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Abstract: This paper quantitatively reveals the meaning of structural breaks for risk management by 
analyzing US and major European banking sector stocks. Applying newly extended Glosten-
Jagannathan-Runkle generalized autoregressive conditional heteroscedasticity models, we supply the 
following new evidence. First, we find that incorporating structural breaks is always effective in 
estimating banking stock volatilities. Second, we clarify that structural breaks partially explain the tail 
fatness of banking stock returns. Third, we find that when incorporating structural breaks, the estimated 
volatilities more accurately capture their downside risk, proving that structural breaks matter for risk 
management. Fourth, our news impact curve and model parameter analyses also uncover that when 
incorporating structural breaks, the asymmetry in volatility responses to return shocks is more 
accurately captured. This proves why the estimated volatilities by incorporating structural breaks better 
explain downside risk. In addition, we further reveal that the estimated volatilities obtained through 
incorporating structural breaks increase sharply during momentous events such as the Lehman crisis, 
the European debt crisis, Brexit, and the recent COVID-19 crisis. Moreover, we also clarify that the 
volatility spreads between models with and without structural breaks rise during the Lehman and 
COVID-19 crises. Finally, based on our findings, we derive many significant and beneficial 
interpretations, implications, and innovative views for risk management using artificial intelligence in 
the post-COVID-19 era. 
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1. Introduction  

Recent shocks associated with COVID-19 strongly remind us of the importance of structural 
breaks, sharp price drops, and volatility jumps in international stock markets. For instance, in the ten 
days to March 12, 2020, the FTSE MIB index in Italy fell 32.3%, while to March 18, 2020, the CAC 
40 and the DAX 30 indices plummeted 30.0% and 29.3% in France and Germany, respectively. 
Likewise, in the ten days to March 23, 2020, in the USA and the UK, the S&P 500 and the FTSE 100 
indices fell 22.4% and 16.2%, respectively. At the same time, the US volatility index sharply increased 
by 124.6% to a value of 82.7 over the ten business days until March 16, 2020. 

Given these sudden increases in risk in financial markets associated with structural breaks and 
the importance of the banking industry, to support the soundness of global banking operations, the 
European Central Bank (2020) and Bank of England (2020) published official statements in March 
2020, placing restrictions on Eurozone and UK bank dividend distributions and share buybacks, 
respectively. Later, in June 2020, the US Federal Reserve Board (2020) issued a press release that also 
restricted the payout policies of large US banks. Based on these regulatory cautious actions for the 
banking industries in the US and Europe and the past serious damages on the world economy from the 
Lehman and European debt crises, which were both caused by the upsets of financial sectors, we 
understand the particular importance of the US and major European banking sectors for the world 
economy. To endure sudden increases of risk in the balance sheets in banks, which are caused by their 
equity capital decreases through large declines of stock returns associated with their structural breaks, 
the US and major European banking sectors should conduct more proper and cautious risk management 
and maintain the stabilities of not only the financial sector but also the world economy. Considering 
these, we ask ourselves the question, how do structural breaks matter for risk management—
particularly downside risk management in the US and major European banking sectors? To answer this 
question, we consider that the best approach is to focus on the US and major European banking sector 
stock returns and inspect the nexuses between the stock return structural breaks, volatility jumps, and 
the downside risk in the US and major European banking sectors.  

While there are many interesting studies relating to financial risk management (e.g., Buston, 
2016; Butaru et al., 2016; Tsuji, 2016; Cardona et al., 2019; Sun et al., 2019; Georgiopoulos, 2020; 
Pérez-Rodríguez, 2020; Tsuji, 2020; Lv et al., 2021; Malik et al., 2021; Matallín-Sáez et al., 2021) 
and systemic risk (e.g., Adrian and Boyarchenko, 2018; Varotto and Zhao, 2018; Zeb and Rashid, 
2019; Wen et al., 2020; Davydov et al., 2021; Safi et al., 2021; Borri and di Giorgio, 2022), their 
primary focus is not on structural breaks. Overall, although there are indeed previous studies on 
structural breaks, few analyze structural breaks in the equity markets of developed countries from 
the viewpoint of risk management. In addition, while there are extant studies of structural breaks 
in other assets, they also do not address risk management. These include the studies on exchange 
rates (Villanueva, 2007; Chowdhury, 2012; Ahmad and Aworinde, 2016), those on interest rates 
(Maveyraud-Tricoire and Rous, 2009), those on term structure (Bulkley and Giordani, 2011; 
Esteve et al., 2013), on credit ratings (Xing et al., 2012), and on commodities (Li et al., 2020).  

Reviewing research on structural breaks of equities, Granger and Hyung (2004) analyzed structural 
breaks in S&P 500 absolute returns and their effect on the autocorrelations in the absolute returns, while 
Ewing and Malik (2005) investigated structural breaks in small and large US firm stock returns and their 
effect on volatility spillovers between small and large US firm stocks. Subsequently, using panel data 
analysis, Cerqueti and Costantini (2011) incorporated stock price bubbles in their analysis of structural 
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breaks in OECD countries, Adesina (2017) examined the effect of structural breaks on the volatility 
persistence of FTSE 100 returns for a period including the Brexit vote, and Smith (2017) estimated US 
equity premium using a Bayesian model allowing for structural breaks. In addition, Yin (2019) also 
investigated the US equity premium, again taking structural breaks into consideration. 

As discussed, there is currently little research on the meaning of structural breaks in downside 
risk management, even though there is a clear connection between structural breaks, stock price 
plunges, and volatility jumps. Considering this, our motivation in this paper is to uncover the meaning 
of structural breaks for downside risk management in the banking industry. That is, again, as the US 
Federal Reserve Board, the European Central Bank, and the Bank of England have all published notes 
to maintain the soundness of the banking industry and given the banking sector is a core financial 
sector and critical for the entire economy, the impact of structural breaks on downside risk management 
in the US and major European banking sectors is a matter of great importance.  

The goal of this study is to reveal how structural breaks matter for downside risk management in 
the US and major European banking sectors. To perform robust analysis for this purpose, we apply 
newly extended econometric models, i.e., a Glosten-Jagannathan-Runkle generalized autoregressive 
conditional heteroscedasticity (GJR-GARCH) model (Glosten et al., 1993) incorporating structural 
breaks and Student-t errors, to significant banking sector stock return data of the USA, the UK, 
Germany, and France because our focus in this study is on the nexuses between structural breaks, 
volatility jumps, and the downside risk in the US and major European banking sectors as we 
emphasized. We also consider that our results derived from this study should be highly useful since 
they are all applicable to not only other industries but also overall stock markets around the world. 

Specifically, our research questions are as follows. First, are the estimated volatilities taking structural 
breaks into account effectual for downside risk management? Second, why are such volatilities effective 
and what are the mechanisms for these volatilities to be effectual? Furthermore, what implications and 
innovative views can we derive from our results for risk management in the post-COVID-19 era? By 
clarifying these matters, our quantitative examinations look to enrich our knowledge of the meaning of 
structural breaks for risk management. We emphasize that to our best knowledge, this is the first 
multipronged and thorough study to reveal not only how but also why structural breaks are important for 
downside risk management by supplying ample and robust new evidence alongside the rich interpretations, 
implications, and innovative views for the post-COVID-19 world. 

As a result of our analysis, this study makes many significant contributions to the body of literature. 
First, the likelihood ratio (LR) tests of our extended GJR-GARCH models robustly show that for all the 
four countries, incorporating structural breaks in volatility estimations is always effective. This new 
finding is a worthwhile and robust contribution. Second, our extended GJR-GARCH estimations signify 
that structural breaks partially explain the tail fatness of international banking stock returns. This means 
that incorporating structural breaks and the Student-t density into GARCH models simultaneously is 
important when modeling international banking sector stock volatilities. This new evidence is also our 
significant contribution.  

Third, our results from probit and logit models prove that when incorporating structural breaks, 
the estimated volatilities from our extended GJR-GARCH models more strongly capture the downside 
risk measured by both Value at Risk (VaR) (e.g., Duffie and Pan, 1997) and Expected Shortfall (ES) 
(Rockafellar and Uryasev, 2000). This means that if we ignore structural breaks, we could 
underestimate the volatilities when international banking stock prices fall. This is also a valuable 
contribution, showing how structural breaks are crucial for downside risk management. Fourth, our 
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results show that when incorporating structural breaks, the computed news impact curves (NICs) 
(Engle and Ng, 1993) from our extended GJR-GARCH more accurately capture the asymmetry in 
international banking stock volatility responses to their return shocks. This explains why the estimated 
volatilities from our extended models with structural breaks more accurately explain the downside risk, 
and this new finding also provides a contribution from our analysis. 

Besides, we find that when incorporating structural breaks, the estimated asymmetry parameters 
in our extended GJR-GARCH evaluate volatility asymmetry to be much larger. This also shows why 
incorporating structural breaks matters in volatility estimation to capture the downside risk more 
accurately, and this new evidence also signifies the novelty of our study. Moreover, we further find 
that our estimated international banking sector stock volatilities from our extended models with 
structural breaks rise sharply at the time of economically and financially momentous events such as 
the Lehman crisis, the European debt crisis, Brexit, and the recent COVID-19 crisis. This clearly 
demonstrates why the estimated volatilities from our extended models with structural breaks more 
precisely capture the downside risk, and this is also our significant contribution. 

In addition, we furthermore evidence that our computed volatility spreads between the volatilities 
from our extended models with structural breaks and those from the corresponding models without 
structural breaks rise during the Lehman and COVID-19 crises, when international banking sector 
stock prices particularly plunged, and their volatilities particularly rose. This is the newly found 
mechanism that including structural breaks is highly effective for capturing the downside risk 
accurately, and this clarification also shows the novelty of this study. 

Finally, in addition to the above, we further present many detailed and highly beneficial interpretations, 
implications, and innovative views for risk management in the post-COVID-19 era; and this is an added 
and valuable novel contribution of our research. Overall, the contributions of this paper not only present 
much new evidence of the effectiveness of structural breaks in capturing downside risk but also clarify the 
mechanisms that explain both how and why structural breaks matter for risk management. Again, we note 
that our contributions also include the derivation of new significant interpretations, implications, and 
innovative views for risk management in the post-COVID-19 world. Therefore, we consider that our 
overall contribution is even stronger and highly novel. The rest of the paper is organized as follows. Section 
2 explains the data, Section 3 presents our models, and Section 4 describes our results. Section 5 discusses 
how structural breaks matter for risk management, and Section 6 argues why structural breaks matter for 
risk management. Section 7 provides significant interpretations and implications with some innovative 
views for the post-COVID-19 world, and Section 8 concludes the paper. 

2. Data 

Given the importance as we discussed, this study analyzes the daily returns of banking sector stock 
price indices of the USA, the UK, Germany, and France. The four index data we use in this study are all in 
local currency terms as constructed by Thomson Reuters. Specifically, the USA in US dollars; the UK in 
UK pounds; and Germany and France in euros. Again, we consider that downside risk is particularly 
important for the banking industry, and in the global economy, the banking sectors of these countries are 
highly crucial. Thus, our choice of the four international banking sectors is quite appropriate and 
meaningful for analyzing downside risk and the meaning of structural breaks. Using the four banking sector 
index prices of pt (prices at time t) and pt − 1 (prices at time t − 1), we compute the daily log difference 
percentage returns as ln (pt /pt − 1)  100. We use daily data because this is common in the prevailing 



274 

Quantitative Finance and Economics  Volume 6, Issue 2, 270–302. 

academic research (e.g., Mensi et al., 2019; Abakah et al., 2020) and the frequency of most interest to 
industry practitioners given rapid dynamic price evolution in recent integrating international stock markets. 

Panel A. USA Panel B. UK 
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Figure 1. Structural breaks in log percentage returns of international banking stocks. 

Note: Bands of ±3 standard deviations and change points identified by the iterated cumulative sums 

of squares algorithm. 
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Figure 1 plots the time-series evolution of the four banking sector stock returns including the ±3 
standard deviation bands to help show the structural breaks, which we find using the iterated 
cumulative sums of squares (ICSS) algorithm. We note that the ICSS algorithm is a very reliable 
methodology for identifying structural breaks (e.g., Ewing and Malik, 2005, 2016; Tsuji, 2020). In 
addition, Table 1 details the number of structural breaks for the four international banking stock returns, 
showing many structural breaks particularly for the UK and France. These return characteristics clearly 
show the importance of taking structural breaks into account when analyzing these series. 

The sample period for the time-series returns we analyze is from January 4, 2005 to August 10, 
2020, comprising 4070 observations for each series. We specify this sample period as it includes both 
the earlier Lehman and European debt crises and the more recent effects of Brexit and COVID-19. We 
note that the Lehman crisis is a particularly momentous event, which caused large and multiple 
structural breaks as demonstrated in Figure 1. Thus including the Lehman crisis period is highly 
meaningful for our study. This enables us to compare the effects of structural breaks during the periods 
of the Lehman and European debt crises, Brexit, and the COVID-19 crisis, and this is also beneficial 
for our study.  

Table 2 supplies descriptive statistics for the four banking stock returns. As shown, all exhibit 
slightly negative mean returns, and all the returns have negative values for skewness. Furthermore, the 
values of kurtosis for all the returns exceed three, i.e., the kurtosis of normal distributions, thereby 
showing that all the series have fat tails. Table 2 also shows that Jarque-Bera statistics strongly reject the 
normality of all the series. These return characteristics imply the necessity of incorporating fat-tailed and 
skewed distributions into quantitative models when analyzing these series. Likewise, the augmented 
Dickey–Fuller tests in Table 2 strongly reject the null hypothesis of a unit root, indicating that all the 
return series are stationary. 

Table 1. Number of structural breaks for international banking stock returns. 

USA UK Germany France 

11 15 9 15 

Note: Structural breaks identified by the iterated cumulative sums of squares algorithm. 

Table 2. Summary statistics for international banking stock returns. 

 USA UK Germany France 

Mean 

SD 

Skewness 

Kurtosis 

JB 

p-value 

ADF 

p-value 

−0.009 

2.275 

−0.011 

19.805 

47890.08 

0.000 

−30.228 

0.000 

−0.039 

1.856 

−0.262 

17.341 

34925.30 

0.000 

−62.186 

0.000 

−0.051 

2.131 

−0.147 

11.189 

11387.05 

0.000 

−61.002 

0.000 

−0.020 

2.262 

−0.095 

11.565 

12446.28 

0.000 

−61.323 

0.000 

Note: Statistics are for log difference daily percentage returns with 4070 observations for each series. SD—standard 

deviation; JB—Jarque–Bera statistic; ADF—augmented Dickey–Fuller test statistic. 
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3. Extended GJR-GARCHs 

To obtain precise evidence on the effects of structural breaks, we employ the GJR-GARCH 
model, and we attempt to extend this to incorporate structural breaks and fat-tailed or skewed and 
fat-tailed densities. We employ the GJR model because this model readily captures the asymmetric 
feature of volatility. As the exponential GARCH (EGARCH) model also has this favorable 
characteristic, we also examined by using similarly extended EGARCH models; and the results 
were much the same. We thus report the results only from our extended GJR-GARCH models in 
this paper. Furthermore, given we have carefully determined our analyzing sample period, we 
conduct robustness checks using probit and logit models and two risk measures of VaR and ES as 
described later without altering our sample period.  

First, the GJR-GARCH model without structural breaks is specified as follows:  

0 1
,

p

t i t i ti
r r  
    

(1)

2 2
1 1 1 1.t t t t th h S    
         (2)

In the mean equation of Equation (1), rt is each country’s banking sector stock return at time t, rt−i 
is the i-th lag of each country’s banking sector stock return, εt is the error term, p is the autoregressive 
(AR) order, and we determine the AR lag orders using the Bayesian information criterion. Further, ξ0 
is the constant term and ξi is the coefficient of rt−i. For the error term εt, besides normal distribution 
errors, we also examine Student-t and skew-t distribution errors to allow for the fat-tailed or skewed 
and fat-tailed distributions. 

When applying Student-t errors, the errors (return residuals) in Equation (1) are governed by the 
degrees of freedom (DOF) parameter ν, where a smaller ν indicates a fatter-tailed distribution, while 
when ν→∞, it approaches a normal distribution. Alternatively, when applying skew-t errors, the return 
residuals are governed by the DOF parameter and a skewness parameter, where a smaller ν again 
signifies a fatter-tailed distribution (Bauwens and Laurent, 2005; Tsuji, 2018). 

In the variance equation of Equation (2), ht (ht−1) is each country’s banking sector stock return’s 
variance at time t (t − 1), 𝜀   is the squared one-day lag of the return residual, and 𝑆 1  if  
𝜀 0 and 0 otherwise. Further, ω is the constant term, β is the coefficient of ht−1, α is the coefficient 
of 𝜀 , and γ is the coefficient of 𝑆 𝜀 . 

Next, we specify the GJR-GARCH model with structural breaks as follows: 

0 1
,

p

t i t i ti
r r  
    

2 2
1 1 1 1 ,1

.
k

t t t t t i i ti
h h S d D    

    
       (3)

The mean equation is the same as Equation (1), and the only difference between Equations (2) 
and (3) as the variance equation is the presence of ∑ 𝑑 𝐷 , , where 𝐷 ,  are dummy variables for 
the structural breaks such that 𝐷 , 1 from the i-th structural break point onwards and 0 elsewhere, 
k is the number of structural breaks, and 𝑑  is the coefficient of 𝐷 , . The other notations in Equation 
(3) are the same as those in Equation (2). In Equations (2) and (3), α always captures the so-called 
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autoregressive conditional heteroscedasticity (ARCH) effect, or the effect of the return shocks on 
volatility, β depicts the so-called GARCH effect signifying volatility persistence, and γ describes the 
asymmetric effects of the return shocks on volatility. 

4. Results 

This section presents the results of our model selections and estimations. We first examine the 
GJR models by considering normal, Student-t, and skew-t distribution errors and structural breaks 
using LR tests. We then discuss the model estimation results. 

4.1. LR tests 

Table 3 provides the LR test results for our extended GJR-GARCH models. The null hypothesis 
in Panel A is that the GJR model with normal distribution errors is superior to the GJR model with 
Student-t errors. The null hypothesis in Panel B is that the GJR model with Student-t errors is superior 
to the GJR model with skew-t errors. The null hypothesis in Panel C is that the GJR model with 
Student-t errors but without structural breaks is superior to the GJR model with Student-t errors and 
structural breaks. We note that in Panel C, we test the GJR model of Student-t errors with or without 
structural breaks based on the model selection results in Panel B.  

As shown in Panel A of Table 3, we reject the null hypothesis for all the models, meaning that in 
all the four countries, the GJR model with Student-t errors is superior to the GJR model with normal 
distribution errors. Next, as shown in Panel B of Table 3, for all the models, we cannot reject the null 
hypothesis. This means that the GJR model with Student-t errors is superior to that with skew-t errors 
for all the four countries.  

Table 3. Results of likelihood ratio tests for GJR models. 

 USA UK Germany France 

Panel A. Student-t vs. normal 

Statistic 

p-value 

270.443** 

0.000 

164.037** 

0.000 

235.839** 

0.000 

157.974** 

0.000 

Panel B. Skew-t vs. Student-t 

Statistic 

p-value 

1.327 

0.249 

1.278 

0.258 

2.773 

0.096 

1.804 

0.179 

Panel C. Student-t with structural breaks vs. Student-t without structural breaks 

Statistic 

p-value 

87.849** 

0.000 

119.278** 

0.000 

66.084** 

0.000 

81.929** 

0.000 

Note: The test statistic follows a 2 distribution. In Panel A, the null hypothesis is that the GJR model with normal distribution 

errors is superior to the GJR model with Student-t errors. In Panel B, the null hypothesis is that the GJR model with Student-t 

errors is superior to the GJR model with skew-t errors. In Panel C, the null hypothesis is that the GJR model with Student-t errors 

but without structural breaks is superior to the GJR model with Student-t errors and structural breaks. ** denotes the rejection of 

the null hypothesis at the 5% significance level. 
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Finally, as shown in Panel C of Table 3, we reject the null hypothesis for all the models, suggesting 
that in all the four countries, incorporating structural breaks is always effective. That is, our LR tests 
find that the best model is the GJR model with Student-t errors and structural breaks for all the four 
countries of the USA, the UK, Germany, and France. 

4.2. Model estimations 

Table 4 provides the estimation results for our extended GJR models. Panel A details the results 
for the GJR models with normal distribution errors for all the four countries, and Panel B details the 
results for the GJR models with Student-t errors for all the four countries. Lastly, Panel C details the 
results for the GJR models with structural breaks and Student-t errors for all the four countries.  

As shown in Panel A, in the GJR models with normal distribution errors, the estimated ARCH α, 
GARCH β, and volatility asymmetry γ parameters are all statistically significant. In Panel B, in the 
GJR models with Student-t errors, the estimates of α, β, and γ are again all statistically significant. 
Panel B also shows that the parameter estimates of the DOF for Student-t errors ν are all statistically 
significant, with values ranging from 4.969 (USA) to 7.603 (France). These smaller values demonstrate 
the importance of considering the fat tails of all four banking stock returns and the effectiveness of 
incorporating heavy-tailed Student-t densities into our extended GJR models. 

In Panel C, once again, all of the GARCH effect β and the volatility asymmetry γ parameters are 
statistically significant. Panel C also shows that the parameter estimates of the DOF for Student-t errors 
ν are again statistically significant, with values ranging from 5.524 (USA) to 8.558 (France), yet again 
proving the effectiveness of incorporating Student-t densities into our GJR models to capture the fat 
tails of all four banking stock returns.  

In addition, Panel C further shows that most of the estimates of the dummy variable parameters 
for structural breaks di are statistically significant, and this likewise supports the effectiveness of 
incorporating structural breaks into our models. We also note that all the parameter values of ν in Panel 
C are a little larger than the corresponding values in Panel B, suggesting that the structural break 
dummy variables partially explain the fat tails of four banking stock returns, newly showing the 
importance of structural breaks in capturing the fat tails of banking stock returns.  
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Table 4. Estimation results for the GJR models with normal and Student-t errors without 
structural breaks and the GJR models with Student-t errors and structural breaks. 

 USA UK Germany France 

Panel A. GJR with normal distribution errors 

ω 

p-value 

α 

p-value 

β 

p-value 

γ 

p-value 

LL 

0.029** 

0.000 

0.042** 

0.000 

0.893** 

0.000 

0.117** 

0.000 

−7183.327 

0.015** 

0.000 

0.042** 

0.000 

0.913** 

0.000 

0.087** 

0.000 

−6968.934 

0.023** 

0.000 

0.033** 

0.000 

0.932** 

0.000 

0.060** 

0.000 

−7964.220 

0.036** 

0.000 

0.031** 

0.000 

0.908** 

0.000 

0.113** 

0.000 

−8070.028 

Panel B. GJR with Student-t errors 

ω 

p-value 

α 

p-value 

β 

p-value 

γ 

p-value 

ν 

p-value 

LL 

0.019** 

0.000 

0.039** 

0.000 

0.905** 

0.000 

0.116** 

0.000 

4.969** 

0.000 

−7048.106 

0.017** 

0.000 

0.029** 

0.003 

0.917** 

0.000 

0.102** 

0.000 

6.513** 

0.000 

−6886.916 

0.015** 

0.003 

0.036** 

0.000 

0.927** 

0.000 

0.076** 

0.000 

5.634** 

0.000 

−7846.301 

0.034** 

0.000 

0.021* 

0.011 

0.915** 

0.000 

0.118** 

0.000 

7.603** 

0.000 

−7991.041 

Panel C. GJR with Student-t errors and structural breaks 

ω 

p-value 

α 

p-value 

β 

p-value 

γ 

p-value 

d1 

p-value 

d2 

p-value 

d3 

p-value 

d4 

p-value 

d5 

0.053** 

0.000 

0.018 

0.052 

0.818** 

0.000 

0.157** 

0.000 

0.843** 

0.001 

4.352* 

0.011 

−4.811** 

0.008 

−0.181* 

0.018 

1.043* 

0.083** 

0.000 

−0.006 

0.567 

0.765** 

0.000 

0.143** 

0.000 

0.127* 

0.020 

−0.116* 

0.043 

0.778** 

0.000 

3.357** 

0.000 

−3.546** 

0.029** 

0.000 

0.025** 

0.007 

0.871** 

0.000 

0.095** 

0.000 

0.024* 

0.014 

0.096* 

0.017 

0.132 

0.102 

1.199** 

0.001 

−1.274** 

0.128** 

0.000 

0.006 

0.520 

0.781** 

0.000 

0.152** 

0.000 

0.295** 

0.006 

−0.268* 

0.013 

0.303** 

0.008 

0.626** 

0.003 

2.089** 

Continued on next page 
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 USA UK Germany France 

Panel C. GJR with Student-t errors and structural breaks 

p-value 

d6 

p-value 

d7 

p-value 

d8 

p-value 

d9 

p-value 

d10 

p-value 

d11 

p-value 

d12 

p-value 

d13 

p-value 

d14 

p-value 

d15 

p-value 

ν 

p-value 

LL 

0.024 

−1.079* 

0.019 

−0.117** 

0.006 

0.152** 

0.003 

−0.138** 

0.004 

5.029* 

0.016 

−4.050* 

0.043 

 

 

 

 

 

 

 

 

5.524** 

0.000 

−7004.181 

0.000 

−0.393** 

0.000 

1.334** 

0.003 

−1.061* 

0.013 

−0.278** 

0.001 

−0.126** 

0.002 

0.337** 

0.000 

−0.213* 

0.013 

−0.165** 

0.000 

0.097** 

0.001 

1.317** 

0.000 

8.097** 

0.000 

−6827.277 

0.000 

−0.072** 

0.010 

0.329** 

0.001 

−0.264** 

0.005 

0.379* 

0.026 

 

 

 

 

 

 

 

 

 

 

 

 

6.230** 

0.000 

−7813.259 

0.002 

−2.599** 

0.000 

2.883** 

0.000 

−2.220** 

0.000 

−0.707** 

0.000 

−0.254** 

0.001 

0.111* 

0.038 

0.312* 

0.038 

−0.449** 

0.004 

6.284* 

0.012 

−4.904* 

0.045 

8.558** 

0.000 

−7950.077 

Note: LL indicates the log-likelihood value. ** and * denote the 1% and 5% significance levels, respectively. For brevity, 

estimation results of mean equations are not reported. 

5. How do structural breaks matter for risk management? 

This section considers how structural breaks matter for risk management by examining the 
explanatory power for downside risk of our volatility estimates from our extended GJR-GARCH models. 
To do this, we employ probit and logit models and test the following annualized volatilities 

𝜎 - _ ℎ - _ √252 , 𝜎 - ℎ - √252 , and 𝜎

ℎ √252, where ℎ - _ , ℎ - , and ℎ  are the daily variance estimates from 

the GJR-GARCH models with Student-t errors and structural breaks, with Student-t errors but without 
structural breaks, and with normal distribution errors but without structural breaks, respectively. Because 
we inspect the explanatory power of estimated volatilities for downside risk, we first compute tail risk by 
VaR and ES, and then using probit and logit models, we test the explanatory power of estimated volatilities 
for the tail risk measured by VaR or ES as in Tsuji (2016).  
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5.1. VaR 

First, applying probit and logit models and using VaRs, we test the downside risk explanatory 
power of our volatility estimates as follows:  

,t t tp x       

if  %VaR1
 ,
if  %VaR0

t
t

t

p k
y

p k

 
   

 
(4)

where Δpt denotes the price change in each country’s banking sector stock index, k takes a value of 95, 
98, or 99, and xt is each of our volatility estimates, 𝜎 - _ , 𝜎 - , or 𝜎 .  

In addition, Δpt ≤ k%VaR means that Δpt negatively exceeds k%VaR. Thus, this probit or logit 
model setting in Equation (4) enables us to test the explanatory power of volatility estimates for 
downside risk in banking sector stocks. Note that a positive coefficient λ indicates the downside risk 
explanatory power of the volatility estimates. 

5.1.1. Results from probit models 

Table 5 shows the results of probit models for the explanatory power of VaRs. Panels A, B, and 
C provide the results for 95%VaR, 98%VaR, and 99%VaR, respectively. Explaining the results for the 
volatilities from our extended GJR models, in Panels A–C, all the z-statistics and McFadden R-squared 
(M-R2) values are the highest for the volatilities from the GJR models with structural breaks and 
Student-t errors in the three GJR models. That is, in all the cases, the estimated volatilities from the 
GJR models with structural breaks and Student-t errors show the highest explanatory power of 
downside risk measured by the VaRs. This demonstrates the effectiveness of considering structural 
breaks to capture the downside risk more accurately in banking sector stocks of the USA, the UK, 
Germany, and France. 

Table 5. VaR explanatory power: results from probit models. 

 USA UK Germany France 

Panel A. 95%VaR 

GJR with normal distribution errors 

λ 

z-statistic 

p-value 

M-R2 

0.014** 

13.727 

0.000 

0.109 

0.018** 

12.334 

0.000 

0.088 

0.011** 

6.376 

0.000 

0.024 

0.014** 

10.096 

0.000 

0.060 

GJR with Student-t errors 

λ 

z-statistic 

p-value 

M-R2 

0.014** 

13.800 

0.000 

0.110 

0.018** 

12.231 

0.000 

0.086 

0.010** 

6.451 

0.000 

0.024 

0.014** 

10.063 

0.000 

0.059 

Continued on next page 
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 USA UK Germany France 

GJR with Student-t errors and structural breaks 

λ 

z-statistic 

p-value 

M-R2 

0.014** 

14.494 

0.000 

0.122 

0.022** 

13.949 

0.000 

0.116 

0.011** 

6.455 

0.000 

0.024 

0.016** 

11.022 

0.000 

0.071 

Panel B. 98%VaR 

GJR with normal distribution errors 

λ 

z-statistic 

p-value 

M-R2 

0.014** 

10.571 

0.000 

0.128 

0.017** 

9.046 

0.000 

0.091 

0.013** 

6.142 

0.000 

0.044 

0.015** 

8.128 

0.000 

0.076 

GJR with Student-t errors 

λ 

z-statistic 

p-value 

M-R2 

0.013** 

10.526 

0.000 

0.127 

0.016** 

9.005 

0.000 

0.090 

0.012** 

6.263 

0.000 

0.045 

0.015** 

8.086 

0.000 

0.075 

GJR with Student-t errors and structural breaks 

λ 

z-statistic 

p-value 

M-R2 

0.013** 

11.183 

0.000 

0.145 

0.020** 

10.186 

0.000 

0.120 

0.014** 

6.632 

0.000 

0.051 

0.016** 

8.688 

0.000 

0.087 

Panel C. 99%VaR 

GJR with normal distribution errors 

λ 

z-statistic 

p-value 

M-R2 

0.014** 

9.243 

0.000 

0.173 

0.015** 

6.620 

0.000 

0.083 

0.013** 

5.187 

0.000 

0.052 

0.015** 

6.791 

0.000 

0.092 

GJR with Student-t errors 

λ 

z-statistic 

p-value 

M-R2 

0.014** 

9.175 

0.000 

0.171 

0.015** 

6.552 

0.000 

0.081 

0.012** 

5.300 

0.000 

0.055 

0.015** 

6.732 

0.000 

0.090 

GJR with Student-t errors and structural breaks 

λ 

z-statistic 

p-value 

M-R2 

0.014** 

9.643 

0.000 

0.193 

0.019** 

7.772 

0.000 

0.120 

0.014** 

5.637 

0.000 

0.062 

0.015** 

7.105 

0.000 

0.101 

Note: M-R2—McFadden R-squared value. ** denotes the 1% significance level. For the results other than ‘GJR with normal 

distribution errors,’ the test results for the explanatory power of the estimated volatilities from the models of Student-t 

errors with or without structural breaks are shown. 
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Table 6. VaR explanatory power: results from logit models. 

 USA UK Germany France 

Panel A. 95%VaR 

GJR with normal distribution errors 

λ 

z-statistic 

p-value 

M-R2 

0.026** 

13.961 

0.000 

0.101 

0.033** 

12.401 

0.000 

0.080 

0.022** 

6.872 

0.000 

0.024 

0.028** 

10.472 

0.000 

0.057 

GJR with Student-t errors 

λ 

z-statistic 

p-value 

M-R2 

0.026** 

14.066 

0.000 

0.103 

0.033** 

12.281 

0.000 

0.079 

0.021** 

6.945 

0.000 

0.025 

0.028** 

10.439 

0.000 

0.057 

GJR with Student-t errors and structural breaks 

λ 

z-statistic 

p-value 

M-R2 

0.026** 

14.711 

0.000 

0.114 

0.041** 

13.909 

0.000 

0.108 

0.022** 

6.937 

0.000 

0.025 

0.030** 

11.332 

0.000 

0.069 

Panel B. 98%VaR 

GJR with normal distribution errors 

λ 

z-statistic 

p-value 

M-R2 

0.028** 

11.039 

0.000 

0.120 

0.033** 

9.302 

0.000 

0.082 

0.029** 

6.863 

0.000 

0.045 

0.031** 

8.389 

0.000 

0.070 

GJR with Student-t errors 

λ 

z-statistic 

p-value 

M-R2 

0.027** 

10.988 

0.000 

0.119 

0.033** 

9.245 

0.000 

0.081 

0.027** 

6.992 

0.000 

0.047 

0.030** 

8.341 

0.000 

0.069 

GJR with Student-t errors and structural breaks 

λ 

z-statistic 

p-value 

M-R2 

0.028** 

11.642 

0.000 

0.137 

0.041** 

10.353 

0.000 

0.110 

0.031** 

7.371 

0.000 

0.052 

0.033** 

8.976 

0.000 

0.081 

Panel C. 99%VaR 

GJR with normal distribution errors 

λ 

z-statistic 

p-value 

M-R2 

0.032** 

9.607 

0.000 

0.161 

0.033** 

6.907 

0.000 

0.075 

0.031** 

5.742 

0.000 

0.053 

0.034** 

7.212 

0.000 

0.087 

Continued on next page 
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 USA UK Germany France 

GJR with Student-t errors 

λ 

z-statistic 

p-value 

M-R2 

0.031** 

9.515 

0.000 

0.160 

0.032** 

6.821 

0.000 

0.073 

0.030** 

5.865 

0.000 

0.055 

0.034** 

7.145 

0.000 

0.085 

GJR with Student-t errors and structural breaks 

λ 

z-statistic 

p-value 

M-R2 

0.032** 

9.983 

0.000 

0.183 

0.041** 

8.093 

0.000 

0.110 

0.034** 

6.220 

0.000 

0.062 

0.036** 

7.608 

0.000 

0.097 

Note: M-R2—McFadden R-squared value. ** denotes the 1% significance level. For the results other than “GJR with normal 

distribution errors”, the test results for the explanatory power of the estimated volatilities from the models of Student-t 

errors with or without structural breaks are shown. 

5.1.2. Results from logit models 

Table 6 provides the results of logit models for the explanatory power of VaRs, and this serves as 
a robustness check for the preceding findings. Panels A, B, and C present the results of the 95%VaR, 
98%VaR, and 99%VaR, respectively. Documenting the results for the volatilities from our extended 
GJR models, in Panels A−C, all the z-statistics and M-R2 are again the highest for the volatilities from 
the GJR models with structural breaks and Student-t errors in the three GJR models except for the case 
of the 95%VaR for Germany.  

Hence again, the estimated volatilities from the GJR models with structural breaks and Student-t 
errors have the greatest explanatory power of downside risk when measured by VaRs. Thus, this much 
robustly proves the effectiveness of taking structural breaks into consideration to capture the downside 
risk for the four countries’ banking sectors more precisely. 

5.2. ES 

Next, using probit and logit models and ES values, we test the downside risk explanatory power 
of our volatility estimates as follows: 

,t t tp x       

if  %ES1
 ,
if  %ES0

t
t

t

p k
y

p k

 
   

 
(5)

where Δpt denotes the price change in each country’s banking sector stock index, k takes a value of 95, 
98, or 99, and xt is again each of our volatility estimates, 𝜎 - _ , 𝜎 - , or 𝜎 .   

Moreover, Δpt ≤ k%ES means that Δpt negatively exceeds k%ES. Hence the use of the probit or 
logit model setting in Equation (5) enables us to examine the explanatory power of the volatility 
estimates for downside risk in banking sector stocks. Once again, a positive coefficient λ suggests the 
downside risk explanatory power of the volatility estimates. 
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5.2.1. Results from probit models 

Table 7 presents the results from probit models for the explanatory power of ESs, and this also 
serves as a robustness check. Panels A, B, and C show the results for the 95%ES, 98%ES, and 99%ES, 
respectively. Explaining the results for the volatilities from our extended GJR models, in Panels A−C, 
all of the z-statistics and M-R2 values are higher for the volatilities from the GJR models with structural 
breaks and Student-t errors than the other GJR models without structural breaks. 

That is, in all the cases, the estimated volatilities from the GJR models with structural breaks and 
Student-t errors provide the greatest explanatory power of downside risk as measured by the ESs. This 
again shows the effectiveness of including structural breaks to capture the downside risk more strongly 
in the banking sectors of all the four countries.  

Table 7. Explanatory power of Expected Shortfall: results from probit models. 

 USA UK Germany France 

Panel A. 95%ES 

GJR with normal distribution errors 

λ 

z-statistic 

p-value 

M-R2 

0.013** 

10.065 

0.000 

0.120 

0.016** 

8.627 

0.000 

0.091 

0.012** 

5.718 

0.000 

0.043 

0.014** 

7.680 

0.000 

0.075 

GJR with Student-t errors 

λ 

z-statistic 

p-value 

M-R2 

0.013** 

10.019 

0.000 

0.119 

0.016** 

8.583 

0.000 

0.090 

0.012** 

5.841 

0.000 

0.045 

0.014** 

7.617 

0.000 

0.073 

GJR with Student-t errors and structural breaks 

λ 

z-statistic 

p-value 

M-R2 

0.013** 

10.769 

0.000 

0.139 

0.020** 

9.725 

0.000 

0.120 

0.013** 

6.227 

0.000 

0.051 

0.016** 

8.305 

0.000 

0.089 

Panel B. 98%ES 

GJR with normal distribution errors 

λ 

z-statistic 

p-value 

M-R2 

0.015** 

8.071 

0.000 

0.218 

0.013** 

5.308 

0.000 

0.072 

0.014** 

5.197 

0.000 

0.077 

0.014** 

5.784 

0.000 

0.081 

GJR with Student-t errors 

λ 

z-statistic 

p-value 

M-R2 

0.015** 

7.995 

0.000 

0.215 

0.013** 

5.261 

0.000 

0.071 

0.013** 

5.260 

0.000 

0.079 

0.014** 

5.722 

0.000 

0.079 

Continued on next page 
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 USA UK Germany France 

GJR with Student-t errors and structural breaks 

λ 

z-statistic 

p-value 

M-R2 

0.015** 

8.332 

0.000 

0.245 

0.017** 

6.397 

0.000 

0.110 

0.016** 

5.614 

0.000 

0.091 

0.015** 

6.312 

0.000 

0.098 

Panel C. 99%ES 

GJR with normal distribution errors 

λ 

z-statistic 

p-value 

M-R2 

0.015** 

6.265 

0.000 

0.239 

0.016** 

5.541 

0.000 

0.131 

0.016** 

5.042 

0.000 

0.125 

0.012** 

3.908 

0.000 

0.069 

GJR with Student-t errors 

λ 

z-statistic 

p-value 

M-R2 

0.015** 

6.178 

0.000 

0.234 

0.016** 

5.500 

0.000 

0.128 

0.016** 

5.106 

0.000 

0.129 

0.012** 

3.829 

0.000 

0.066 

GJR with Student-t errors and structural breaks 

λ 

z-statistic 

p-value 

M-R2 

0.015** 

6.359 

0.000 

0.265 

0.021** 

6.398 

0.000 

0.192 

0.018** 

5.426 

0.000 

0.149 

0.014** 

4.550 

0.000 

0.095 

Note: M-R2—McFadden R-squared value. ** denotes the 1% significance level. For the results other than ‘GJR with normal 

distribution errors,’ the test results for the explanatory power of the estimated volatilities from the models of Student-t 

errors with or without structural breaks are shown. 

5.2.2. Results from logit models 

Table 8 presents the results of logit models for the explanatory power of ESs, which serves as a 
further robustness check, with Panels A, B, and C exhibiting the results of the 95%ES, 98%ES, and 
99%ES, respectively. Documenting the results for the volatilities from our extended GJR models, in 
Panels A−C, all the z-statistics and M-R2 are higher for the volatilities from the GJR models with 
structural breaks and Student-t errors than those without structural breaks. That is, in all the cases, the 
estimated volatilities from the GJR models with structural breaks and Student-t errors again yield the 
greatest explanatory power of downside risk as measured by the ESs. This therefore again robustly shows 
the effectiveness of incorporating structural breaks in capturing the downside risk more precisely.  

As discussed, the effectiveness of incorporating structural breaks into econometric models for 
explaining downside risk is extremely robust. We also note that for the USA, the UK, and France, 
incorporating structural breaks is always and perfectly effective for precisely capturing their downside 
risk regardless of the chosen risk measure and the testing model. 
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Table 8. Explanatory power of Expected Shortfall: Results from logit models. 

 USA UK Germany France 

Panel A. 95%ES 

GJR with normal distribution errors 

λ 

z-statistic 

p-value 

M-R2 

0.027** 

10.506 

0.000 

0.112 

0.033** 

8.904 

0.000 

0.082 

0.029** 

6.348 

0.000 

0.044 

0.031** 

7.961 

0.000 

0.069 

GJR with Student-t errors 

λ 

z-statistic 

p-value 

M-R2 

0.027** 

10.455 

0.000 

0.112 

0.033** 

8.844 

0.000 

0.081 

0.027** 

6.478 

0.000 

0.046 

0.030** 

7.890 

0.000 

0.068 

GJR with Student-t errors and structural breaks 

λ 

z-statistic 

p-value 

M-R2 

0.027** 

11.210 

0.000 

0.131 

0.041** 

9.920 

0.000 

0.109 

0.031** 

6.887 

0.000 

0.052 

0.033** 

8.639 

0.000 

0.083 

Panel B. 98%ES 

GJR with normal distribution errors 

λ 

z-statistic 

p-value 

M-R2 

0.036** 

8.311 

0.000 

0.202 

0.032** 

5.534 

0.000 

0.066 

0.037** 

5.863 

0.000 

0.078 

0.033** 

6.171 

0.000 

0.077 

GJR with Student-t errors 

λ 

z-statistic 

p-value 

M-R2 

0.035** 

8.206 

0.000 

0.200 

0.031** 

5.480 

0.000 

0.064 

0.034** 

5.941 

0.000 

0.080 

0.033** 

6.098 

0.000 

0.076 

GJR with Student-t errors and structural breaks 

λ 

z-statistic 

p-value 

M-R2 

0.036** 

8.552 

0.000 

0.230 

0.040** 

6.731 

0.000 

0.101 

0.039** 

6.320 

0.000 

0.092 

0.035** 

6.829 

0.000 

0.094 

Panel C. 99%ES 

GJR with normal distribution errors 

λ 

z-statistic 

p-value 

M-R2 

0.039** 

6.460 

0.000 

0.225 

0.040** 

5.850 

0.000 

0.120 

0.044** 

5.688 

0.000 

0.127 

0.032** 

4.098 

0.000 

0.065 

Continued on next page 
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 USA UK Germany France 

GJR with Student-t errors 

λ 

z-statistic 

p-value 

M-R2 

0.038** 

6.340 

0.000 

0.220 

0.039** 

5.802 

0.000 

0.117 

0.042** 

5.771 

0.000 

0.131 

0.031** 

4.010 

0.000 

0.062 

GJR with Student-t errors and structural breaks 

λ 

z-statistic 

p-value 

M-R2 

0.039** 

6.562 

0.000 

0.252 

0.050** 

6.819 

0.000 

0.177 

0.048** 

6.120 

0.000 

0.153 

0.036** 

4.900 

0.000 

0.090 

Note: M-R2—McFadden R-squared value. ** denotes the 1% significance level. For the results other than ‘GJR with normal 

distribution errors,’ the test results for the explanatory power of the estimated volatilities from the models of Student-t 

errors with or without structural breaks are shown. 

6. Why do structural breaks matter for risk management? 

The previous section newly evidenced that our extended GJR-GARCH models incorporating 
structural breaks more robustly explain downside risk in the four banking sectors. We now ask why 
incorporating structural breaks is so effective for capturing downside risk accurately and what 
mechanisms bring about this explanatory power. This section reveals the reasons and the underlying 
mechanisms by focusing on the (i) NICs, (ii) model parameter estimates, (iii) volatility estimates, and 
(iv) volatility spreads. 

6.1. How do structural breaks affect NICs? 

We begin by examining the effect of structural breaks on the NICs of our GJR models. We also 
investigate the effect of the differences in model error distributions on the NICs. First, the NIC of our 
GJR models without structural breaks is as follows:  
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  (6)

where ht shows the variance of the GJR model with normal distribution errors or Student-t errors, and 
σ denotes the unconditional volatility. The other notations are the same as those in Equations (1) and 
(2). Next, the NIC of our GJR models with structural breaks is as follows:  
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  (7)

where ht shows the variance of the GJR model with structural breaks and Student-t errors, and σ denotes 
the unconditional volatility. The remaining notations are the same as those in Equations (1)−(3). 
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Figure 2 shows the NICs from our three GJR models, i.e., the GJR with normal distribution errors, 
with Student-t errors, or with structural breaks and Student-t errors. Figure 2 shows that all the four 
NICs of the GJR with structural breaks and Student-t errors most strongly respond to negative return 
shocks. This figure also indicates that all the four NICs have their weakest responses to positive return 
shocks without exceptions.  

Each panel of Figure 2 further shows that the shape of the NICs of the GJR with normal 
distribution errors and the shape of the NICs of the GJR with Student-t errors but without structural 
breaks are almost the same. This indicates that the responses to both positive and negative return shocks 
are irrelevant to the model error distributions. That is, incorporating structural breaks enables us to 
capture the asymmetric feature of return shock impacts on volatilities more precisely, and this leads to 
explaining the downside risk in banking sector stocks of the four countries more strongly, as evidenced 
in Tables 5−8.  

6.2. How do structural breaks affect model parameter estimates? 

We next examine the model parameter estimates. Figure 3 presents the parameter estimates of our 
three GJR models, i.e., the GJR with normal distribution errors, with Student-t errors, or with structural 
breaks and Student-t errors. Figure 3 shows the following unambiguous evidence. First, as shown in 
Panel B, all the values of the GARCH parameter (β) decrease when structural breaks are incorporated 
into the GJR models, meaning that volatility persistence should be lower than what the models without 
structural breaks show. Second, as shown in Panel C, when structural breaks are incorporated, all the 
values of the asymmetry parameter (γ) increase in the GJR models, signifying that volatility asymmetry 
should be larger than what the models without structural breaks indicate.  

These consistent and clear results shown in Figure 3 robustly demonstrate that incorporating 
structural breaks leads to capturing both volatility persistence and the asymmetric feature of return shock 
impacts on volatilities more accurately. Because of these mechanisms, we consider that our GJR models 
incorporating structural breaks more precisely capture the downside risk, as presented in Tables 5−8. 
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Figure 2. News impact curves of international banking stocks from the GJR models with 
or without structural breaks.   

Note: The x-axis and y-axis show return residuals on day t – 1 and variances on day t, respectively. 

 



291 

Quantitative Finance and Economics  Volume 6, Issue 2, 270–302. 

Panel A. Estimates of return shock parameters 

 

Panel B. Estimates of volatility persistence parameters 

 

Panel C. Estimates of asymmetry parameters 

 

Figure 3. Parameter estimates of international banking stock volatilities from the GJR 
models with or without structural breaks. 
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Figure 4. Time-series evolution of the estimated volatilities of international banking 
stock returns. 

Note: All estimated volatilities are annualized and from the GJR models with structural breaks and 

Student-t errors. 
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Figure 5. Evolution of the estimated volatility spreads of international banking stocks. 

Note: SBs—structural breaks. All estimated volatility spreads are annualized and derived by using 

Equation (8) or (9). 
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Panel C. Germany 
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Figure 5. Continued. 
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6.3. What volatility estimates do structural breaks derive? 

We next inspect the volatility estimates reflecting the structural breaks. Figure 4 plots the volatility 
estimates from our extended GJR with structural breaks and Student-t errors. Figure 4 shows the 
following unmistakable evidence. First, all the panels in Figure 4 show that the estimated volatilities 
jump in all the four countries during the Lehman crisis. Second, as all the panels show, the estimated 
volatilities increase in all the four countries during the European debt crisis. Third, as Panels B−D 
indicate, the estimated volatilities rise in all the countries except for the USA at the time of Brexit. 
Fourth, all the panels illustrate that the estimated volatilities jump in all the four countries at the time 
of the COVID-19 crisis. 

As above, Figure 4 clearly demonstrates that incorporating Student-t errors and structural breaks 
enables us to capture the increases in volatilities more precisely at the time of risky events upsetting 
stock markets. We consider that as a result, the GJR models incorporating structural breaks more 
accurately capture the downside risk, as presented in Tables 5−8. In other words, these results newly 
signify that if we ignore tail fatness and structural breaks in volatility estimations, the estimated 
volatilities will undervalue the levels of downside risk when stock prices of international banking 
sectors plunge. 

6.4. What volatility spreads do structural breaks derive? 

To further deepen our understanding of the effects and meaning of structural breaks, we compare 
the importance of incorporating tail fatness (Student-t errors) and structural breaks in volatility 
estimations for capturing downside risk more effectively. For this purpose, we furthermore inspect the 
following two annualized volatility spreads: 

- _ - - _ - ,Student t SB Student t Student t SB Student t
t t t       (8)

- _ - _ .Student t SB normal Student t SB normal
t t t       (9)

The computational details of the two annualized volatility spreads are as follows. 
∆𝜎 - _ -  : annualized estimated volatilities from our extended GJR model with 
Student-t errors and structural breaks minus those from the same model with Student-t errors but 
without structural breaks; and ∆𝜎 - _  : annualized estimated volatilities from our 
extended GJR model with Student-t errors and structural breaks minus those from the same model 
with normal distribution errors but without structural breaks. 

Figure 5 plots the volatility spreads from our GJR models. In each panel, the left side shows 
∆𝜎 - _ -  , while the right side shows ∆𝜎 - _  . Focusing on the clear 
evidence, Figure 5 shows that the estimated volatility spreads increase in all the four countries during 
the Lehman crisis and in the USA, Germany, and France during the COVID-19 crisis. We note that in 
Figure 5, the left side in all the panels presents the volatility spreads that reflect only the effect of the 
structural breaks, while the right side exhibits the volatility spreads that reflect the effects of both 
structural breaks and Student-t errors against normal distribution errors. However, in all the panels, the 
volatility spread evolution in the left- and right-side figures is all much the same, meaning that the 
volatility spread increases during the Lehman crisis in the four countries and during the COVID-19 
crisis in the USA, Germany, and France should be solely because of the structural break effect.  
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As mentioned above, the clear evidence we derive from Figure 5 much strongly shows the 
importance of structural breaks and signifies that incorporating structural breaks evaluates the volatility 
increases to be higher in the Lehman and COVID-19 crisis period, although in some countries, the 
volatility spreads also increase during the European debt crisis or Brexit. Therefore, we consider that 
through these mechanisms, our extended GJR models with structural breaks much more accurately 
capture the downside risk, as presented in Tables 5−8. In other words, these results newly evidence 
that in volatility estimations to capture the downside risk in international banking sectors more 
effectually, incorporating structural breaks is more important than incorporating heavy-tailed densities. 

7. Interpretation, implications, and innovative views for the post-COVID-19 era 

This section discusses how we can interpret our results and derives significant broader 
implications and innovative views for risk management in the post-COVID-19 era. First, as presented 
in Tables 5−8, our results from probit and logit models robustly indicate that the estimated volatilities 
from our extended GJR models incorporating structural breaks more strongly capture the downside 
risk in international banking sector stocks, as measured by not only VaR but also ES. This means that 
if we do not take structural breaks into account, we will undervalue the volatility levels in plunging 
banking stock prices, leading to underestimating the downside risk. Therefore, in the post-COVID-19 
era, we should pay much more keen attention to the significant stock volatility amplifications, 
particularly when large shocks cause structural breaks in stock markets. 

Second, as shown in Figure 2, the computed NICs from our extended GJR models with Student-
t errors and structural breaks more accurately capture the asymmetry in volatility responses to return 
shocks in banking sector stocks. We consider that the NICs from our best GJR model—incorporating 
Student-t errors and structural breaks, which was identified by the LR tests in Table 3—are most 
accurate. Moreover, as presented in Figure 3, when incorporating structural breaks, the estimated 
asymmetry parameters all clearly increase in the GJR models, also showing that our extended models 
incorporating structural breaks evaluate volatility asymmetry much more strongly than in models 
without structural breaks. This means that if we ignore structural breaks, we will underestimate the 
asymmetric feature of volatilities; hence, it is vital for us to be more cautious about the larger actual 
volatility asymmetry in our risk management in the post-COVID-19 era. We further emphasize that 
the behavioral science theory of loss aversion (Benartzi and Thaler, 1995) which advocates that people 
are more sensitive to losses than gains, is consistent with the asymmetric feature of volatilities. Also 
from this theoretical viewpoint, our results for volatility asymmetry and their interpretation are 
critically important for risk management in the more unforeseen post-COVID-19 world. 

Third, as shown in Figure 5, the computed volatility spreads between the volatilities from our 
extended GJR models with structural breaks and those from the corresponding models without 
structural breaks rise during the Lehman crisis in all the four countries and during the COVID-19 crisis 
in the USA, Germany, and France. In addition, in Figure 1, we can see that during the Lehman crisis, 
some successive structural breaks are much clearly identifiable in all the four countries. These results 
clearly prove the importance to be much cautious about some successive structural breaks in sudden 
and worldwide negative economic events like the Lehman crisis. Therefore, for proper risk 
management in the more unpredictable post-COVID-19 world, we should be particularly cautious 
regarding some significant successive structural breaks in stock returns.  
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Fourth, as presented in Table 4, when incorporating structural breaks, all the DOF parameter values 
of Student-t densities became higher, also proving the importance of structural breaks because this means 
that structural breaks partly explain all the banking sector stock return fat tails. Our uncovering of this 
structural break effect is highly crucial from the viewpoint of engineering. Hence, as a significant 
technical implication, we stress that it is important to incorporate not only fat-tailed densities but also 
structural breaks into quantitative models simultaneously for proper model estimations and conducting 
more appropriate risk management in the more uncertain post-COVID-19 era. 

Fifth, as shown in Figure 2, when incorporating structural breaks, all the NICs of the four 
countries exhibit their weakest volatility responses to positive return shocks, and we stress that these 
responses were quite small in magnitude. Ross (1989) theoretically argued that the volatility 
amplification reflects an increase in the information for the asset. Considering this, we can derive a 
significant interesting implication from the viewpoint of information. That is, it is negative information 
in the form of sudden and large negative return shocks that causes structural breaks and much larger 
volatility amplifications. Hence, we should more strongly recognize that only negative information 
that can be measured by sudden and large negative return shocks and causes serious structural breaks 
is important for risk management in the more unpredictable post-COVID-19 world. 

Sixth, from the perspective of payout policy for dividend distributions and share buybacks, we 
derive another significant implication. That is, we consider that in preparation for sudden and 
worldwide negative events that cause structural breaks, international banks should keep ample 
shareholder equity to endure sudden structural breaks and subsequent recessions on a routine basis 
given sufficient equity is especially critical for all banks. We thus emphasize that in the more uncertain 
post-COVID-19 era, it is the best form of risk management not only for banking industries but also for 
all the other industries to maintain their capital buffer much more carefully while pondering deeply 
about their payout policies in ordinary times preparing especially for sudden structural breaks caused 
by various negative events. 

Based on the above discussion, we further derive several innovative views for risk management 
in the post-COVID-19 era. As reviewed in Zhu et al. (2021), artificial intelligence (AI) should play a 
significant role in future risk management. Our innovative views are as follows. First, as demonstrated, 
volatilities should be estimated by incorporating both fat-tailed densities and structural breaks. 
Therefore, it is highly beneficial for us to forecast these volatilities precisely by applying innovative 
AI techniques of machine learning for more effective risk management in the post-COVID-19 era. 

Second, accurate recognition of the volatility asymmetries is crucial for risk management. Thus, 
it is also highly significant for us to forecast NIC curves precisely by applying innovative AI 
technologies for more effectual risk management in the more unpredictable post-COVID-19 era. Third, 
paying keen attention to some successive structural breaks is vital in risk management. Hence, it is 
particularly important for us to accurately forecast structural breaks by applying innovative AI 
technologies for more effective risk management in the more unforeseen post-COVID-19 world. We 
also consider that if we could accurately forecast structural breaks by AI techniques, we might be able 
to conduct effective out-of-sample tests by using those structural break forecasts. 

Fourth, negative return shocks are important for risk management. Therefore, it is also highly 
significant for us to forecast the direction and magnitude of asset price movement by applying such 
innovative AI techniques as machine learning and to use the forecast results to conduct more proper 
risk management in the post-COVID-19 era. Finally, for all firms, more cautious and thoughtful payout 
policies are vital for future risk management. Hence, the collaborations of AI and corporate executives 
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such as chief financial officers are crucially important for more appropriate risk management in the 
more uncertain post-COVID-19 world. 

The thorough inspections undertaken in this paper provide numerous meaningful interpretations and 
implications along with several significant innovative viewpoints. We consider that these all show how our 
findings matter for risk management, and also importantly, how our significant interpretations, implications, 
and innovative views provide an additional crucial and valuable contribution through this study. 

8. Contributions and conclusions 

This study investigated the meaning of structural breaks in risk management in the banking 
sectors of the USA, the UK, Germany, and France. As a result of our rigorous quantitative analysis, 
we derived the following significant contributions. First, the LR tests for our extended GJR models 
robustly signified that when estimating all four banking stock volatilities, incorporating structural 
breaks is always effective, and this shows our worthwhile contribution. Second, our extended GJR 
estimations evidenced that structural breaks also explain partially the tail fatness of international 
banking sector stock returns. This means that to incorporate not only Student-t densities but also 
structural breaks into GARCH models simultaneously is highly meaningful when modeling 
international banking stock volatilities. We consider that this new evidence also demonstrates our 
contribution and should also be interesting from an engineering viewpoint. 

Third, our results from both probit and logit models robustly showed that when including structural 
breaks, the estimated volatilities from our extended GJR models more accurately capture the downside 
risk in international banking stocks, which is measured by not only VaR but also ES. This signifies that 
if we ignore structural breaks, we will undervalue the volatilities when international banking stock prices 
plunge; thus, this new evidence is also a significant contribution showing how structural breaks are 
crucial for downside risk management. Fourth, we also found that when incorporating structural breaks, 
the computed NICs from our extended GJR models more strongly capture the asymmetry in international 
banking stock volatility responses to their return shocks. This showed why the estimated volatilities from 
our extended models with structural breaks more strongly explain the downside risk; and hence this new 
finding also shows the significant contribution of this study.  

Fifth, we also showed that when incorporating structural breaks, the estimated asymmetry 
parameters in our extended GJR models evaluate volatility asymmetry to be much larger. This also 
explains why structural breaks matter in volatility estimations to capture the downside risk more 
accurately; and thus this new evidence also presents the important contribution of our work. Sixth, we 
further found that the estimated volatilities from our extended GJR models with structural breaks 
sharply increase at the time of highly momentous events such as the Lehman crisis, the European debt 
crisis, Brexit, and the recent COVID-19 crisis. This also shows why the estimated volatilities from our 
extended models with structural breaks more precisely capture the downside risk, also demonstrating 
our significant contribution.  

Seventh, we furthermore showed that our computed volatility spreads between the volatilities from 
our extended GJR models with structural breaks and those from the corresponding models without 
structural breaks rise during the Lehman and COVID-19 crises, when international banking stock prices 
especially plunged, and their volatilities especially rose. This is the newly found mechanism that explains 
why including structural breaks is so effective in capturing the downside risk very strongly; and therefore 
this clarification also shows the novelty of this study. Eighth, in addition to the abovementioned points, 
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we further derived and presented many broad and beneficial interpretations, implications, and innovative 
views for risk management in the post-COVID-19 era; and this is yet another novel contribution of our 
work. These interpretations, implications, and innovative views should be highly meaningful for not only 
academic researchers but also industry practitioners. 

We note that although not reported for brevity, we also analyzed by using similarly extended 
EGARCH models, and all the results were much the same. Therefore, our all results presented in this 
paper are highly robust. We stress that in contrast to existing studies, our present work has uncovered 
not only how but also why structural breaks matter for downside risk management. We therefore trust 
that the new evidence alongside the significant and beneficial interpretations, implications, and 
innovative views for risk management in the post-COVID-19 world derived from this study amply 
contributes to not only past studies but also future innovative research in many related fields. 
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