.71 3.61 −3.49 

Note: This table presents the relationship between excess stock returns and commodity market factor loadings 

associated with the CPPF model. The column labeled “return” reports the annual average stock returns over the 

one-month T-bill rate. “High-Low” reports the difference between portfolio 5 and portfolio 1. 
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To control for 𝑐𝑆
∗, when stocks are sorted by (𝑐𝑆

−∗ − 𝑐𝑆
∗), returns present a U−shaped pattern but 

with little change in its value, starting at 11.14% and finishing at 11.53%. In contrast, it is clear from 

Panel 5 that returns increase steadily from 7.96% to 14.39% with a negligible drop in portfolio 2 when 

stocks are sorted by (𝑐𝑆
+∗ − 𝑐𝑆

∗). In Panel 6, (𝑐𝑆
−∗−𝑐𝑆

+∗) is employed for the same reason mentioned in 

Table 3. It can be seen from Panel 6 that only 𝑐𝑆
−∗ increases obviously from −1.63 to 1.97, while 

returns and 𝑐𝑆
+∗ are decreasing and it is difficult to trace the pattern of 𝑐𝑆

∗. 

Table 5 presents the relationship between excess stock returns and estimates of ADS risk. It can be 

seen from Panel 1 that when stocks are sorted by 𝑑𝑆
∗, portfolio 1 has an average 𝑑𝑆

∗ value of −0.89 and 

portfolio 5 shows an average 𝑑𝑆
∗ value of 0.89. The average annualized return of each portfolio shows 

a U−shaped pattern along with the increase of 𝑑𝑆
∗. Portfolio 1 yields a return of 10.6% while portfolio 5 

is at a peak of 12.11%, and there is a slight drop in portfolio 2. The average 𝑑𝑆
−∗ and  𝑑𝑆

+∗ values of 

each portfolio follow the same trend as 𝑑𝑆
∗, average 𝑑𝑆

−∗ is −0.79 in portfolio 1 and increases to 0.82 in 

portfolio 5. Also, average 𝑑𝑆
+∗ is −0.53 in portfolio 1 and increases to 1.23 in portfolio 5. 

When stocks are sorted by 𝑑𝑆
−∗, it can be seen from Panel 2 that average returns decrease from 

16.93% to 4.83%. 𝑑𝑆
∗ and 𝑑𝑆

+∗ both increase gradually along with the increase of 𝑑𝑆
−∗. When stocks 

are sorted by 𝑑𝑆
+∗, both returns and 𝑑𝑆

∗ increase steadily from portfolio 1 to portfolio 5. 

Table 5. Excess stock returns sorted by business conditions factor loadings of CPPF model. 

Panel 1 Stocks Sorted by 𝑑𝑆
∗ Panel 2 Stocks Sorted by 𝑑𝑆

−∗ 

Portfolio Return 𝑑𝑆
∗ 𝑑𝑆

−∗ 𝑑𝑆
+∗ Portfolio Return 𝑑𝑆

∗ 𝑑𝑆
−∗ 𝑑𝑆

+∗ 

1 Low 10.60% −0.89 −0.79 −0.53 1 Low 16.93% −0.04 −0.73 −0.34 

2 10.15% −0.02 −0.13 −0.20 2 13.32% −0.01 −0.12 −0.07 

3 10.28% 0.00 −0.03 0.57 3 10.15% 0.00 0.01 0.13 

4 10.66% 0.01 0.48 0.77 4 8.55% 0.01 0.10 0.29 

5 High 12.11% 0.89 0.82 1.23 5 High 4.83% 0.05 1.11 1.45 

High-Low 1.51% 1.78 1.62 1.76 High-Low −12.11% 0.09 1.84 1.79 

Panel 3 Stocks Sorted by 𝑑𝑆
+∗ Panel 4 Stocks Sorted by (𝑑𝑆

−∗−𝑑𝑆
∗) 

Portfolio Return 𝑑𝑆
∗ 𝑑𝑆

−∗ 𝑑𝑆
+∗ Portfolio Return 𝑑𝑆

∗ 𝑑𝑆
−∗ 𝑑𝑆

+∗ 

1 Low 4.54% −0.06 1.60 −0.36 1 Low 14.52% 0.47 −0.59 1.61 

2 8.95% −0.01 0.85 −0.13 2 13.70% 0.01 −0.11 1.26 

3 10.36% 0.00 0.25 0.01 3 10.47% 0.00 −0.01 1.19 

4 12.24% 0.00 0.10 0.12 4 8.21% −0.01 0.10 0.24 

5 High 17.70% 0.07 −1.45 1.53 5 High 6.88% −0.46 1.80 0.05 

High-Low 13.15% 0.12 −3.05 1.89 High-Low −7.64% −0.93 2.39 −1.56 

Panel 5 Stocks Sorted by (𝑑𝑆
+∗−𝑑𝑆

∗) Panel 6 Stocks Sorted by (𝑑𝑆
−∗−𝑑𝑆

+∗) 

Portfolio Return 𝑑𝑆
∗ 𝑑𝑆

−∗ 𝑑𝑆
+∗ Portfolio Return 𝑑𝑆

∗ 𝑑𝑆
−∗ 𝑑𝑆

+∗ 

1 Low 8.02% 0.61 −1.02 −1.23 1 Low 12.81% 0.01 −1.73 1.71 

2 9.25% 0.00 0.59 −0.13 2 13.75% −0.01 −0.11 1.29 

3 10.28% 0.00 1.30 0.01 3 10.39% 0.00 −0.01 0.01 

4 12.02% −0.01 0.36 1.12 4 8.48% 0.00 1.09 −0.12 

5 High 14.21% −0.60 −1.07 1.61 5 High 8.34% 0.00 1.71 −1.55 

High-Low 6.19% −1.21 −0.05 2.85 High-Low −4.47% −0.01 3.45 −3.26 

Note: This table presents the relationship between excess stock returns and business conditions factor loadings 

associated with the CPPF model. The column labeled “return” reports the annual average stock returns over the 

one-month T-bill rate. “High-Low” reports the difference between portfolio 5 and portfolio 1. 
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However, 𝑑𝑆
−∗ slumps from 1.6 to −1.45 along with the increase of 𝑑𝑆

+∗. When stocks are sorted 

by (𝑑𝑆
−∗ − 𝑑𝑆

∗), all returns, 𝑑𝑆
∗ and 𝑑𝑆

+∗ drop gradually while 𝑑𝑆
−∗ increases substantially. In contrast, 

it is clear from Panel 5 that returns increase steadily from 8.02% to 14.21% when stocks are sorted by 

(𝑑𝑆
+∗ − 𝑑𝑆

∗). Meanwhile, 𝑑𝑆
∗ decreases along with the increase of 𝑑𝑆

+∗, while 𝑑𝑆
−∗ presents a reversed 

U−shaped pattern. In Panel 6, (𝑑𝑆
−∗−𝑑𝑆

+∗) is employed to sort stocks. It can be seen from this panel that 

only 𝑑𝑆
−∗ increases obviously from −1.73 to 1.71, while returns and  𝑑𝑆

+∗ decrease in general and a 

U−shaped pattern is presented in 𝑑𝑆
∗. 

Overall, for stock market fluctuation and overall business conditions, beta and upside beta have 

a positive impact on stock returns, while downside beta shows a negative impact. For commodity 

market risk, as a measure of price level for essential goods, the beta shows a reverse impact on stock 

returns compared to the other two risk factors, while downside and upside beta follow the same impact 

on stock returns as the other two factors, which indicates that potential hedging in commodity market 

could be explored when systematic risk is considered symmetrically in stock market and overall 

business context. 

5.2. Empirical result of the FFF model 

A similar approach applies to the FFF-based estimates. Table A.1 to Table A.3 (in Appendix) 

present the risk-return relationship between annualized excess stock returns and estimates of stock 

market risk, commodity market risk and ADS index risk, respectively. 

Although some patterns are not identical between both models, the relationship between returns 

and risk estimates are quite similar in general. It can be concluded that for both models, consistent with 

previous Huang et al’s (2021) study, the conventional estimates of the stock market risk measures 𝑏𝑆
∗ 

and 𝑏𝐹
∗  do have a positive influence on stock returns, and are consistent with the classic literature of 

“high beta high return”. However, the classic estimates of the commodity market risk measures 𝑐𝑆
∗ 

and 𝑐𝐹
∗  appear to have a negative impact on stock returns. The reason for that is most likely that risk 

in the stock market and commodity market are inversely related while ADS index risk measures 𝑑𝑆
∗ 

and 𝑑𝐹
∗  did not exhibit an obvious impact on stock returns. Furthermore, for the downside estimates, 

except (𝑐𝑆
−∗ −𝑐𝑆

∗ ), all have strong negative effects on stock returns. When downside risk estimates 

increase, stock returns decrease dramatically. There is no clear evidence that (𝑐𝑆
−∗ − 𝑐𝑆

∗) has an impact 

on stock returns. Moreover, it is shown in Table 4 to Table A.9 that all the upside estimates (even when 

controlling for the classic estimates) have a strong positive impact on stock returns. When upside 

estimates increase, stock returns also increase substantially. 

With these findings, the roles of downside and upside estimates are not simply components of 

classic estimates, but are new risk measures. Therefore, it is worthwhile examining the importance of 

downside and upside estimates as factors rather than factor loadings. 

5.3. Fama-Macbeth regressions 

In this section, in order to illustrate the impact of estimates of both models on driving stock returns 

from a cross-sectional regression point of view, a series of Fama-Macbeth regressions are performed 

which employ different combinations of the above estimates as independent variables. 

In order to investigate possible multicollinearity, the correlation coefficient matrix of all estimates 

is presented in Table 6. It can be seen from Table 6 that none of the estimates are highly correlated 



448 

Quantitative Finance and Economics  Volume 6, Issue 3, 433–458. 

with one another.7 Between these estimates, the most correlated pair is 𝑏𝑆
∗ and 𝑑𝑆

∗ with a correlation 

coefficient at 0.43, followed by 𝑏𝐹
∗  and 𝑏𝐹

+∗, and 𝑏𝑆
−∗ and 𝑐𝑆

+∗ at 0.38 and 0.33 respectively. Since 

none of the estimates is highly correlated with another, econometrically, all of them can be employed 

in Fama-Macbeth regression methodology. 

Fama-Macbeth regressions are performed on possible combinations of estimates. The estimated 

coefficients are shown in Table 7 and Table 8 with Newey-West (1987) heteroscedastic robust standard 

errors with 12 lags employed to calculate the t−statistics and the R2 values presented in the tables are 

adjusted R2 values. 

 
7Here we define high correlation as a correlation coefficient greater than 0.5 or less than −0.5. 
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Table 6. Correlation coefficients between factor loadings of both models. 

 𝑏𝑆
∗ 𝑏𝑆

−∗ 𝑏𝑆
+∗ 𝑏𝐹

∗  𝑏𝐹
−∗ 𝑏𝐹

+∗ 𝑐𝑆
∗ 𝑐𝑆

−∗ 𝑐𝑆
+∗ 𝑐𝐹

∗  𝑐𝐹
−∗ 𝑐𝐹

+∗ 𝑑𝑆
∗ 𝑑𝑆

−∗ 𝑑𝑆
+∗ 𝑑𝐹

∗  𝑑𝐹
−∗ 𝑑𝐹

+∗ 

𝑏𝑆
∗ 1.0000                  

𝑏𝑆
−∗ 0.0004 1.0000                 

𝑏𝑆
+∗ −0.0013 −0.1297 1.0000                

𝑏𝐹
∗  0.0073 0.0012 0.0025 1.0000               

𝑏𝐹
−∗ 0.0026 0.0077 −0.0035 0.2997 1.0000              

𝑏𝐹
+∗ 0.0035 −0.0041 0.0121 0.3774 −0.2454 1.0000             

𝑐𝑆
∗ −0.2451 −0.0101 0.0169 −0.0037 −0.0121 0.0060 1.0000            

𝑐𝑆
−∗ −0.0003 −0.0116 0.0191 0.0005 −0.0004 0.0012 0.0010 1.0000           

𝑐𝑆
+∗ −0.0013 0.3318 −0.0030 −0.003 0.0006 −0.0026 −0.0023 −0.0259 1.0000          

𝑐𝐹
∗  −0.0011 −0.0012 −0.0028 −0.0139 −0.0317 0.0111 0.0090 0.0013 0.0025 1.0000         

𝑐𝐹
−∗ −0.006 −0.0044 −0.0024 0.0258 −0.1546 0.2540 0.0169 0.0009 0.0026 0.3038 1.0000        

𝑐𝐹
+∗ 0.0001 −0.0022 0.0016 −0.0444 0.0932 −0.1733 −0.0036 0.0002 0.0066 0.1358 −0.1648 1.0000       

𝑑𝑆
∗ 0.4324 0.0022 −0.0045 −0.0001 0.0016 −0.0016 −0.2643 −0.0005 −0.0020 −0.0022 −0.0062 −0.0000 1.0000      

𝑑𝑆
−∗ 0.0001 0.0013 0.0004 −0.0002 −0.0027 0.0011 −0.0002 0.0007 0.0031 −0.0001 −0.0003 0.0003 0.0002 1.0000     

𝑑𝑆
+∗ −0.003 0.0043 0.0525 0.0021 0.0009 0.0000 0.0058 0.0053 −0.0009 0.0014 −0.0003 0.0010 −0.0014 −0.0000 1.0000    

𝑑𝐹
∗  −0.0026 0.0026 0.0028 −0.0413 0.0017 −0.0346 −0.0035 −0.0009 0.0019 −0.1584 −0.0650 −0.0118 0.0076 0.0025 −0.0025 1.0000   

𝑑𝐹
−∗ −0.0039 −0.0003 0.0004 0.0228 −0.0029 0.0258 0.0041 −0.0001 −0.0000 −0.0086 −0.0388 −0.0090 0.0123 0.0000 0.0000 0.0008 1.0000  

𝑑𝐹
+∗ −0.001 0.0012 −0.0025 −0.008 0.0814 −0.0858 −0.0020 0.0004 0.0023 −0.0182 0.0649 −0.0371 0.0029 −0.0006 −0.0058 0.1207 0.0080 1.000 

Note: This table reports the correlation coefficients between all factor loadings of the CPPF and the FFF models. To avoid repetition, only the lower triangle of the matrix is shown. 
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Table 7. Fama-Macbeth regression of CPPF model factor loadings. 

 1 2 3 4 5 6 7 8 

𝑏𝑆
∗ 

 

0.00336**

* [3.38] 

 0.000435*** 

[3.09] 

  0.00063 

1* [1.87] 

0.00136*** 

[2.79] 

 

𝑐𝑆
∗ −0.000246 

[−0.30] 

  0.00000587 

[0.12] 

 −0.000050

3 [−0.36] 

 0.0000986 

[0.43] 

𝑑𝑆
∗ −0.0329 

[−0.63] 

   −0.00173 

[−0.39] 

 −0.0104 

[−0.66] 

0.000218 

[0.02] 

𝑏𝑆
−∗  −0.00814**

* [−6.55] 

 −0.000390**

* [−3.63] 

−0.000264* 

[−1.80] 

  0.00000105 

[0.04] 

𝑏𝑆
+∗  0.0110*** 

[10.69] 

 0.00103*** 

[4.05] 

0.000438*** 

[3.24] 

  0.0000540**

* [2.81] 

𝑐𝑆
+∗  −0.00599**

* [−6.34] 

−0.000286**

* [−4.57] 

 −0.000131**

* [−3.65] 

 −0.0000179

* [−1.68] 

 

𝑐𝑆
−∗  0.00485*** 

[6.43] 

0.000397*** 

[3.35] 

 0.000234*** 

[2.60] 

 0.0000244*

* [2.46] 

 

𝑑𝑆
+∗  −0.251*** 

[−3.81] 

−0.0137*** 

[−2.81] 

−0.0206** 

[−2.02] 

 −0.00425 

[−1.22] 

  

𝑑𝑆
−∗  0.217*** 

[6.24] 

0.0199*** 

[4.00] 

0.0235*** 

[3.91] 

 0.00291** 

[2.00] 

  

Cons 0.00417** 

[2.47] 

0.00286* 

[1.72] 

0.00795*** 

[3.05] 

0.00760*** 

[3.00] 

0.00834*** 

[3.26] 

0.00795**

* [3.25] 

0.00692*** 

[2.90] 

0.00842*** 

[3.24] 

No. of 

Obs 

2396262 2396262 2396262 2396262 2396262 2396262 2396262 2396262 

Adjuste

d R2 

0.129 0.296 0.035 0.037 0.032 0.032 0.038 0.032 

Note: This table reports the result of the Fama-Macbeth regression of the CPPF model factor loadings on excess stock returns. The 

t−statistics in the square brackets are calculated by using Newey-West (1987) heteroscedastic robust standard error with 12 lags. * 

denotes significance at the 10% level, ** denotes significance at the 5% level and ***denotes significance at the 1% level. 

It can be seen from Table 7 that estimates of the CPPF-based cross-sectional model are employed 

in different possible combinations to examine the sensitivity of risk factor coefficients to stock returns. 

Among these eight regressions, regression 2 produces the highest adjusted R2 value at 0.30, with all 

estimates highly significant at the 1% significance level. Regression 2 employs all the downside and 

upside estimates of the CPPF model to explain the movement of stock returns without considering the 

classic estimates. Among the independent variables in regression 2, 𝑑𝑆
−∗ and 𝑑𝑆

+∗ have coefficients 

of 0.251 and 0.217, respectively. Regression 1 aims to employ all the classic estimates to explain the 

movement of stock returns regardless of the downside and upside estimates. It produces the second 

highest R2 value among the eight regressions, however, 𝑐𝑆
∗ and 𝑑𝑆

∗ are not significant even at the 10% 

significance level. Regression 3 employs downside and upside estimates of commodity market and 

ADS index risk to explain stock returns. All of the independent variables are significant at the 1% 

significance level. However, it produces a much lower R2 value than regression 2 at 0.04. 

It can be concluded that classic estimates do not have enough explanatory power on stock returns, 

and when dividing the market risk into downside and upside risk, downside and upside estimates have 
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more explanatory power than classic ones. Regarding the importance of market risk, although 

commodity market and business risk do have a relationship with the stock market, market risk is still 

an essential element relating to stock returns. 

Table 8. Fama-Macbeth regression of the FFF model factor loadings. 

 1 2 3 4 5 6 7 8 

𝑏𝐹
∗  

 

0.00567**

* [3.52] 

 0.00608*** 

[4.38] 

  0.00597**

* [4.08] 

0.00578*** 

[3.97] 

 

𝑐𝐹
∗  −0.00156 

[−1.28] 

  0.00144 

[−1.47] 

 −0.000992 

[−0.95] 

 −0.00143 

[−1.34] 

𝑑𝐹
∗  −0.0301 

[−0.37] 

   −0.0104 

[−0.15] 

 −0.00434 

[−0.06] 

−0.0259 

[−0.35] 

𝑏𝐹
−∗  −0.0110*** 

[−8.17] 

 −0.00371**

* [−5.35] 

−0.00322**

* [−5.04] 

  −0.00134**

* [−2.99] 

𝑏𝐹
+∗  0.0153*** 

[13.07] 

 0.00702*** 

[8.45] 

0.00582*** 

[8.07] 

  0.00316*** 

[5.58] 

𝑐𝐹
−∗  −0.00791**

* [−7.95] 

−0.00253**

* [−6.83] 

 −0.00271**

* [−5.64] 

 −0.00117**

* [−4.38] 

 

𝑐𝐹
+∗  0.00661*** 

[7.35] 

0.00267*** 

[6.33] 

 0.00276*** 

[5.70] 

 0.00142*** 

[5.57] 

 

𝑑𝐹
−∗  −0.277*** 

[−4.16] 

−0.114*** 

[−4.52] 

−0.143*** 

[−4.21] 

 −0.0856**

* [−4.13] 

  

𝑑𝐹
+∗  0.242*** 

[6.80] 

0.120*** 

[5.59] 

0.109*** 

[5.60] 

 0.0745*** 

[5.07] 

  

Con 0.00929**

* [4.45] 

0.00716*** 

[3.85] 

0.00721*** 

[3.12] 

0.00688*** 

[3.18] 

0.00928*** 

[4.40] 

0.00728**

* [3.27] 

0.00917*** 

[4.13] 

0.00909*** 

[4.23] 

No. of 

Obs 

2396262 2396262 2396262 2396262 2396262 2396262 2396262 2396262 

Adjuste

d R2 

0.071 0.135 0.095 0.094 0.099 0.075 0.077 0.079 

Note: This table reports the result of the Fama-Macbeth regression of the FFF model factor loadings on excess stock returns. The 

t−statistics in the square brackets are calculated by using Newey-West (1987) heteroscedastic robust standard error with 12 lags. * 

denotes significance at the 10% level, ** denotes significance at the 5% level and ***denotes significance at the 1% level. 

It can be seen from Table 8 that estimates of the FFF model are employed in different 

combinations. Among these eight regressions, regression 2 produces the best fit with an adjusted R2 

value of 0.14, with all estimates significant at the 1% level. 

It employs all the downside and upside risk estimated coefficients of the FFF model to explain 

the movement of stock returns without considering the classic betas. Among the independent variables 

in regression 2, 𝑑𝐹
−∗  and 𝑑𝐹

+∗  have coefficients of 0.277 and 0.242, respectively. Regression 3 

produced the second best fit with an adjusted R2 of 0.1. It employs the classic stock market beta with 

downside and upside commodity market and ADS index risk to explain stock returns, with all variables 

significant at the 1% level significance. 

It can be concluded from Table 7 and Table 8 that when the estimates are separately employed in 

the Fama-Macbeth regression based on their original models, the downside and upside risk estimates 
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of both models of all three risk factors are significantly priced and produce the best fit, while the classic 

estimates did not perform as well as downside and upside ones. Among the downside and upside risk 

estimates, the ones that employ ADS index risk explain stock returns the most. Downside and upside 

risk estimates of the CPPF model, employed as independent variables in Fama-Macbeth regression 

produced the best fit among all regressions. 

For the sake of completeness, rather than dividing estimates into two groups based on their original 

models, all available estimates are employed in different combinations to perform Fama-Macbeth 

regressions, in order to examine whether putting estimates from both models together could enhance the 

cross-sectional explanatory power. The results of these exercises are shown in Table A.4 (in Appendix). 

It is obvious that when all estimates are employed, regression 7 produces the highest R2 value of 0.38 

among all regressions among Table 7 to Table A.10. However, the best fit does not make all estimates 

significant, particularly, 𝑑𝑆
∗  𝑐𝑆

∗ , 𝑐𝐹
∗   and 𝑑𝐹

∗   which are not significant at the 10% significance level. 

Regression 2 employs all the downside and upside estimates of both models and produces the second 

best fit with an adjusted R2 value of 0.35. All estimates of regression 2 are highly significant at the 1% 

significance level. The remaining regressions in Table A.10 produce low adjusted R2 values with certain 

independent variables being not significant. 

Notably, the classic estimates of the commodity market and ADS index risk of both models, 

𝑐𝑆
∗, 𝑑𝑆

∗, 𝑐𝐹
∗  and 𝑑𝐹

∗ , have never been significant in any regression. In contrast, the downside and upside 

estimate of all three factors associated with both models are almost always significant. It can be 

concluded that from a cross-sectional point of view, downside and upside estimates are not only 

components of classic estimates, but also produce better explanatory power than classic estimates. The 

importance of downside and upside estimates show that explaining the movement of stock returns can 

be more precisely achieved by examining the downside and upside of risk factors individually rather 

than treating risk factors as a whole. Moreover, it also can be summarized that apart from stock market 

risk itself, commodity market and ADS index risk do have significant relations with stock returns. The 

downside risk estimates have a negative relationship with stock returns, while upside estimates show 

a positive one. Furthermore, between the CPPF model and the FFF model, with all estimates significant, 

the former one does produce a slightly better fit than the latter one. 

Although there is no sign of multicollinearity between all available variables econometrically 

(bivariate correlations), the implication of employing risk estimates of the same risk factors from both 

models is still questionable. Nevertheless, it is clear that employing downside and upside estimates of 

both models produces a much higher adjusted R2 value with all estimates significant. It is most likely 

that the CPPF model and the FFF model can complement each other, and the downside and upside risk 

estimated coefficients could capture something that the one of the other models could not. 

Finally, consistent with the results of previous studies, the downside and upside estimates of 

market risk are highly significant, and have negative and positive relations with stock returns, 

respectively. More importantly, employing commodity market and ADS index risk in the regressions 

leads to a dramatic increase in adjusted R2 values. It is obvious that commodity market risk and real 

business risk do have strong explanatory power on stock returns. While there could be other factors 

significantly driving stock prices, the above three factors are preferred because they measure the whole 

economy in a more comprehensive way. 
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5.4. The predictability of risk factor estimated coefficients 

After revealing the relationship between realized stock returns and estimates of both models, the 

predictability of the risk factor coefficients is examined. As in earlier sections, the relative estimates 

associated with the CPPF model, denoted by (𝑏𝑆
−∗ − 𝑏𝑆

∗), (𝑐𝑆
−∗ − 𝑐𝑆

∗) and (𝑑𝑆
−∗ − 𝑑𝑆

∗) for the downside 

market, and (𝑏𝑆
+∗ − 𝑏𝑆

∗), (𝑐𝑆
+∗ − 𝑐𝑆

∗) and (𝑑𝑆
+∗ − 𝑑𝑆

∗) for the upside market, and repetitive measures 

associated with the FFF model. Moreover, the annualized average excess return of each stock are 

computed based on the following year’s data. Furthermore, all stocks in the sample are assigned into 

five portfolios based on the mean of the target estimate. Finally, the equally weighted average of 

estimates and future one−year excess returns for each portfolio are computed. The results are shown 

in Tables 9 to Table 11 and Table A.5 to Table A.7 (in Appendix). 

For the CPPF model, it can be seen from Table 9 that when stocks are sorted by 𝑏𝑆
∗, 𝑏𝑆

−∗, 𝑏𝑆
+∗, 

(𝑏𝑆
−∗ − 𝑏𝑆

∗) and (𝑏𝑆
+∗ − 𝑏𝑆

∗), the highest future returns all appear in portfolio 3, and returns present a 

reversed U−shaped pattern. When stocks are sorted by (𝑏𝑆
−∗ − 𝑏𝑆

+∗), the reversed U−shaped pattern 

still exists. When stocks are sorted by estimates of the commodity market and ADS index risk, it is 

even more obvious from Table 10 and Table 11 that the reversed U-shaped pattern of future returns is 

present, and with portfolio 3 of each group producing the highest future return. 

Table 9. Future excess stock returns sorted by stock market factor loadings of the CPPF model. 

Panel 1 Stocks Sorted by 𝑏𝑆
∗ Panel 2 Stocks Sorted by 𝑏𝑆

−∗ 

Portfolio Return 𝑏𝑆
∗ 𝑏𝑆

−∗ 𝑏𝑆
+∗ Portfolio Return 𝑏𝑆

∗ 𝑏𝑆
−∗ 𝑏𝑆

+∗ 

1 Low 8.69% −1.01 −0.48 0.11 1 Low 7.45% 0.99 −1.37 1.61 

2 17.44% 0.65 0.31 −0.13 2 20.86% 1.05 −0.72 1.13 

3 21.64% 1.06 1.11 0.58 3 23.40% 1.09 1.08 0.98 

4 18.31% 1.49 1.64 2.00 4 16.94% 1.06 1.75 0.77 

5 High 7.76% 2.10 1.92 1.24 5 High 5.19% 1.12 1.92 −1.69 

High-Low −0.93% 3.11 2.41 1.12 High-Low −2.26% 0.13 3.30 −3.30 

Panel 3 Stocks Sorted by 𝑏𝑆
+∗ Panel 4 Stocks Sorted by (𝑏𝑆

−∗−𝑏𝑆
∗) 

Portfolio Return 𝑏𝑆
∗ 𝑏𝑆

−∗ 𝑏𝑆
+∗ Portfolio Return 𝑏𝑆

∗ 𝑏𝑆
−∗ 𝑏𝑆

+∗ 

1 Low 6.68% 0.60 1.96 −0.54 1 Low 8.82% 1.79 −0.36 1.36 

2 12.42% 1.05 1.55 −0.53 2 20.84% 1.33 0.55 1.15 

3 21.47% 1.16 1.04 0.92 3 22.13% 1.03 1.06 0.98 

4 20.60% 1.31 0.81 1.14 4 15.78% 0.82 1.58 0.41 

5 High 12.66% 1.19 −1.85 1.81 5 High 6.27% −1.67 1.93 −1.71 

High-Low 5.98% 0.59 −3.81 2.35 High-Low −2.55% −3.46 2.30 −3.07 

Panel 5 Stocks Sorted by (𝑏𝑆
+∗−𝑏𝑆

∗) Panel 6 Stocks Sorted by (𝑏𝑆
−∗−𝑏𝑆

+∗) 

Portfolio Return 𝑏𝑆
∗ 𝑏𝑆

−∗ 𝑏𝑆
+∗ Portfolio Return 𝑏𝑆

∗ 𝑏𝑆
−∗ 𝑏𝑆

+∗ 

1 Low 6.86% 1.42 1.71 −1.50 1 Low 10.62% 1.42 −1.21 1.61 

2 11.98% 1.19 1.43 −0.38 2 22.66% 1.32 0.53 1.64 

3 22.23% 1.00 0.95 0.94 3 21.18% 0.97 1.02 0.91 

4 21.85% 0.92 1.25 1.01 4 12.94% 0.90 1.34 −0.34 

5 High 10.93% −1.84 −1.20 1.73 5 High 6.43% 0.69 1.84 −1.04 

High-Low 4.07% −3.26 −2.91 3.23 High-Low −4.19% −0.73 3.06 −2.65 

Note: This table presents the relationship between future excess stock returns and the stock market factor loadings 
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associated with the CPPF model. The column labeled “return” reports the annual average future stock returns over the 

one−month T−bill rate. “High−Low” reports the difference between portfolio 5 and portfolio 1. 

Table 10. Future excess stock returns sorted by commodity market factor loadings of the 

CPPF model. 

Panel 1 Stocks Sorted by 𝑐𝑆
∗ Panel 2 Stocks Sorted by 𝑐𝑆

−∗ 

Portfolio Return 𝑐𝑆
∗ 𝑐𝑆

−∗ 𝑐𝑆
+∗ Portfolio Return 𝑐𝑆

∗ 𝑐𝑆
−∗ 𝑐𝑆

+∗ 

1 Low 5.94% −1.33 −0.01 −2.57 1 Low 7.35% −0.43 −0.58 1.67 

2 19.74% −0.30 −1.93 −2.00 2 18.81% −0.78 1.07 1.84 

3 19.77% 1.11 0.79 0.60 3 20.88% 1.02 1.46 0.46 

4 19.45% 1.58 −0.87 1.94 4 17.76% −0.07 1.52 −1.57 

5 High 8.94% 1.82 2.16 1.30 5 High 9.05% 1.63 2.10 −1.12 

High-Low 3.00% 3.14 2.18 3.87 High-Low 1.70% 2.06 2.68 −2.79 

Panel 3 Stocks Sorted by 𝑐𝑆
+∗ Panel 4 Stocks Sorted by (𝑐𝑆

−∗−𝑐𝑆
∗) 

Portfolio Return 𝑐𝑆
∗ 𝑐𝑆

−∗ 𝑐𝑆
+∗ Portfolio Return 𝑐𝑆

∗ 𝑐𝑆
−∗ 𝑐𝑆

+∗ 

1 Low 6.54% −1.07 1.97 −1.18 1 Low 8.76% 0.81 −0.53 0.82 

2 19.90% 0.01 1.33 −0.55 2 18.31% 1.49 −0.16 1.56 

3 21.53% 1.11 −0.11 0.14 3 21.77% 0.11 0.06 0.27 

4 19.22% −0.44 0.36 1.44 4 15.82% −0.28 1.05 0.51 

5 High 6.65% −0.24 −1.41 1.76 5 High 9.17% −1.77 1.69 −1.90 

High-Low 0.11% 0.83 −3.38 2.94 High-Low 0.41% −2.58 2.22 −2.72 

Panel 5 Stocks Sorted by (𝑐𝑆
+∗−𝑐𝑆

∗) Panel 6 Stocks Sorted by (𝑐𝑆
−∗ −𝑐𝑆

+∗) 

Portfolio Return 𝑐𝑆
∗ 𝑐𝑆

−∗ 𝑐𝑆
+∗ Portfolio Return 𝑐𝑆

∗ 𝑐𝑆
−∗ 𝑐𝑆

+∗ 

1 Low 6.70% 0.97 1.77 −0.45 1 Low 7.74% −1.78 −0.17 1.78 

2 18.18% 0.53 1.76 −0.17 2 18.21% 1.32 0.48 1.17 

3 23.83% 0.14 −0.08 0.18 3 23.54% 1.16 1.00 0.05 

4 18.50% −0.29 0.18 1.33 4 17.55% −1.20 1.20 −1.13 

5 High 6.62% −1.99 −1.49 1.51 5 High 6.80% 1.50 1.60 −1.27 

High-Low −0.08% −2.96 −3.26 1.96 High-Low −0.94% 3.28 1.77 −3.05 

Note: This table presents the relationship between future excess stock returns and the commodity market factor loadings 

associated with the CPPF model. The column labeled “return” reports the annual average future stock returns over the one-

month T-bill rate. “High-Low” reports the difference between portfolio 5 and portfolio 1. 

For the FFF model, it can be seen from Table A.5 to Table A.7 (in Appendix) that the reversed U-

shaped pattern on future returns on all groups of portfolios exists except when stocks are sorted by 

𝑏𝐹
+∗ and (𝑏𝐹

+∗ − 𝑏𝐹
∗ ). For the remaining groups, portfolio 1 or portfolio 5 constantly has the lowest 

future return. 

It can be concluded from the results that the medium value estimates of the commodity market 

and ASD index risk lead to a high future return, while the top and bottom value estimates constantly 

lead to a low future return. Moreover, for estimates of stock market risk, there is very weak evidence 

that low upside estimates indicate a high future return on the FFF model. However, the estimates of 

the CPPF model do not support the evidence, the remaining estimates of stock market risk appear to 

be consistent with the estimates of the commodity market and ADS index risk. 
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Table 11. Future excess stock returns sorted by business conditions factor loadings of the 

CPPF model. 

Panel 1 Stocks Sorted by 𝑑𝑆
∗ Panel 2 Stocks Sorted by 𝑑𝑆

−∗ 

Portfolio Return 𝑑𝑆
∗ 𝑑𝑆

−∗ 𝑑𝑆
+∗ Portfolio Return 𝑑𝑆

∗ 𝑑𝑆
−∗ 𝑑𝑆

+∗ 

1 Low 11.42% −0.69 −1.57 −1.07 1 Low 9.31% −0.07 −1.04 −2.10 

2 18.47% −0.02 −1.51 −0.69 2 18.05% −0.02 −0.87 1.20 

3 23.10% 0.00 0.75 0.53 3 23.09% 0.00 −0.01 0.03 

4 16.24% 1.01 −0.17 0.40 4 18.25% 1.03 0.74 −0.27 

5 High 4.61% 1.58 −1.17 −1.22 5 High 5.14% 1.14 1.68 −0.50 

High-Low −6.81% 2.27 0.40 −0.15 High-Low −4.17% 1.21 2.72 1.60 

Panel 3 Stocks Sorted by 𝑑𝑆
+∗ Panel 4 Stocks Sorted by (𝑑𝑆

−∗ − 𝑑𝑆
∗) 

Portfolio Return 𝑑𝑆
∗ 𝑑𝑆

−∗ 𝑑𝑆
+∗ Portfolio Return 𝑑𝑆

∗ 𝑑𝑆
−∗ 𝑑𝑆

+∗ 

1 Low 8.07% −0.19 −0.30 −1.79 1 Low 10.15% 1.13 −0.91 −1.16 

2 15.46% 1.03 −0.87 −0.47 2 17.54% 1.06 −0.84 −0.58 

3 22.68% −0.01 1.08 1.01 3 20.92% −1.00 1.01 1.12 

4 15.99% 1.31 1.72 1.40 4 20.62% −1.04 1.43 −0.86 

5 High 11.64% −0.04 −0.30 1.81 5 High 4.61% −1.26 1.86 −1.56 

High-Low 3.57% 0.15 0.00 3.60 High-Low −5.54% −2.39 2.78 −0.40 

Panel 5 Stocks Sorted by (𝑑𝑆
+∗ − 𝑑𝑆

∗) Panel 6 Stocks Sorted by (𝑑𝑆
−∗ − 𝑑𝑆

+∗) 

Portfolio Return 𝑑𝑆
∗ 𝑑𝑆

−∗ 𝑑𝑆
+∗ Portfolio Return 𝑑𝑆

∗ 𝑑𝑆
−∗ 𝑑𝑆

+∗ 

1 Low 8.08% 1.20 −0.50 −0.68 1 Low 10.88% −1.06 −1.01 1.84 

2 13.76% 1.05 −0.02 −0.47 2 18.11% −1.03 −1.01 0.49 

3 23.44% −1.00 1.14 1.00 3 22.84% −0.03 1.01 0.01 

4 17.44% −1.05 0.95 1.40 4 17.10% 1.10 1.94 −0.53 

5 High 11.13% −1.32 −1.24 1.72 5 High 4.91% −1.04 2.52 −1.87 

High-Low 3.05% −2.52 −0.74 2.40 High-Low −5.97% 0.02 3.54 −3.72 

Note: This table presents the relationship between future excess stock returns and the business conditions factor loadings 

associated with the CPPF model. The column labeled “return” reports the annual average future stock returns over the one-

month T-bill rate. “High-Low” reports the difference between portfolio 5 and portfolio 1. 

5. Conclusions 

From the cross−sectional point of view, the time−varying conventional estimates of stock market 

risk play important roles in determining stock returns. Specifically, 𝑏𝑆
∗  and 𝑏𝐹

∗   are found have a 

positive influence on stock returns — a result that is consistent with the classic literature. The classic 

estimates of commodity market risk 𝑐𝑆
∗ and 𝑐𝐹

∗  appear to have a negative impact on stock returns 

which appear to be a hedging market during economic downturn. The classic estimates of ADS index 

risk 𝑑𝑆
∗ and 𝑑𝐹

∗  did not show an obvious impact on stock returns. Furthermore, for all the downside 

estimates of both models, even when controlling for the classic estimates and upside estimates, there 

are strong negative impacts on stock returns. The findings indicate that stock returns are more sensitive 

to recessed business condition. 
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When estimates are treated as factors rather than factor loadings, this study finds that downside and 

upside estimates are not only components of classic estimates, but also produce better explanatory power 

than classic estimates. The evidence from downside and upside estimates shows that explaining the 

movement of stock returns can be enhanced by examining the downside and upside of risk factors 

individually rather than treating the risk symmetrically. Moreover, it can be summarized that apart from 

stock market risk, the commodity market and ADS index risks are found to have significant impacts on 

stock returns. The downside estimates have a negative relationship with stock returns, while upside 

estimates have a positive impact. Furthermore, between the CPPF model and the FFF model, with all 

estimates significant, the former one produces a better fit than the latter one. However, it is found that 

employing downside and upside estimates of both models can produce a much higher adjusted R2 value 

with all estimates significant. This could be due to the complementary property of both models. 

Finally, the predictive power of all classic, downside and upside estimate of both models is found 

to be poor. There is weak evidence that low upside estimates of stock market risk indicate a higher 

future return when the FFF model is employed.8 However the estimates of the CPPF model do not 

support the evidence. The findings indicate that risks (as of stock market, overall business conditions 

and commodity market) are of significant exploratory power to contemporaneous stock returns, while 

being modest of predictive power. 

Arguably, there are certain limitations in this study. Firstly, although both CPPF and FFF 

approaches are considered to be comprehensive time series data smoothing technique, the impact on 

financial economic inference of modelling will need to be further explored. Secondly, adjusted R2 is 

used to differentiate goodness of fit of Fama-Macbeth regressions, while supplementary approaches 

e.g., GRS test (Gibbons et al., 1989) could have been employed to compare the modelling efficiency. 

Thirdly, this study uses ADS index and commodity price index to proxy overall business condition and 

price level, while alternative indices could have been considered for comparisons. Nonetheless, these 

lead to further research on asset pricing modelling. 
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