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Abstract: Bitcoin has received a lot of attention from both investors and analysts, as it forms
the highest market capitalization in the cryptocurrency market. This paper evaluates the volatility
of Bitcoin returns using three GARCH models (sGARCH, iGARCH, and tGARCH). The new
development allows for the modeling of volatility clustering effects, the leptokurtic and the skewed
distribution in the return series of Bitcoin. Comparative to the Students’ t-distribution and the
Generalized error distribution, the Normal Inverse Gaussian (NIG) distribution captured adequately
the leptokurtic and skewness in all the GARCH models. The tGARCH model was the best model
as it described the asymmetric occurrence of shocks in the Bitcoin market. That is, the response of
investors to the same amount of good and bad news are distinct. From the empirical results, it can
be concluded that tGARCH-NIG was the best model to estimate the volatility in the return series of
Bitcoin. Generally, it would be optimal to use the NIG distribution in GARCH type models since time
series of most cryptocurrency are leptokurtic.
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1. Introduction

The cryptocurrency market continues to be a potential source of financial instability and its impact
on the financial market still remains uncertain. Different from other financial assets which are
regualarized, there is no formal regulation for cryptocurrencies. Cryptocurrencies also differ
significantly from other financial assets on the financial market and thus creates great propsects for
investors and market players in terms of portfolio analysis, risk management and even consumer
sentiment analysis Dyhrberg (2016). In the cryptocurrency market, volatility modelling is important
in measuring the riskiness of an investment. Volatility can be define as a measure of the dispersion in
a probability density. Market players and investors are therefore interested in accurate estimation of
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volatility in the cryptocurrency market. This is as a result of the correlation between volatility and
returns on investment. It is notable that volatility is not directly observable and as a result there is
increasing need for efficient model that can capture the price volatility in the cryptocurrency market.
Estimating the volatility of Bitcoin is very crucial since Bitcoin has the highest market capitalization
in the cryptocurrency market.

Most financial time series data have shown that the conditional distribution of returns series exhibit
several stylized features such as excess kurtosis, negative skewness, price jumps, leverage effects, time-
varying volatility, and volatility clustering. These stylized facts and properties of the returns series have
significant ramification for financial models especially risk-scenario distribution, volatility estimation
and prediction. To capture these stylized facts in these data’s, different volatility modelling tools have
been developed to model and estimate volatility. Hence, modeling the temporal dependencies in the
conditional variance of Bitcoin time series has been the interest of many economists and financial
analysts. However, the Bitcoin market is relatively new and there have not been enough literatures
on the different models used in estimating the volatility in the market. Gronwald (2014) modelled
Bitcoin price data using an autoregressive jump-intensity GARCH model and a standard GARCH
model. Their results indicated that the autoregressive jump-intensity GARCH model performed better
in fitting the Bitcoin price data than the standard GARCH model. Gronwald (2014) used multiple
threshold-GARCH and Asymmetric-power GARCH to measure and estimate the volatility in the price
of Bitcoin. They used Akaike information criterion (AIC), Bayesian information criterion (BIC) and
Hannan-Quinn information criterion (HQC) to capture the leverage and regime switching features of
the conditional variance and concluded that Bitcoin market is not yet matured. In their study, Bouri
et al. (2016) evaluated the safe-haven property of Bitcoin and its relationship to before and after the
Bitcoin price crash of December 2013. Based on an asymmteric-GARCH, the authors concluded that
Bitcoin has a safe-haven property in the pre-crash period and no safe-haven property post-crash period.
Using the price of Bitcoin, Katsiampa (2017) studied the best conditional heteroscedasticity model in
relation to goodness-of-fit. They revealed that the optimal model was the the AR-cGARCH model. By
fitting 12 GARCH-type models to the log returns of exchange rates for seven different cryptocurrencies
including Bitcoin, Chu et al. (2017) concluded that iGARCH (1, 1) with normal innovations is the
optimal model. Their conclusion however differs from the known stylized fact∗ of financial time series
data.

This paper study the estimation capacity of different non-parametric GARCH-type models on
volatility of the return series of Bitcoin for the period between 01 January, 2014 to 16 August, 2019.
Non-parametric methods are applied to the GARCH-type models because they do not assume any
distributional assumptions and can capture the kurtosis and fatty tails of the return series of Bitcoin.
We employ the Students-t distribution, Generalized Error Distribution, and the Normal Inverse
Gaussian distribution.

2. Materials and methodology

2.1. Data

In this study, closing price was selected as the price of Bitcoin because it reflected all the activities
of Bitcoin for each trading day. Historical daily closing price of Bitcoin was extracted from 01/01/2014

∗returns have fatty tails and high kurtosis
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to 16/08/2019 at https://coinmarketcap.com/ and consisted of 2054 trading days.
Now, assume Pt and Pt−1 represents the current day and previous day price of Bitcoin, then the return
series/log returns (Rt) is calculated as

Rt = log(Pt) − log(Pt−1) (1)

2.2. Test of normality

The residuals data of Bitcoin are checked for normality. If the dataset is normally distributed, then a
parametric statistic like the Normal distribution can be assumed. However, if the residuals data are not
normally distributed, a non-parametric statistic will be used. If the normality test fails, it is important
to consider the histogram and the normal probability plot to check the presence of outliers in the data
set. We employed the Jacque-Bera (JB) test statistics and the Anderson-Darling (AD) test statistics for
the normality test. The JB and the AD test statistics are defined as in equation 2 and 3 respectively:

JB = n
(S 2

6
+

(K − 3)2

24

)
, (2)

where n is the sample size, S and K are the sample skewness and kurtosis respectively.

AD = −n −
1
n

n∑
i=1

(2i − 1)[InF(Yi) + In(1 − F(Yn−i+1))], (3)

where F(·) is the cumulative distribution function (CDF) for the specified distribution and i is the ith

sample.
The JB test (Jarque and Bera, 1987) uses the Lagrange multiplier approach on the Pearson family

of distributions to derive tests for normality if observations and regression residuals. It is centered on
sample skewness and kurtosis. The AD test (Anderson and Darling, 1954) was developed by
Anderson and Darling in 1954. It gives more weight to the tails of distribution. AD test is based on
the empirical distribution function. The JB and AD test compare the scores in the sample to a
normally distributed set of scores with same standard deviation and mean. The null hypothesis of this
test is “sample distribution is normally distributed”. The distribution is not normally distributed if the
test is significant.

2.3. Testing for auto regressive conditional heteroscedasticity (ARCH) Effects

To apply GARCH models to the Bitcoin returns series, the presence of stationarity and ARCH
effects in the residual return series are tested. The Ljung-box and Lagrange multiplier (LM) test (Engle,
2001) are used to test for the presence of ARCH effects in the data.

2.3.1. Ljung Box test

The Ljung Box test (Box and Pierce, 1970) is a method used in testing the absence of serial
autocorrelation up to a specified lag k. It can be defined as
H0: The observed data do not exhibit serial correlation
H1: The observed data exhibit serial correlation
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The test statistics is given as:

Q = N(N + 2)
h∑

k=1

ρ̂2
k

N − k
(4)

where N is the sample size, h is the time lag, ρ̂2
k is the estimated autocorrelation of the series at lag k.

2.3.2. Lagrange multiplier (LM) test

To apply GARCH models to the returns series data, it is important to test the residuals for the
presence of AutoRegressive Conditional Heteroscedasticity (ARCH) effects. The LM test was used to
test for the presence of ARCH effects. LM is defined as;
H0: No ARCH effect
H1: Presence of ARCH effects.
The LM test statistics is given as:

LM = N.R2 ∼ χ2(q), (5)

where N is the total number of observations, R2 forms the regression, and q is the number of restrictions.

2.4. Conditional variance equation

2.4.1. Standard Generalized AutoRegressive Conditional Heteroskedasticity (sGARCH)

GARCH is an extension of the ARCH model that integrates a moving average (MA) part together
with the autoregressive (AR) part.
Define a GARCH (p,q) model as

xt = σtεt

σ2
t = ω +

p∑
i=1

αix2
t−i +

q∑
j=1

β jσ
2
t− j

(6)

where ω > 0, αi > 0, β j > 0,
∑p

i=1 αi +
∑q

j=1 β j < 1. εt is the is a sequence of independent and identically
distributed random variables. For the sake of tractability, the order of all the GARCH models used will
be restricted to one.

The standard GARCH model (Bollerslev, 1986) represented as sGARCH(1,1) is given as

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1 (7)

2.4.2. Integrated GARCH (iGARCH)

Suppose the sum of the coefficients in Equation 6 is equal to 1, the GARCH process is called an
Integrated GARCH (iGARCH). That is, the iGARCH models are unit-root GARCH models. A basic
characteristic of the iGARCH model is that the effect of past squared shocks ηt−i = x2

t−1 −σ
2
t−i for i > 0

on x2
t is persistent. An iGARCH(p,q) model assumes the form

xt = σtεt

σ2
t = ω +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

(1 − β j)α2
t− j

(8)
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Define an iGARCH (1,1) model as

xt = σtεt

σ2
t = ω + β1σ

2
t−1 + (1 − β1)x2

t−1,
(9)

where 1 > β1 > 0.

2.4.3. Threshold GARCH (tGARCH)

The tGARCH model was developed independently by Ravichandran et al. (1989) and Glosten et al.
(1993). A tGARCH(p,q) model assumes the form

σ2
t = +

q∑
i=1

(αi + λi1t−i)x2
t−i +

p∑
j=1

β jσ
2
t− j (10)

where

1t−1 =

1, if εt−i < 0, bad news
0, if εt−i ≥ 0, good news

(11)

αi > 0, β j > 0, and λi > 0.
The generalized version of the tGARCH TGARCH(1,1) is given as:

σ2
t = ω + αx2

t−1 + βσ2
t−1 + λx2

t−11t−1 (12)

where α and α + λ denote the effect of good news and bad news respectively. A λ > 0 is an evidence
that bad news upsurge volatility in the Bitcoin market. This indicates the existence of leverage effects
of the first order. For an asymmetric news effect, λ , 0.

2.5. Distribution assumptions of the error (εt)

From the test of normality for the returns residuals in table 3 and figure 4, it is clear that the
distribution of the residuals returns are not normally distributed. There is the presence of excess
kurtosis and heavy-tails in the distribution of the residuals returns. To account for the excess kurtosis
and fat tails that are present in the residuals of the returns series, we model the error term in the
GARCH models with Student-t distribution, Generalized Error Distribution (GED), and Normal
Inverse Gaussian (NIG) types of distributions. These distributions are appropriate to capture the
excess kurtosis and the skewness in the residuals return series.

2.6. Student’s t-distribution (t)

The Student’s t-distribution or the t-distribution is a sub-class of the continuous probability
distributions. It is used when the sample size is small and the population standard deviation is
unknown. It was proposed by Student (1908). The probability density function (pdf) of the
t-distribution is defined as

ft(x; v) =
Γ( v+1

2 )
√

vπΓ( v
2 )

(
1 +

x2

v

)− v+1
2
, x ∈ (−∞,∞) (13)
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where v is the number of degrees of freedom and Γ(·) is the gamma function.
The log likelihood function is defined as below

l(x; v) = N In
(

Γ( v+1
2 )

√
vπΓ( v

2 )

)
−

1
2

N∑
t=1

(
Inσ2

t + (v + 1) In
(
1 +

x2
t

σ2
t (v − 2)

)]
(14)

2.6.1. Generalized Error Distribution (GED)

The standardized GED or the error distribution is a symmetrical unimodal sub-class of the
exponential family with shape parameter v. The pdf of the GED is defined as in Equation 15,

fGED(x; v) = k(v) exp
{
−

1
2

∣∣∣∣ x
λ(v)

∣∣∣∣v} , x ∈ (−∞,∞) (15)

where v determines the tail weight with larger value of v giving lesser tai weight, k(v), and λ(v) are
constant and are defined as

k(v) =
v

λ(v)21+ 1
v Γ

(1
v

) (16)

λ(v) =

2−
2
v Γ( 1

v )

Γ( 3
v )


1/2

(17)

Γ(x) =
∫ ∞

0
tx−1e−tdt, x > 0 is the Euler gamma function.

The log likelihood function is defined as

l(x; v) =

N∑
t=1

[
In

( v
λ

)
−

1
2

∣∣∣∣ x
σ2

t v

∣∣∣v − (1 + v−1) In 2 − In Γ
(1
v

)
−

1
2

Inσ2
t

]
(18)

2.6.2. Normal Inverse Gaussian (NIG) distribution

The NIG distribution was proposed by Barndorff-Nielsen (1977) and it is a sub-class of the
generalized hyperbolic distribution. The pdf of an NIG distribution for a random variable X is defined
as

fNIG(x;α, κ, µ, δ)) =
αδ

π
exp{δ

√
α2 − β2 + β(x − µ)}K1[αq(x)] (19)

where q(x) = ((x − µ)2 + δ2)1/2, α > 0 determines the shape, 0 ≤| κ |≤ α determines the skewness,
δ > 0 is the scaling, µ ∈ R is the location parameter and x ∈ R. k1(x) is the modified Bessel function of
the second kind with index 1. The NIG distribution has a heavier tail than the normal distribution and
can take different kinds of shapes. From equation 19, the shape of an NIG density is described using
a four dimensional parameters (α, κ, µ, δ). The NIG distribution is appropriate for capturing data sets
with extremal observations, skewness, and fat tails or semi-heavy tails. The log-likelihood of the NIG
distribution is given as

l(x;α, κ, µ, δ) = n log
(αδ
π

)
+ nδ

√
α2 − κ2 + κ

N∑
t=1

(xt − µ) +

N∑
t=1

log K1(xt;α, δ, µ) (20)
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2.7. Model selection

The best model was selected using two information criteria: Akaike information criteria (AIC)
and Bayesian information criteria (BIC). AIC and BIC considers the accuracy of the model fit and
the number of parameters in the model; rewarding a better fit and penalizing an increased number of
parameters in the return series data. The optimal model that will be selected is the model with the
minimum AIC and BIC values. The GARCH models used in this study were fitted using the maximum
likelihood method.

AIC = −2 In L(Θ̂) + 2k, (21)

BIC = −2 In L + k In L(Θ̂), (22)

where n, k, n,Θ, Θ̂ represent the number of observations, number of unknown parameters, vector of the
unknown parameters, and the maximum likelihood estimates of the vector of the unknown parameters
respectively.highest market capitalization in the cryptocurrency market.

The smaller the AIC and BIC values of a model, the better the fit of that model.

3. Results and discussion

3.1. Descriptive statistics

The visualization in Figure 1 revealed that the entire cryptocurrency market is propped primarily
by Bitcoin. Table 1 is the statistics of Bitcoin on the cryptocurrency market and table 2 presents the
descriptive statistics of the return series of Bitcoin. The return series of Bitcoin is positively skewed.
This indicates that the returns of Bitcoin is non-symmetric. The positive value of the skewness indicates
that the distribution of Bitcoin return series is skewed to the right or positively skewed. The positive
excess kurtosis (216.7461) indicates that the returns are leptokurtic. That is, the returns series has a
fatty tail. Figure 2 shows the time series plot of Bitcoin price (left Figure) and the return series (right
Figure) of Bitcoin for the time period. Figure 3 is the histogram and the normal quantile-quantile (q-q)
plot of the return series for the same time period. The residuals plot is presented in Figure 4. There is
the presence of fatty tails and skewness in the residuals of the return series. This is confirmed from the
JB and AD test statistics in Table 3. Both tests rejected the normality at 5% significance level.
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Table 1. Bitcoin statistics, as at 01/09/2019.

Cryptocurrency Return on
investment (ROI)

Market
Capitalization

All time
high

All time
low

Bitcoin 7,005.34% $172,355,391, 698 $20,089.00 $65.53

Note: Accessed at https://coinmarketcap.com/ on 01/09/2019.

Figure 1. Cryptocurrencies by market capitalization.

Table 2. Descriptive statistics of the three major cryptocurrency by market capitalization.

Cryptocurrency Maximum Minimum Mean Standard deviation Skewness Kurtosis
Bitcoin (USD) -0.8488 1.4744 0.0012 0.0600 216.7471 6.4820

Table 3. Jacque-Bera and Anderson-Darling test of normality for the residuals of the returns
series.

Jacque-Bera test Anderson-Darling test
P-value < 2.2e − 16 < 2.2e − 16

Quantitative Finance and Economics Volume 3, Issue 4, 739–753.
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Figure 2. Closing price and return series of Bitcoin.

Figure 3. Histogram and normal q-q plot of return series of Bitcoin.

Figure 4. Histogram and normal q-q plot of return series of Bitcoin.

The Augmented Dickey Fuller (ADF) test (Dickey and Fuller, 1979) is used to test for stationarity.
From Table 4, the null hypothesis of statonarity is rejected at 5% α-level of significance. Hence, there
is no need to difference the return series. The Ljung-box and LM test are presented in Table 4. From
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the Ljung box test, the null hypothesis of “no autocorrelation” in the squared residuals is rejected at
5% significance level. That is, there is dependency in the squared returns series of Bitcoin. Using the
LM test, the null hypothesis of “no ARCH effects” is rejected at 5% significance level. From the Ljung
box and LM test, it can be concluded that the volatility ARCH effect is very much present in the return
series. Hence, the GARCH models are used to model the returns series data.

Table 4. Test of Auto Regressive Conditional Heteroscedasticity (ARCH) effect.

Ljung box test LM test ADF test
P-value 7.835e − 05 < 2.2e − 16 0.01

3.2. Estimated volatility

Table 5 shows the results of the maximum likelihood estimate (MLE) of sGARCH(1,1),
iGARCH(1,1), and tGARCH(1,1) models for Bitcoin returns using student t-distribution. From the
table, the log-likelihood value (4181.104) is maximum for tGARCH(1,1) model. The values of the
two information criterions (AIC=−4.0663, BIC=−4.0526) of tGARCH(1,1) are minimum as
compared to sGARCH(1,1)-t and iGARCH(1,1)-t. The visual QQ plot in Figure 5c is consistent with
the AIC, BIC, and log likelihood values of the tGARCH(1,1)-t. These results indicate that
tGARCH(1,1)-t model is the optimal model to describe the volatility of the return series of Bitcoin.
Table 6 presents MLE results of sGARCH(1,1)-GED, iGARCH(1,1)-GED, and tGARCH(1,1)-GED
models for Bitcoin returns. Compared to the other models, the log-likelihood value of
tGARCH(1,1)-GED is the maximum. The AIC and BIC values of tGARCH(1,1)-GED recorded the
minimum values as compared to the other two models. Hence, the tGARCH(1,1)-GED model is the
best model compared to sGARCH(1,1)-GED and iGARCH(1,1)-GED. From Table 7, the
tGARCH(1,1)-NIG recorded the maximum log-likelihood value (4196.681). The AIC and BIC values
(−4.0805 and −4.0641 respectively) of tGARCH-NIG were the lowest. This indicates that
tGARCH(1,1) is the best model for the volatility of the return series of Bitcoin using the Normal
Inverse Gaussian distribution.

From the three selected models (tGARCH(1,1)-t, tGARCH(1,1)-GED, and tGARCH(1,1)-NIG),
the tGARCH(1,1)-NIG was the most optimal model for capturing the the volatility of Bitcoin return
series. This can be confirmed from the maximum log likelihood value and the minimum AIC and BIC
values. This result is also in agreement from the visual plot in Figure 8c. It is therefore evident that the
optimal model in terms of the information criterion, log likelihood, and QQ plot is the tGARCH(1,1)-
NIG. The volatility estimates obtained from tGARCH(1,1)-NIG model is displayed in Figure 9a. It
is evident that volatility moves through time. The density of tGARCH(1,1)-NIG is shown in Figure
9b. Clearly, the NIG distribution was able to capture the fat tails and skewness in the distribution.
This confirms the reliability and efficiency in using the NIG distribution for modelling the volatility of
Bitcoin return series.
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Table 5. MLE results of sGARCH(1,1), iGARCH(1,1), and tGARCH(1,1) models for
Bitcoin returns with conditionally t-distributed errors.

Model
ω̂ α̂ β̂ 1/v λ̂ AIC BIC LogLikelihood

sGARCH(1,1) 0.000036 0.192227 0.806773 3.200514 — -4.0367 -4.0258 4149.72

(0.000012) (0.023060) (0.023828) (0.169435) —

iGARCH(1,1) 0.000035 0.192695 0.807305 3.194742 — -4.0379 -4.0297 4149.946

(0.000010) (0.021763) — (0.135971) —

tGARCH(1,1) 0.001019 0.291106 0.835797 2.472141 0.007515 -4.0663 -4.0526 4181.104

(0.000353) (0.048010) (0.018121) (0.157392) (0.059760)

Note: Standard errors of estimates are reported in parentheses.

Note 2: ω̂:The reaction of conditional variance, α̂:ARCH effect, β̂:GARCH effect, λ̂:Leverage effect.

Table 6. MLE results of sGARCH(1,1), iGARCH(1,1), and tGARCH(1,1) models for
Bitcoin returns with conditionally generalized error distribution errors.

Model
Estimated parameters

ω̂ α̂ β̂ 1/v λ̂ AIC BIC LogLikelihood

sGARCH(1,1) 0.000039 0.192872 0.806128 0.860227 — -4.0495 -4.0386 4162.87

(0.000011) (0.025780) (0.022277) (0.030944) —

iGARCH(1,1) 0.000039 0.193739 0.806261 0.859610 — -4.0506 -4.0424 4162.95

(0.000010) (0.022141) — (0.029442) —

tGARCH(1,1) 0.001298 0.212642 0.826352 0.851479 0.055244 -4.0632 -4.0495 4177.926

(0.000337) (0.025368) (0.021071) (0.031225) (0.061816)

Note1: Standard errors of estimates are reported in parentheses.

Table 7. MLE results of sGARCH(1,1), iGARCH(1,1), and tGARCH(1,1) models for
Bitcoin returns with conditionally normal inverse gaussian distribution errors

Model
Estimated parameters

ω̂ α̂ β̂ 1/v κ̂ λ̂ AIC BIC LogLikelihood

sGARCH(1,1) 0.00004 0.19748 0.80152 0.39161 -0.13314 — -4.0599 -4.0462 4174.485

(0.000012) (0.024326) (0.022933) (0.046759) (0.032272) —

iGARCH(1,1) 0.000039 0.198112 0.801888 0.390387 -0.133277 — -4.061 -4.050 4174.653

(0.000010) (0.022055) — (0.042123) (0.032213) —

tGARCH(1,1) 0.001048 0.233978 0.828983 0.319214 -0.142017 -0.005427 -4.0805 -4.0641 4196.681

(0.000302) (0.027732) (0.019678) (0.042593) (0.033599) (0.061556)

Note: Standard errors of estimates are reported in parentheses.
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(a)
sGARCH-
Student
t

(b)
iGARCH-
Student
t

(c)
tGARCH-
Student
t

Figure 5. QQ plot of sGARCH, iGARCH, and tGARCH using the Student t-distribution
(Student t).

(a)
sGARCH-
GED

(b)
iGARCH-
GED

(c)
tGARCH-
GED

Figure 6. QQ plot of the sGARCH, iGARCH, and tGARCH using the Generalized Error
Distribution (GED).

(a) sGARCH-
NIG

(b) iGARCH-
NIG

(c) TGARCH-
NIG

Figure 7. QQ plot of sGARCH, iGARCH, and tGARCH using the Normal inverse Gaussian
(NIG) distribution .
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(a) TGARCH-t (b) TGARCH-
GED

(c) TGARCH-NIG

Figure 8. QQ plot using of the best distribution from sGARCH, iGARCH, and TGARCH.

(a) Conditional volatility (b) Density

Figure 9. Conditional volatility and density of tGARCH(1,1)-NIG.

4. Conclusion

This paper studied the volatility of daily return series of Bitcoin from 01/01/2014 to 16/08/2019.
The results of the statistical properties revealed that just like other financial time series data, the return
series of Bitcoin are leptokurtic. Different GARCH type models (sGARCH, iGARCH, tGARCH)
were compared and the tGARCH model was identified to be the most appropriate model for estimating
the time-varying volatility in Bitcoin return series. To account for the skewness and fat tails in the
Bitcoin time series for the years understudy, the Student-t, Generalized Error Distribution (GED), and
Normal Inverse Gaussian (NIG) distribution were used to capture the tail distribution in the GARCH
models. The NIG distribution performed better in capturing the fat tail and skewness in the return series
distribution. Hence, the tGARCH-NIG model was the optimal model for modeling and estimating the
volatility in the return series of Bitcoin. The results of this study are useful for investors and market
players in investment decision-making and making monetary policies.
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