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Abstract: This paper proposes a bitcoin-based triangular arbitrage, combining foreign exchanges in 

the bitcoin market and reverse foreign exchange spot transactions. An FX futures contract is used to 

reduce exposure to risk as a hedging instrument. The returns of the portfolio are jointly modeled 

using a bivariate DCC-GARCH model with multivariate standardized student’s t disturbances due to 

the presence of leptokurtosis and fat tails observed. Based on the time-dependent covariance matrix, 

a dynamic optimal hedge ratio is formed, with a conditional correlation series as a by-product. 

Empirical results are obtained using Euros and U.S. dollars over the period from 21 April 2014 to 21 

September 2018. Multiple rolling one-step-ahead forecasts are generated. The empirical results 

present bitcoin-based currency strategies dominate bitcoin trading in terms of risk management. 
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1. Introduction  

Bitcoin, the first widely used cryptocurrency, was devised with the intent of becoming a virtual 

currency free of any financial authority to facilitate payments from peer to peer in its network 

(Nakamoto, 2008). Its decentralized architecture that differentiates bitcoin from e-commerce payment 

is seen by many as an innovation in the established money system (Böhme et al., 2015). On the other 
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hand, it was soon discovered that those dealing in digital currencies were primarily interested in an 

alternative investment rather than an alternative transaction system (Glaser et al., 2014). Bitcoin 

investment shows both very high volatility and potentially high returns, and bitcoin can generally sever 

as an effective diversifier because of its weak positive correlations with other assets (Bouri et al., 2017; 

Briere et al., 2013; Yermack, 2013). The returns of bitcoin present significant time-series monument 

which can enhance the expected return, though its loop of continuations and reversals appears to be 

shorter than other assets (Hong, 2017). Bitcoin, as a unique investment asset, has experienced rapid 

growth and occupies a first market place among all cryptocurrencies, partially due to its first-mover 

advantage (Luther, 2016). Data from Blockchain.info show that the major market capitalization of 

bitcoin in USD increased from $0.26 million in August 2010 to $114.08 billion in September 2018, 

peaking at 323.07 billion on 17 December 2017. 

However, bitcoin’s two major roles, as a currency and as an investment asset, have been questioned 

by a number of researchers. As a currency, bitcoin needs to perform the three functions of money: It must 

serve as a unit of account, a medium of exchange, and a store of value. Yermack (2013) and Ali et al. 

(2014) posit that bitcoin perform poorly in all three of these functions: i) It is extremely inconvenient 

when people quote the price of a good or service in bitcoins due to all the decimal places in the price; ii) 

Continual changes in the bitcoin price necessitate the frequent updating of bitcoin quotations for a good 

or service; iii) The wide range of bitcoin prices indicates a large risk in holding bitcoins. Moreover, no 

broad use of bitcoins being seen in retail transactions also implies that the current usage of bitcoin does 

not meet its purpose as money (Hong, 2017). As a financial asset, bitcoin is expected to bring a positive 

risk-adjusted return by investors who employ a buy-and-hold strategy. Without any intrinsic value, 

bitcoin is said to carry a zero fundamental price and to have a substantial speculative bubble component 

in its price (Cheah and Fry, 2015). Dong and Dong (2015) point out that bitcoin investing has 

characteristics such as a liquidity discount, an unsystematic risk premium, and a low return that are 

associated with higher risk.  

 

Figure 1. Bitcoin price indices of USD and EUR. 

Though several factors contribute to bitcoin’s immaturity as a currency and high risk as an 

investment, bitcoin’s wildly fluctuating prices and excessive volatility appear to have a substantial 

influence. During our period of observation, from 21 April 2014 to 21 September 2018, the bitcoin 

price index in U.S. dollars ranged from $183.07 to $18,674.48; its price index in Euros varied 

between €156.97 and €15,528.90 (see Figure 1). Such a wide price variation brings the extreme risk 

for investors and a consequent increase in the cost of managing risk.  
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Bitcoin price is said to follow the law of supply and demand. However, because bitcoin supply 

is set by a rigid exogenous algorithm, bitcoin demand is the only market force determining the 

equilibrium price (Buchholz et al., 2012; Kristoufek, 2013; van Wijk, 2013). On the demand side, 

bitcoin’s attractiveness as a medium of exchange, a store of value, and a favorable investment 

tool—or even fondness for its niche—is critical to determining its price. The alternation of positive 

and negative news has generated highly volatile price cycles (Ciaian et al., 2016). 

The risk of bitcoin is difficult to handle. Bitcoin is only found to perform as a strong hedge and 

safe (hedging) heaven in very few cases (Bouri et al., 2017). Low correlation with other assets implies 

ineffective hedging to manage the risk of the portfolio (Yermack, 2013). The situation doesn’t become 

better even after the bitcoin futures contracts were introduced by the Chicago Mercantile Exchange 

(CME) and the Chicago Board Options Exchange (CBOE) in December 2017. Corbet et al. (2018) 

show that the bitcoin futures cannot mitigate the pricing risk in the spot bitcoin market; reversely, 

hedging strategies constructed with them lead to an increase in volatility. Li et al. (2018) find that 

factors such as speculation, investor attention, and market interoperability affect the risk of bitcoin, but 

their effects present asymmetric features under different risk regimes. Accordingly, bitcoin risk 

management becomes complicated due to regime switching.  

In short, direct bitcoin trading is facing problems such as wide price variation, excess volatility, and 

poor risk management. To have these problems addressed, this paper proposes a bitcoin-based triangular 

arbitrage strategy with the bitcoin market and the FX spot market. Since the underlying assets in this 

strategy are fiat currencies—bitcoins only act as a medium for exchange—the risks of holding bitcoin has 

been reduced exceedingly. Furthermore, it is possible that the risk of performing this triangular arbitrage 

can be reduced by using a hedging instrument. In fact, the FX futures contract well serves this purpose. 

So far, academic work on bitcoin-based foreign exchange is limited, and for the triangular arbitrage with 

the bitcoin and FX markets and its FX futures hedge, the results appear to be scarce. 

Pichl and Kaizoji (2017) studied the arbitrage opportunities in Bitcoin prices in different 

currencies. In this paper we investigate the Bitcoin arbitrage opportunities in detail. For instance, a 

speculator, on 22 April 2014, used 100 Euros to buy 0.2755 units of a bitcoin according to the 

previous day’s closing bitcoin price in EUR, and then he immediately sells the bitcoins at the 

previous day’s closing price in USD for 138.6261 U.S. dollars. (Bitcoin prices on 21 April 2014 were 

retrieved from Bloomberg: USD/BTC = 503.18 and EUR/BTC = 363.00, where BTC denotes the 

bitcoin.) Suppose now that the user brings his/her 138.6261 U.S. dollars to the FX spot market and 

trades for Euros at the price of 1.3793 (USD/EUR). This reverse operation in the FX spot market 

produces 100.5048 Euros. The one-round return based on this triangular arbitrage is approximately 

(100.5048 – 100)/100 = 0.50%. In employing such a triangular arbitrage—exchange euros for 

bitcoins, sell the bitcoins for dollars, and covert the dollars back to euros, denoted EUR -> BTC -> 

USD -> EUR, speculators want to minimize their exposure to Euro exchange rate risk by going short 

in   unit Euros-worth of futures contracts. This issue is addressed by finding    that optimizes a 

specific utility function. The whole process can be repeatedly performed if there exists profitability.  

The profitability of the proposed triangular arbitrage relies on the differential between the two 

USD/EUR exchange rates and the transaction fees. After this two-step transaction, 100 Euros has 

been exchanged for 138.6261 Euros at the rate implied by 138.6261/100 = 1.3863 USD/EUR. This 

cross rate between U.S. dollars and Euros formed in the bitcoin market is defined as the bitcoin 

exchange rate of USD/EUR (Nan and Kaizoji, 2018a). The corresponding spot FX rate (the spot rate) 
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was 1.3793. The one-day spread between the two exchange rates was 0.0070, which takes account of 

0.51% of the spot rate.  

Dong and Dong (2015) found that there exists an opportunity for arbitrage by “spending bitcoin 

as currency” and that “arbitrage stickiness is persistent over time” potentially due to people’s 

preference for a buy-and-hold strategy with bitcoins. Nan and Kaizoji (2018a) found that the bitcoin 

exchange rate of USD/EUR is in long-run equilibrium with the spot rate of USD/EUR, but in the 

short run, an arbitrage opportunity may exist. The arbitrage paradox states that the market is efficient, 

yet a short-run arbitrage opportunity is simultaneously created when investors may not have 

sufficient incentives to observe the market (Grossman and Stiglitz, 1980; Akram et al., 2008). 

Bitcoin’s low transaction cost, efficiency, and freedom are attractive features for the strategy of 

exchanging fiat currency in the bitcoin market. Nakamoto (2008) who claims to have created bitcoin 

wrote in a white paper that having a central authority working as a trusted third party “increases the 

transaction cost, limiting the minimum practical transaction size and cutting off possible small casual 

transactions.” In the bitcoin system, trust is replaced by cryptographic proof to keep transactions 

decentralized from any authority so that bitcoin trading can be conducted from peer to peer with 

greater efficiency and lower cost. Moreover, worldwide 24-7 bitcoin transactions provide both 

abundant liquidity and a broad variety of fiat currencies for currency exchanges. 

Nan and Kaizoji (2018b) conducted a study of the bitcoin exchange rate and its optimal FX 

futures hedge. Three hedge ratios calculated by different approaches were compared in order to 

identify the optimal one. Results suggested that, in terms of hedging effectiveness, the time-varying 

conditional model was competitive with the naïve and conventional methods implemented in the 

static model. However, an arbitrage strategy that relies on the bitcoin exchange rate appears rather 

primitive due to the one-at-a-time nature of the unidirectional exchanges; for example, after trading 

Euros for U.S. dollars in the bitcoin market, speculators must wait for another arbitrage opportunity 

to change their dollars back to Euros. To do otherwise would mean facing the problem of a limited 

budget and the risk of holding dollars.  

This study proposes a triangular arbitrage in which investors who sell Euros and buy U.S. dollars in 

the bitcoin market execute a reverse transaction in the FX spot market and compares triangular arbitrage 

with different assets from the bitcoin and FX markets. A time-dependent bivariate GACCH model is 

employed to measure the joint density of the two returns in the portfolio because of its performance on 

risk management. Based on the proposed model, three important time-varying series—the covariance 

matrix, optimal hedge ratio, and correlation—are forecast on a one-step-ahead basis.  

The remainder of the paper is divided into two sections: Section 2 introduces the data set and 

explains the methodology; Section 3 gives empirical results and conclusions. 

2. Date and methodology 

The data set in this study consists of four daily closing prices series: (1) the USD bitcoin index, (2) 

the Euro bitcoin index, (3) the USD/EUR spot rate, and (4) the USD/EUR European-style FX monthly 

futures contract.  

The data period extends from 21 April 2014 to 21 September 2018. For performing the 

triangular arbitrage, market liquidity is needed. The previous bitcoin trading is said to be dominated 

by few pioneer miners and traders for speculation purpose until that many individuals and 

institutional investors started to invest in bitcoins as early as late 2013 (Hong, 2017). Moreover, we 
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are intended to avoid the turmoil period brought by Mt. Gox’s bankruptcy. The company which once 

was handling over 70% of all bitcoin transactions worldwide, suspended trading in February 2014 

and started liquidation proceedings in April 2014, which resulted in a 36% plunge in bitcoin prices. 

After merging the data by date, we were left with 1111 observations for each series. The last 110 

observations were reserved for out-sample forecasting. The forecasting horizon covers 18 April 2018 

to 21 September 2018. 

2.1. Calculations of the bitcoin exchange rate and the triangular arbitrage 

Equation 1 is used to calculate the bitcoin USD/EUR exchange rate,             : 

            
       

       
 (1) 

where         and         are the prices of bitcoins in U.S. dollars and Euros, respectively 

(Nan and Kaizoji, 2018a).  

The triangular arbitrage is expressed by 

                     
       

       
         (2) 

where EUR/USD = 1/(USD/EUR) is the reciprocal of the USD/EUR spot rate.  

The logarithmic return of the triangular arbitrage is     , given by 

        
       

       
 

 

       
          (3) 

where     and     denote the logarithm of the USD/EUR bitcoin exchange rate and the logarithm 

of the USD/EUR spot rate, respectively. 

2.2. The futures hedge and the optimal hedge ratio 

The reason for incorporating a futures contract into a portfolio is to reduce the risk of 

performing the triangular arbitrage. The logarithmic return of the hedged portfolio composed of     

units of a long triangular arbitrage position and     units of a short futures position is given by 

                    
(4) 

where    ,     and     denote the logarithmic returns of the hedged portfolio, the triangular 

arbitrage, and the futures contract, respectively. The logarithmic return is normalized by making the 

units of the triangular arbitrage position equal to unity and has the form              

            . The coefficient           is called the hedge ratio.  

The optimal hedge ratio is obtained by optimizing a specific objective function. One of the 

often-used objective functions is the variance of the portfolio, which, in this case, has the form  

            
              

                                  
(5) 
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By minimizing the variance of the portfolio (or the portfolio risk) in terms of the hedge ratio 

         , the quadratic function has a minimum at which  

   
   

   
 

            

        
  

   

   
 (6) 

where    denotes the optimal hedge ratio using the minimum variance method,   denotes the 

correlation coefficient between     and    , and     and     denote the standard deviation of 

    and    , respectively.  

As the minimum variance hedge ratio does not take into account the return of the hedged 

portfolio, the mean-variance hedge ratio is proposed as a remedy to this problem (Hsln et al., 1994). 

The mean-variance expected utility function is given by 

                       
((7) 

where    is the     dimensional return vector containing two entries,     and    ;     

represents the risk aversion parameter. Speculators maximize their expected utility by solving 

equation 7 for; the optimal mean-variance hedge ratio     is shown by  

      
      

            
 

            

        
   

(8) 

When        , indicating that the futures series follows a martingale, Equation 8 reduces to 

Equation 6. 

2.3. Measuring the joint density and the time-dependent variance-covariance matrix 

To calculate c* in Equation 6 and c** in Equation 8, it is necessary to model the joint density of 

    and    . Time-varying variances and covariances are more attractive to practitioners than static 

ones, as practitioners alter their portfolio over time rather than holding a fixed position throughout the 

period. Moreover, financial return series often show clustering of the volatility after a tranquil period. 

This heteroskedastic characteristic appears to cause the probability density of the return to show excess 

kurtosis and fat tails (Baillie and Myers, 1991). A wide range of multivariate GARCH models has been 

devised to estimate density with the aforementioned features. This study proposes using the bivariate 

Dynamic Conditional Correlation Generalized Autoregressive Conditional Heteroskedastic 

(DCC-GARCH) model introduced by Engle and Sheppard (2001) and Engle (2002). Using the DCC (1, 

1)-GARCH (1, 1) model, our specification is given by 

 
                       

(9) 

 

           

(10) 

 

  
                       

             
   

(11) 

 

     
      

(12) 
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(13) 

 
          

   
 
  

           
   

 
  

  
(14) 

In Equation 9,    is the     dimensional residual vector comprising the two residuals 

produced by a regression in which each of the returns,     and    , has been inserted into the 

ARMA (1, 1) model. Equation 9 indicates that after the time-varying means are removed from the 

two returns, the conditional distribution of    is assumed to be a standardized student’s t 

distribution with mean zero, covariance matrix   , and shape parameter vector  . It is well known 

that the student’s t distribution nests the normal distribution, i.e., when shape parameter   goes into 

infinity, the t-distribution approaches a normal distribution. The      term denotes the previous 

information set conditioned on   .  

Equation 10 shows that    can be decomposed into       , where    is the diagonal matrix 

with time-dependent standard deviations as described in (11) in the diagonal, and    is the 

time-dependent conditional correlation matrix.  

Equation 11 captures the univariate GARCH effect for each return. One merit of the DCC 

model lies in its two-stage estimations (Engle and Sheppard, 2001). Firstly, univariate GARCH 

models are estimated for each residual series    for         where    are two entries in 

residual vector    in (9). Secondly, the conditional standard deviations obtained during the first 

stage are used to create transformed residuals described in (12), and then the parameters of the 

conditional correlation are estimated using these transformed residuals. Hence, the results of the 

multivariate GARCH part are easy to interpret as univariate GARCH models. Equation 11 can be 

rewritten as                for         with  

                  
           (15) 

so that each element of    is a univariate GARCH model with the restrictions for non-negativity of 

variances and stationarity         being imposed.  

The standard deviation matrix   
   is then used to standardize the residual vector    to obtain 

the standardized innovation vector   , as specified in (12).  

In equation 13,    denotes the unconditional correlation matrix of    resulting from the first 

stage estimation, and           serves as a covariance targeting part where   and   are 

non-negative scalars with the constraint that      . The specification in (13) indicates that the 

proxy process    has exponential smoothing structure related not only to its one-period-ahead lag 

but also the lagged standardized deviation.  

The conditional correlation matrix    is then calculated through rescaling   , as shown in (14). 

2.4. Volatility forecasting 

Normally, the r-step-ahead forecast of a multivariate GARCH (1, 1) has the form  
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(16) 

However, due to the non-linearity of the DCC evolution process shown in (13) and (14), the 

multi-step forecast of correlation does not have a direct solution because of the nonlinearity of the 

DCC evolution. In such a case, Engle and Sheppard (2001) suggest two ways to make 

approximations: The first technique is to make an approximation that             
       , namely 

the    forecast; The alternative is said to provide for the least bias, based on their findings, is that 

      and                  , namely the    forecast.  

Consider the r-step-ahead evolution of the proxy process 

                                  
            

(17) 

and its approxiamted r-step-ahead    forecast given by 

                                       

   

   

   
(18) 

where    denotes the constant correlation matrix of returns. In practice,    is often used as the 

covariance matrix in place of the correlation matrix since the standardized innovation is usually 

unobservable (Engle and Sheppard, 2001). 

In this study, to minimize bias, a rolling one-step-ahead approach is used, since, for r-step-ahead 

forecasting, forecast error based on a fixed value for    becomes quite large when the value of r is large.  

2.5. Forecast evaluation 

Brownlees et al. (2011) point out that volatility forecast comparison must be made against an 

ex-post proxy of volatility, rather than its true, latent value. They suggest Patton’s (2011) loss 

functions, which are said to be robust in generating the same ranking of models as long as the proxy 

is unbiased. Two classes commonly used are the mean squared error (MSE) loss and the 

quasi-likelihood (QL) loss specified by 

              
              

         
 
 (19) 

             
          

   
 

      
    

   
 

      
   (20) 

where    
  denotes an unbiased ex-post proxy, and        is the one-step-ahead conditional variance 

forecast (Brownlees et al., 2011). 

In this paper, we use the squared returns of the triangular arbitrage and the FX futures as the 

unbiased ex-post proxies. 
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3. Empirical results and conclusion 

3.1. Statistical characteristics of returns 

The USD/EUR bitcoin exchange rate is computed by (1). Figure 2 plots the respective time 

series: the bitcoin exchange rate series,    ; the FX spot rate series,    ; and the FX futures rate 

series,    , all transformed into natural logarithms. As Figure 2 indicates,     shows an 

intertwining with     but seemingly has more spikes. Surprisingly,     appears not to deviate far 

from     , even during the period at the end of 2018 when the bitcoin prices of USD and EUR 

skyrocketed. As for    , it runs above the     and     series; however, the discrepancy tends to 

narrow, indicating a diminishing risk premium. 

 

Figure 2. The bitcoin exchange rate of USD/EUR (   ), the FX spot of 

USD/EUR (   ) and the FX futures of USD/EUR (   ). All series are in natural 

logarithm form. 

Figure 3 plots the six logarithmic return series: (1) the return of the USD/BTC index,         ; 

(2) the return of the EUR/BTC index,         ; (3) the return of the USD/EUR bitcoin exchange 

rate,    ; (4) the return of the USD/EUR spot rate,    ; (5) the return of USD/EUR futures rate, 

   , and (6) the return of the triangular arbitrage,    . Although all of these return series appear to 

oscillate around their mean and behave rather noisily,     presents a cyclic fluctuating pattern that 

indicates short-run arbitrage opportunities. 
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Figure 3. The return series of the six assets (or portfolios): the returns of 

USD/BTC (        ), the returns of EUR/BTC (        ), the returns of the 

USD/EUR bitcoin exchange rate (   ), the returns of the FX spot rates (   ), 

the returns of the FX futures rate (   ), and the returns of the triangular 

arbitrage (   ). 

 

Figure 4. The sample probability densities of the six return-series. 
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Figure 4 plots the sample probability densities of the six logarithmic return series. As Panel (a) and 

Panel (b) of Figure 3 show, the graphs of the densities of          and          have long and fat 

left tails extending negatively beyond −0.2 on the x-axis. These phenomena suggest the potential for 

more than 20% daily losses in terms of either the U.S. dollar or the Euro when investors take a 

positioning trading strategy on bitcoins. That both left tails are seemingly longer than the right tails 

appears to support Dong and Dong’s (2015) finding that bitcoin investment presents higher risk and 

lower return. In contrast, Panel (c) of Figure 3 suggests a reduction in daily losses to around 6% or so 

when using the bitcoin to make currency exchanges. The triangular arbitrage strategy appears to improve 

the currency exchange strategy by means of a more centered and symmetric probability density.  

Table 1. Summary statistics. 

Returns Mean Minimum Maximum S.D. Skewness Kurtosis Normality 

          0.0023 −0.2542 0.1909 0.0430 −0.23 4.44 928.05** 

          0.0025 −0.2573 0.1818 0.0427 −0.33 4.63 1015.00** 

     −0.0001 −0.0643 0.0546 0.0084 0.16 8.21 3136.90** 

     −0.0001 −0.0238 0.0301 0.0056 0.12 2.15 219.26** 

     −0.0001 −0.0212 0.0288 0.0052 0.15 1.87 167.67** 

     −0.0005 −0.0532 0.0741 0.0074 1.59 17.66 14949** 

Note: The sample period contains 1110 observations. Kurtosis refers to the excess kurtosis. Normality refers 

to the Jarque-Beta test.  

The summary statistics in Table 1 affirm our conjectures based on the observed plots. First, 

bitcoin trading had a much wider range of returns than did currency exchange in either the FX 

market or the bitcoin market. This result indicates that bitcoin investors employing a buy-and-hold 

strategy face exceedingly significant losses or profits over time. Second, bitcoin-based currency 

exchange strategies had much less static variance during the sample period. The reduction in the 

unconditional variances is substantial when speculators perform bitcoin-based currency exchange 

strategies, while the triangular arbitrage reduces the variance as compared to the bitcoin exchange 

rate strategy. Third, the density of the return on bitcoin investment shows negative skewness, 

suggesting that most bitcoin holders can expect only a slight profit, at the price of a very large loss. 

Furthermore, all six series show excess kurtosis; hence, they all lead to rejecting the assumption of 

normality (the Jarque-Bera test) in a very significant way. Usually, non-normal densities of returns 

are the result of weak dependence in the return series. Here, the Student’s t distribution functions 

better than the normal distribution hypothesis for the GARCH family (Baillie and Myers, 1991). An 

interesting phenomenon is that the density of     shows a very high excess kurtosis, which may 

imply a strong dependence in the return series. Moreover, since the data are more centrally 

distributed, the areas in the tails of the distribution decrease, indicating a reduction in risk.  

3.2. The DCC-GARCH model and the estimated optimal hedge ratio 

Time-series features of the six series of returns are summarized in Table 2. First, to test 

stationarity, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Elliott-Rothenberg-Stock (ERS) 

tests were conducted. The null hypothesis for the KPSS test of stationarity could not be rejected in all 

cases using models with a lag of 21. Meanwhile, the null of a unit root process for the ERS test was 
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rejected in all cases at the 1% significance level. Based on these results, all six returns appear to be 

stationary—i.e., a long-run martingale process. The Ljung-box test (or the Q-statistic) using a lag of 

20 indicated that there was no serial correlation in         ,         ,    , and    ; however, it 

identified serial correlations in     and    . The order of the ARMA model is suggested by the 

AIC criterion. For    , although AIC recommended the ARMA (2, 1) model, the coefficient of the 

second-order autoregressive term is not significant. Thus, the ARMA (1, 1) model may be 

appropriate for parsimony. 

Table 2. Time-series features. 

Returns KPSS ERS Ljung-Box ARMA 

          0.14 −8.16** 14.27 (1, 1) 

          0.12 −7.15** 12.20 (1, 1) 

     0.08 −4.17** 93.91** (2, 3) 

     0.09 −9.20** 18.25 (0, 0) 

     0.09 −8.03** 15.04 (0, 0) 

     0.04 −4.85** 559.37** (2, 1) 

Note: Ljung-Box refers to the Q-statistic using a lag of 20. The order of the ARMA model is suggested by the 

AIC criterion. 

Based on the obtained information, we propose a framework to model the joint density of the 

return of triangular arbitrage,    , and the return of futures,    , i.e., to capture the time-varying 

conditional variance matrix and the time-varying conditional correlation. The proposed framework 

combines the ARMA (1, 1) model with the DCC (1, 1)-bivariate GARCH (1, 1) model. A total of 

1000 observations were used to fit the proposed model; results are presented in Table 3. 

First, the ARMA (1, 1) model was used to model autoregression in the return series, especially 

in    . All three coefficients related to     were significant. Comparing the values of these 

coefficients with those estimated from the univariate ARMA (1, 1) model that was applied to    , 

the values are quite similar. The residuals from the univariate ARMA (1, 1) model applied to     

passed the Ljung-Box test using a lag of 20, which shows ARMA (1, 1) is sufficient for capturing the 

autoregressive effect. Second, the GARCH (1, 1) model with Student’s t distribution as the 

underlying assumption was used to measure the volatility clustering effect. Except for the constant 

terms, all coefficients were significantly different from zero. The sums                 and 

                suggest a near integrating process for the volatility of the triangular arbitrage 

returns and the FX futures returns, respectively. The shape parameters for the Student’s t distribution 

were all significant:            implies much heavier tails in the density of     than in the 

case of     , where           . Finally, the 0.9413 sum of     tends to suggest a 

comparatively persistent conditional correlation process with the shape parameter         . 
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Table 3. Estimation of the bivariate ARMA plus DCC-GARCH model. 

ARMA (1, 1) Bivariate GARCH (1, 1) DCC (1, 1) and others 

     −0.0009** 

(0.0003) 

     0.0000 

(0.0000) 

   0.0121 

(0.0174) 

     −0.0002 

(0.0001) 

     0.0000 

(0.0000) 

   0.9292** 

(0.1092) 

       0.7905** 

(0.0399) 

     0.3553** 

(0.1150) 

   4.5616** 

(0.2613) 

       0.4146 

(0.4112) 

     0.0501** 

(0.0047) 

  

       −0.3826** 

(0.0680) 

     0.6404** 

(0.1030) 

    7786.798 

       −0.4520 

(0.4022) 

     0.9469** 

(0.0072) 

     −15.538 

       3.1055** 

(0.3780) 

  

       6.4826** 

(1.2713) 

  

Note: The ARMA (1, 1) model is specified as                                    for         as 

the subscript. Subscript TA denotes the coefficient concerns the returns of the triangular arbitrage, while 

subscript FU concerns the returns of the FX futures. 

                  h        indicates the residuals from the ARMA (1, 1) model have the conditional density 

following the standardized student’s t distribution with mean zero, variance h   , and degrees of freedom   . 

The bivariate GARCH (1, 1) component is specified as h                 
    h     . The conditional 

correlation is modelled by                         
         where vector    has two entries in its 

column specified as           h   
   

and                       .    denotes Log-Likelihood, and     

denotes the Akaike Information Criterion for the framework. ** significant at 1%. 

Figure 5 plots the conditional variance of the return of the triangular arbitrage, h    , the 

conditional variance of the return of the FX futures, h    , and the conditional covariance of the two 

returns, h    . The time-varying conditional optimal hedge ratio is calculated as   
  h     h     

according to Equation 6.  
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Figure 5. The conditional variance of the returns of the triangular arbitrage (      , 

the conditional variance of the returns of the futures rate (     ), and the conditional 

covariance (      . 

 

Figure 6. The conditional optimal hedge ratio series (  
 ) and the conditional 

correlation series (  ). The red dashed line in Panel (a) is the optimal hedge ratio 

obtained from the OLS method (     ; the red dashed line in Panel (b) is the 

unconditional correlation coefficient.  

Figure 6 shows a plot of the conditional optimal hedge ratio series,   
 , and the conditional 

correlation series,    . In Panel (a) of Figure 6, the dashed line is the unconditional optimal hedge 

ratio,     
         , obtained from the OLS regression. By comparison, the conditional optimal 

hedge ratio has mean −0.32 and varies from −2.5065 to −0.1221. The dashed line in Panel (b) of 

Figure 6 is the unconditional correlation between     and    . The unconditional correlation 

value is −0.1760, whereas the conditional correlation series varies from −0.3435 to −0.1694. 
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3.3. Rolling one-step-ahead forecasting 

The estimated coefficients of our specification—the ARMA (1, 1) plus the DCC- bivariate 

GARCH—were used to produce rolling one-step-ahead forecasts. The rolling window was fixed at a 

length of 1000. This approach makes a one-step-ahead forecast, and then adds a new observation to 

the end of the window and removes the first observation. In this fashion, the process was repeated 

110 times until all 110 bits of data were exhausted.  

 

Figure 7. The forecasted conditional variances and covariance and the forecasted 

conditional correlation based on the ARMA plus DCC- GARCH model. 

The forecasted conditional variances and covariance,      
 ,      

 , and      
 , and the forecasted 

conditional correlation   
  are plotted in Figure 7. Figure 8 combines the conditional optimal hedge 

ratio   
  obtained from our sample (black line) and the forecasted optimal hedge ratio (red dashed 

line) into a single plot.  

To access the forecasted conditional variances      
  for the triangular arbitrage and      

  for the 

FX futures, we use the corresponding squared returns as the proxy for each true and latent 

conditional variance. Figure 9 plots the forecast and the proxy together. The mean of the MSE losses 

and the mean of the QL losses for the forecasted triangular arbitrage variance are 6.034310
−9

 and 

3.8968 calculated by (17) and (18), respectively, while the mean of the MSE losses and the mean of 

the QL losses for the forecasted FX futures variance are 1.229310
−9 

and 1.4974. Hence, predictive 

accuracy can be evaluated based on average MSE and QL forecast losses achieved by selections of 

models and specifications (Brownlees et al., 2011).  
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Figure 8. The sample conditional optimal hedge ratio (black line) and the 

forecasted conditional optimal hedge ratio (red dashed line). 

Panel (a): the triangular arbitrage  Panel (b): the FX futures  

  

Figure 9. The forecasted triangular arbitrage conditional variance      
  in the 

black line and the proxy for its true variance in the red dashed line (panel a). 

The forecasted FX futures conditional variance      
  in the black line and its 

true variance in the red dashed line (panel b). The proxies are rescaled according 

to the y-axes on the right-hand side. 

3.4. Arbitrage strategy evaluations 

To make an evaluation, the unconditional variance (multiplied by the number of the 

observations) and Value-at-Risk (VaR) were used as the criteria to illustrate the performance of all 

the arbitrage strategies. Table 4 gives a summary of the results for the sample of 1000 observations. 

As shown, the returns of the triangular arbitrage and the returns of the hedged portfolio have much 

smaller unconditional variances than the returns of USD/BTC and EUR/BTC, although they are not 

the smallest when compared to the FX spot and futures returns. The returns of the USD/EUR bitcoin 

exchange rate also show a smaller variance than the returns of USD/BTC and EUR/BTC. The VaR 
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criteria indicate that the hedge portfolio appears to have the least negative value of the returns at the 

high quantile 99.5 using either the Historical approach or the Cornish-Fisher (denoting Modified-) 

approach, which is modified to adapt to the leptokurtic density of returns. For    , the one-day 

losses at the 0.5% confidence level are −1.94% and −4.10%, respectively, according to the historical 

and the modified approaches. In contrast,          has daily losses of −14.23% and −19.62, 

respectively; for         , the losses are −14.35% and 20.07%, respectively.  

Table 4. Comparison of assets or portfolios based on the unconditional variances and the 

VaR values in the sample period. 

Assets Variances Historical VaR (0.5%) Modified VaR (0.5%) 

          1.8478 −0.1423 −0.1962 

          1.8203 −0.1435 −0.2007 

     0.0708 −0.0272 −0.0477 

     0.0310 −0.0170 −0.0185 

     0.0269 −0.0151 −0.0166 

     0.0548 −0.0211 −0.0476 

     0.0593 −0.0194 −0.0410 

Note: VaR denotes the Value-at-Risk where Modified VaR concerns the Cornish-Fisher estimate of VaR. The 

sample period starts on 22 April 2014 and ends on 17 April 2017; it includes 1000 observations. 

Table 5. Comparison of assets or portfolios based on the unconditional variances and the 

VaR values in the forecasted period. 

Assets Variances Historical VaR (1%) Modified VaR (1%) 

          0.1557 −0.1001 −0.1033 

          0.1581 −0.1039 −0.1018 

     0.0040 −0.0172 −0.0234 

     0.0024 −0.0100 −0.0139 

     0.0023 −0.0124 −0.0127 

     0.0008 −0.0029  

     0.0009 −0.0034 −0.0280 

Note: VaR denotes the Value-at-Risk where Modified VaR concerns the Cornish-Fisher estimate of VaR. The 

forecasted period starts on 18 April 2017 and ends on 21 September 2018; it includes 110 observations. The 

Modified VaR is blank in the     row because of the unreliable result (inverse risk) produced by the calculation. 

Table 5 gives the results using the same criteria as in Table 4 but involves a forecast period of 

18 April 2017 to 21 September 2018. The returns of the hedged portfolio using the forecasted 

optimal hedge ratio     shows the second lowest daily risks among the bitcoin assets with respect 

to the VaR approaches. An interesting outcome is that     and     during the observation period 

have smaller variances than the returns from the FX market.  

4. Conclusion 

Based on empirical results, this paper finds that bitcoin-based currency exchange strategies are 

competitive with direct bitcoin trading in terms of risk management. In particular, the triangular 
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arbitrage strategy expanding bitcoin-based currency exchange to the FX spot market appears to be 

most attractive due to the existence of arbitrage opportunities and FX futures hedging. The ARMA 

plus DDC-GARCH model is suggested to measure the joint density of the hedged portfolio 

containing the returns of the bitcoin-based triangular arbitrage and the returns of the FX futures, to 

capture the time-varying conditional covariance matrix and correlation, and to produce 

one-step-ahead rolling window forecasts. Hence, a dynamic future hedged portfolio was formed, the 

return of which was then compared to the returns of the bitcoin and FX rates. The empirical and 

forecasted results tend to show that the portfolio with the bitcoin-based triangular arbitrage and its 

FX futures is superior to the USD/BTC and EUR/BTC assets in terms of risk management. Despite 

the importance of our empirical work to the market, it is worth further investigating on the latent 

volatility and forecast accuracy. This leaves a space for studying high-frequency data using methods 

such as the realized GARCH model and the neural network.  
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