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Abstract: Data Envelopment Analysis (DEA) is a method for evaluating the performance of a set of
homogeneous Decision Making Units (DMUs). When there are uncertainties in problem data,
original DEA models might lead to incorrect results. In this study, we present two stochastic p-robust
two-stage Network Data Envelopment Analysis (NDEA) models for DMUs efficiency estimation
under uncertainty based on Stackelberg (leader-follower) and centralized game theory models. This
allows a deleterious effect to the objective function to better hedge against the uncertain cases those
are commonly ignored in classical NDEA models. In the sequel, we obtained an ideal robustness
level and the maximum possible overall efficiency score of each DMU over all permissible
uncertainties, and also the minimal amount of uncertainty level for each DMU under proposed
models. The applicability of the proposed models is shown in the context of the analysis of bank
branches performance.
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1. Introduction

Since inception, Data Envelopment Analysis (DEA) developed by Charnes et al. (1978), has been
widely used to evaluate the performance of a set of Decision Making Units (DMUs), especially those
with multiple inputs and multiple outputs (e.g., Cook et.al, 2009; Cooper et al., 2007; Liang et al., 2008;
Thanassoulis et al., 2011 and Wu and Liang, 2010). In the original DEAmodels, all DMUs are treated as

mailto:salahim@guilan.ac.ir


316

Quantitative Finance and Economics Volume 3, Issue 2, 315–346.

a black box and the internal structure is always ignored; see, e.g., Lewis and Sexton (2004) for more
details. However, there are cases where DMUs may consist of two-stage network structures with
intermediate measures. In other words, DMUs under evaluation share a common feature found in many
two-stage network structures, namely the outputs from the first stage become the inputs to the second
stage. This is referred to intermediate measure. For instance, Seiford and Zhu (1999) developed the
profitability and marketability of US commercial banks based on a two-stage Network Data
Envelopment Analysis (NDEA) model. Kao and Hwang (2008) studied the efficiency of 24 insurance
firms based on a two-stage model where operating and insurance expenses are applied to generate
premiums in the first stage and the underwriting and investment profits are produced in the second stage
by employing the intermediate premiums as a resource. Liang et al. (2008) developed cooperative and
non-cooperative models to address the tension between two stages caused by the intermediate measures.

The DEA models are classified into four series: original DEA models; efficiency decomposition
models; NDEA models; and game-theoretic models (e.g., Cook et al., 2010). Also, Cook and Zhu
(2014) revised various DEA models for measuring efficiency in the two-stage network structures. Li
et al. (2018) presented an extended model of Despotis et al.’s model (2016) to generate a Pareto
solution and identified the leader stage of a two-stage DEA model. They displayed that the optimal
solution for the developed model is also a leader-follower solution and that the global optimal
solution can be specified by comparing the efficiency scores difference for the upper and lower
bounds of the two stages. In recent years, many researchers also studied two-stage NDEA models
with shared resources; see, e.g., Yu and Shi (2014), Moreno et al. (2015), Wu et al. (2016a, 2016b),
Ang and Chen (2016), Guo et al. (2017), Li et al. (2017c) and Izadikhah et al. (2018).

In all the above mentioned DEA models, all inputs and outputs parameters are assumed to be
exact and the effect of uncertainty is ignored. Research showed that a small perturbation in the
problem data can lead to a serious variation in ranking. Robust optimization is a widely used
approach to deal with the data uncertainty (e.g., Soyster, 1973; Mulvey et al., 1995; Despotis and
Smirlis, 2002). This approach firstly takes the percentage of the perturbation in the data into
consideration and then obtains the robust efficiency (e.g., Ben-Tal and Nemirovski, 1999). In the
realm of robust DEA, Sadjadi and Omrani (2008) considered uncertainty in output parameters for the
performance evaluation of electricity distribution firms. They showed that models presented by
Bertsimas and Sim (2003, 2004) and Bertsimas and Thiele (2006) were easier and more practical
than the robust DEA model introduced by Ben-Tal and Nemirovski (2000). Salahi et al. (2016)
presented the robust counterpart of the CCR model in the envelopment form and showed that it is the
same as the optimistic robust counterpart of the multiplier form of the CCR model. Then they
computed robust solutions for common set of weights under interval uncertainties using robust
efficiency scores of units considering as ideal solutions. In another research, Wu et al. (2017)
transformed a robust DEA optimization model into a second-order cone equivalent to immunize
against output perturbation in an uncertainty set. As well, in a recent study, Salahi et al. (2018)
proposed equivalent formulizations of the robust Russell measure model and its enhanced model for
interval and ellipsoidal uncertainties in their best- and worst-cases. The authors indicated that the
built formulizations remain convex for both best- and worst-cases under interval uncertainty as well
as worst-case with ellipsoidal uncertainty. The effect of uncertainty also is studied in two-stage
models. Kao and Liu (2011) developed a two-stage DEA model from deterministic to uncertain
situations, where the observations are represented by fuzzy numbers. In their study, the extension
principle is utilized to develop a pair of two-level mathematical program to calculate the lower and
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upper bounds of the α-cut of the fuzzy efficiency. As well, Liu (2014) proposed a fuzzy two-stage
NDEA model with assurance region. A new two-stage Stackelberg fuzzy DEA model with utilizing
the Monte Carlo simulation is proposed by Tavana and Khalili-Damghani (2014), that discriminately
ranked the efficiency scores in each stage for branches of a commercial bank. In another study,
Alimohammadi (2016) proposed a robust two-stage DEA model in order to evaluate the efficiency of
the electrical networks under uncertainty. Hatefi et al. (2016) applied an integrated forward-reverse
logistics network with hybrid facilities under uncertainty in which the impact of random facility
disruptions is relieved. Zhou et al. (2017) suggested stochastic NDEA models for two-stage systems
under the centralized control organization mechanism and showed that ignoring the internal structure
of the whole process is not convenient. Also, Huang et al. (2018) developed a NDEA model to
Copula-Based network stochastic frontier analysis on evidence from the U.S. commercial banks in
2009 and evaluated technical efficiencies of the stochastic production and cost frontiers. Their
dynamic model recognized multiple banks production processes that was independent of whether,
more or less deposits are consistent with higher bank efficiency.

Another approach to deal with uncertainty is the p-robust approach. It was first introduced to deal
with uncertainty in facility layout by Kouvelis et al. (1992) and used subsequently in a network design
problem; see, e.g., Gutierrez et al. (1996). Next the p-robustness opinion by Mo and Horrison (2005)
was first used in a supply-chain network design to show that the relative regret in each scenario must
not be more than constant p� After that, Snyder and Daskin (2006) introduced a new approach for
optimizing under uncertainty known as a stochastic p-robust optimization approach. In their approach,
the objective function minimizes the expected costs, while the p-robustness condition is incorporated
into the model as a constraint and the required decisions are partitioned into two stages. It is a
combination of the robust optimization and traditional stochastic approaches, each of which has some
disadvantages to cope the uncertainty. The stochastic models search to minimize the total expected cost
among all scenarios. The optimal solution obtained using it may be very good for some scenarios but
very poor for the others. The robust approach usually seeks min-max regret solutions that appear
effective no matter which scenario is realized.

In this paper, we utilize stochastic p-robust approach for the Stackelberg (leader-follower) and
centralized game-theoretic DEA models of Liang et al. (2008) to achieve robustness against the
existing uncertainty. The developed models are based on the discrete robust and stochastic
optimization approaches that apply probabilistic scenarios to obtain the effect of imprecise input and
output parameters and calculate the efficiency scores for DMUs. It can overcome the difficulties of
models under uncertain parameters and give reliable answers. In fact, the aim of this study is to
create a robust system for NDEA models through comparison of game-theoretic models in which
large reductions in regret are possible with little increases in the expected efficiency of branches. The
proposed models are very sensitive to the parameters change. One of the main advantages of these
models is that it enables decision makers to make a trade-off between the expected value and the
regret value of the efficiency of DMUs under probable scenarios and also, a trade-off between
robustness of the solution and the robustness of the model. Also, the uncertainty under different
scenarios is formulated with a specified probability for input and output data instead of using point
estimates. Like the fuzzy approach, this approach does not require any membership functions and the
� -cut variables (i.e., minimizing the computational efforts). Also, it does not use a Monte Carlo
simulation procedure to discriminately rank the efficient DUMs. Therefore, we can obtain the
scenario ranking based on the p-values on the mind.
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The rest of the paper is organized as follows. The next section reviews a short preliminary to the
game-theoretic models utilized in two-stage DEA models. Section 3 presents the stochastic p -robust
approach for centralized and non-centralized models. In Section 4, we apply the proposed models to a
real numerical example to demonstrate its efficiency. Sensitivity analysis is provided in Section 5 and at
the end, concluding remarks and some directions for future research are given in the last section.

2. Preliminaries

2.1. Structure of two-stage NDEA models

In this section, we briefly review the game-theoretic models used in an original two-stage process.
Liang et al. (2006) employed the notions of the Stackelberg game (or leader-follower/the seller and buyer)
and the cooperative game to extend models for measuring performance in supply chain settings. In their
model, the second stage includes both the outputs from the first stage and some additional inputs. Since
some of the inputs to the second stage were not from the first stage, one of the DEA models was
nonlinear. Although the model was nonlinear, it could be solved as parametric linear programming
problems, and the best solution could be found using a heuristic technique.

Liang et al. (2008) applied the model of Liang et al. (2006) for two-stage processes (which
includes only intermediate measures joining the to two stages, as illustrated in Figure 1) and then
used the overall efficiency definition of Kao and Hwang (2008) to get linear DEA models. In fact,
Liang et al. (2008) presented alternative models to address the conflict between stages caused by the
intermediate measures, and at the same time provide efficiency scores for both individual stages and
the overall process. Their non-cooperative and cooperative models displayed that the overall
efficiency of the two-stage process was the product of efficiencies of the two stages.

In general, the two models derived from game-theoretic axioms are the cooperative (centralized) and
the non-cooperative (non-centralized) game models; see, e.g., Cook et al. (2010). The non-centralized
model considers the two stages as players in a game and pursues a leader-follower model. This model
often mentioned to as a Stackelberg game, requires selecting one of the two stages as the leader and then
obtaining multipliers for the inputs and outputs that produce the best feasible score for that stage. The
efficiency score for the other stage, namely the follower is then attained by detecting the best potential
weights for its inputs and outputs, but with the limitation that the score of the leader is not compromised.
The centralized game model gains the best overall efficiency score for the two stages incorporated.
Consider an original two-stage process as shown in Figure 1. Suppose we have � DMUs, and each
DMUj �� � ᤑ�ᤑ�� uses � inputs ���

� ᤑ�� � ᤑ�ᤑ�� in the first stage to produce � outputs ���
� ᤑ�� �

ᤑ�ᤑ�� under scenario � � ᤑ�ᤑ� . Then, these � outputs become the inputs to the second stage and will
be referred to as intermediate measures. The outputs from the second stage are ���

� ᤑ � � ᤑ�ᤑ� under
scenario �. Therefore, ���

� ᤑ ���
� and ���

� show the ��h input, the ��h intermediate output and the ��h output
of DMUj based on the ��h scenario.
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Figure 1.A two-stage system.

For DMUj we denote the efficiency scores of the first stage as ��
� and the second as ��

�� based
on the ��� scenario. Based upon the radial constant returns to scale (CRS) DEA model of Charnes et
al. (1978), we have the following input-oriented DEAmodels for each stage:
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In models (1) ᤑ �� , ��
ᤑ ��

�ᤑ and �� are non-negative decision variables of inputs, intermediate
measures and outputs, respectively. Besides, ���

� , ���
� and ���

� show uncertain parameters related to the ���
input, the ��� intermediate measure and the ��� output of DMUj in terms of the ��� scenario,
respectively. It is noteworthy that, here, we assume the weights related to the intermediate parameters are
the same, i.e., ��

 � ��
� regardless of whether they are considered as inputs or outputs; see, e.g., Kao

and Hwang (2008) and Liang et al. (2008) for more details on the properties of models. As in Seiford and
Zhu (1999), we can use two separate DEA analysis for the two stages, so that if the first stage is efficient
and the second stage is not, then the second stage improves its performance by decreasing the inputs ���

� ,
that the reduced ���

� may make the first stage inefficient. However, to compute the overall efficiency,
Chen et al. (2009) proposed an additive or arithmetic mean methodology for incorporating the two stages,
as opposed to the geometric-type model of Kao and Hwang (2008).

Definition 2.1 If ��
� and ��

�� are the efficiency scores of the first and the second stages under the ���

scenario, respectively then the efficiency of the overall two-stage process either is 
�
��
� + ��

�� or ��
� × ��

��.
Definition 2.2 If ��

� ≤  and��
�� ≤  are the efficiency measures of the first and the second stages under the

��� scenario, respectively in the input oriented model, then the two-stage process is efficient if and only if ��
� �

��
�� � .

It is noted that, if ��
� � ��

� ��� ���
�

��
� �����

�� is the two-stage overall efficiency score under the
��� scenario, then at optimality, in the second stage we have ��

��∗ � ��
� ��∗����� ��

� and ��
� ��

∗���
�� �

ᤑ under the ��h scenario. On the other hand, ��
�∗ � ��

� ��
∗���

�� therefore, ��
�∗ × ��

��∗ �
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��
� ��∗� ���� ��

� ��
∗���
�� � As a result, ��

�∗ × ��
��∗ � ��

� ��∗����� ᤑ and at optimality our proposed models
give ��

� � ��
� × ��

��.

2.2. Non-centralized model

As mentioned above, one form of a non-centralized game is the leader-follower model. In the game
theory literature, the leader-follower model is also referred to as the Stackelberg model. If we consider the
first stage as the leader, then the first stage’s performance is more significant, and the efficiency of the
second stage (follower) is computed subject to that the leader’s efficiency stays constant. By accepting that
the first and second stages are corresponding with the leader and the follower, respectively we compute the
efficiency for the leader model under the ��� scenario, applying the CCRmodel (2) as follows:
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For computing the second stage’s efficiency, namely ��
��∗ the model can be expressed as:
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(3)
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At last, in non-centralized model we state the overall efficiency with different scenarios as following.

If ��
�∗ and ��

��∗ are the optimal efficiency scores of models (2) and (3), respectively then the overall

efficiency is equal to ��
�∗ � ��

��∗ � ��
� ��∗����� . Accordingly, this illustrates that the overall efficiency in

non-centralized model in the ��� scenario is equal to the product of the efficiencies of individual stages.

2.3. Centralized model

Another model for evaluating the efficiency of the two-stage process is the centralized model
that specifies a set of optimal weights on the intermediate factors in order to maximize the overall or
aggregate efficiency score.

Remark1. By assuming that in models (1) ��
 � ��

�ᤑ it can be seen that ��
� × ��

�� �

��
� ��� ���� ��

� �����
�� . As a result, instead of maximizing the average of ��

� and ��
�� under the

��h scenario, we maximize the product of ��
� and ��

�� of individual stages. Therefore, in the
centralized model by letting ��

 � ��
� , the efficiency scores of both stages are computed

simultaneously. As mentioned, we write the centralized model by replacing ��
 � ��

� in the models
(1), as follows:

��
�−� � max ��

� � ��
�� � ��

� ��� ����

��
� �����

��

s.t.

��
� � ᤑ

��
�� � ᤑ

��
 � ��

��

(4)

It is noted that the ��
�−� 1 in model (4) is the optimal efficiency value for the centralized model.

Model (4) can be transformed into the linear model (5) as

1 “c” stands for the centralized model.
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(5)
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Model (5) gives the overall efficiency of the two-stage process. Nonetheless, it is obvious that,
if there is uncertainty in data set, models (2), (3) or (5) might be infeasible at optimal solution of
nominal problem. Thus, it is essential to choose an alternative model such that a small variation in
data set cannot change the rankings. To tackle this case, we apply the stochastic p-robust
optimization approach of Snyder and Daskin (2006) that will be illustrated in the next section.

3. Stochastic p-robust two-stage NDEAmodels

In this section, first we describe the p-robust concept, and afterwards present the mathematical
formulation of two-stage NDEAmodels under uncertainty based on the stochastic p-robust approach.

3.1. P-robust concept

Suppose � be a set of scenarios, and let �� be a deterministic (i.e., single scenario)
maximization problem for scenario index �ᤑ so that there is a different problem �� for each
scenario� � �. Let ��∗ � � be the optimal objective value for ��. Also, let � be the feasible vector in
terms of the weights of outputs and inputs, respectively, and �� ( � ) be the objective value of
problem �� under solution �. Then � is called p-robust (p � � is a non-negative constant) if for all
� � � the following inequality holds:

��∗ − �����
��∗

� p�

(6)

The left hand side of formula (6) shows the relative regret under ��� scenario and � ≥ � is a
parameter that shows the robustness level between different values of each scenario. The relative
regret for each scenario is limited by it. We can write inequality (6) as follows:

����� �  � p ��∗.
(7)
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Finally, in order to control the relative regret related to the scenarios, the p-robust restrictions
are added to the model.

Definition 3.1 A DMUj under evaluation under the different scenarios is stochastic p -robust
efficient if its optimal objective function value is one.

3.2. Stochastic p-robust two-stage NDEA models

As mentioned before, in two-stage NDEA models each DMU is composed of two sub-DMUs in
sequences, and the intermediate products of the sub-DMU in the first stage are used as input by the
sub-DMU in the second stage. Nonetheless, to cope with uncertainty situations the precise models
cannot lead to correct results. In fact, uncertainty can change final results and units rankings.
Therefore, the original two-stage NDEA models must be robust upon uncertainty. In this case, we
propose two stochastic p-robust two-stage NDEA models to cope with this theme.

3.2.1. Stochastic p-robust non-centralized model

Here we propose stochastic p-robust Stackelberg game models or the leader-follower versions
of uncertain DEA models (2) and (3). At first, we formulate stochastic p-robust model for the first
stage (i.e., the leader problem) as follows:

(8.a)

(8.b)

(8.c)

(8.d)

(8.e)
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�� � � p ��
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�
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�� −
��
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�����
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��

�

�����
�� � ᤑ ����ᤑ
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The objective function of model (8) computes the expected efficiency value of DMUs according
to the data from each scenario in the leader stage. The first constraints represent the p -robust
restrictions. Moreover, as retaining the leader’s efficiency fixed, the stochastic p -robust model for
the second stage (i.e. the follower problem) for all scenarios can be formulated as follows:
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(9.a)

(9.b)

(9.c)

(9.d)

(9.e)

(9.f)

(9.g)

The objective function of model (9) maximizes the expected efficiency value of DMUs
according to data from each scenario in the follower stage. In the objective function, �� is the
probability that scenario � happens (it is unclear which scenario will happen in the future, in other
words, there is no information about the probability of chance of each scenario). In this model, the
uncertainty in the parameters is defined by discrete scenarios. The objective function maximizes
expected efficiency value of DMUs according to the data from each scenario. The first constraints
show the p-robust restrictions and constraints (9.f) measure the efficiency value of the first stage (i.e.,
leader stage) under scenario � . Moreover, the relation between the overall efficiency and the

efficiency score of each stage, i.e., ��
�∗ᤑ��

�∗and ��
��∗ᤑ respectively are illustrated in the sequel.

Definition 3.2.1 DMUj under evaluation in the ��� scenario is overall efficient if and only ��
� �

ᤑ � � ᤑ…ᤑ�.
Definition 3.2.2 The ��� stage sub-DMUj, under the ��� scenario is efficient if ��

�� � ᤑ � �
ᤑ…ᤑ� and � � ᤑ�.

Proposition 3.2.1 DMU0 in the ��� scenario is overall efficient if and only if both stages in the
��� scenario is efficient.

Proof. According to Definition 3.2.1, if DMU0 is overall efficient, then ��
� �  . Since ��

� �
��
� × ��

��, and ��
� ≤ , ��

�� ≤ ᤑ therefore, the divisional efficiencies ��
� and ��

�� must satisfy ��
� �

��
�� � . On the contrary, if both stages are efficient, i.e., ��

� � ��
�� � , then since ��

� � ��
� × ��

��,



325

Quantitative Finance and Economics Volume 3, Issue 2, 315–346.

so the efficiency value of ��
� must be equal to one. Hence, based on to Definition 3.2.1, DMU0 must

be overall efficient.

3.2.2. Stochastic p-robust centralized model

The stochastic p-robust centralized model (5) under uncertainty is as follows:
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 � �ᤑ ��ᤑ�ᤑ��

(10.a)

(10.b)

(10.c)

(10.d)

(10.e)

(10.f)

In model (10), the objective function maximizes expected efficiency value of DMUs according
to the data from each scenario. Constraints (10.b) are the p-robust restrictions. This set of restrictions
may not allow the scenario efficiency take value more than ��� � p�� of the ideal efficiency
scores gained by each scenario. The parameter p controls the relative regret between all scenarios. If
p � �, then the p-robust constraints in models (8), (9) and (10) become redundant. Now we assume
��� � max ���  � � � � � �ᤑ and then setting �ᤑ�ᤑ��ᤑ�ᤑ�ᤑ�� = �ᤑ�ᤑ�ᤑ�ᤑ  ��� ᤑ�ᤑ� ,
constraints ��

� �����
�� �  and ��

� ��
���

�� � ��
� �����

�� � �ᤑ imply ��
� ��

���
�� �  . Thus, we

get ��
�∗ � 

�p
. So for very small p’s, there may not be p-robust solutions for models (8), (9) and

(10), and they may be infeasible. We should note that the p-values can be different for any problem
and are determined by the decision-maker. In general, the p-values usually should not be considered
smaller than 0.2 and its upper bound is obtained by try and error, and can be increased to one.

Theorem 3.2.1 For a specific DMU0 under different scenarios, ���−�∗ � ���∗ � ����∗ where
���∗ and ����∗ are the optimal values of the non-centralized models (8) and (9), respectively and
���−�∗ is the optimal value of model (10).
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Proof Suppose that the optimal value of model (10) is ���−�∗= ��
� ��� ��

� ��∗����� , and the
optimal value of models (8) and (9) are ���∗ = ��

� ��� ��
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Theorem 3.2.2 The expected efficiency values of the centralized model (5) under different

scenarios are greater than those provided by model (10).
Proof. Since the feasible region of model (10) is the subset of the feasible region of model (5)

and both models have the same objective function, thus the result follows.
Theorem 3.2.3 The expected regret values of model (5) in different scenarios are greater than

those provided by model (10).
Proof. Let the difference between the expected efficiency values of each model with the

expected ideal efficiency is

� � ��� �
��� �� ��� �

�� ��∗. (11)

It is clear that the smaller value of α for a model shows that model produces more exact results.
According to the Theorem 3.2.2, we have

�∗ � � (12)

in which � and �∗ are the optimal objective values to dual of the expected model (5) and dual of
model (10), respectively. From inequality (12), we further can get

�∗ � ��� �
�� ��∗ � � � ��� �

�� ��∗. (13)

The left hand side of (13) is the α-value of expected value model (10) and the right hand side
shows the α-value of expected value model (5) and thus the result follows.

4. An application

The proposed models in the previous section are used to evaluate the technical efficiency of an
Iranian commercial bank branches. In the realm of performance measurement, banks’ performance
analysis has been of primary interest due to its socioeconomic importance. Several researchers
studied uncertainty subject in the bank (e.g., Kao and Liu, 2009; Paradi and Zhu, 2013). As well, the
study of two-stage NDEA models were relatively active in banking industry in recent years and
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several important works have been reported; see, e.g., Avkiran (2009), Fukuyama and Weber (2010),
and Akther et al. (2013) for more details.

It is notable that, on the one hand, due to the existence of some variables, data obtained are not
precise and they are estimated with a specific error level (e.g., Zhou et al., 2017). For instance, the
earnings quality as a qualitative variable for a bank system is not exactly available; also, the number
of customers is not often reported precisely. On the other hand, for the banks, it may be beneficial to
conceal real information and reveal deceptive input and output data. Moreover, real and accurate data
about key performance criteria of all banks do not always exist. Therefore, it is important to analyze
efficiency of banks under uncertainty. Here, we evaluate the presented models under discrete
scenarios, provided by the bank network analyzers (i.e., � = Pessimistic, �� = Medium, �� =
Optimistic). We note that the Snyder and Daskin (2006) assumed that all scenarios have the same
occurrence probability (i�e� �� � 

� � ����), which should be �� �0.33 for each scenario. But, we

considered the average probability of the second and third scenarios, because the data-set in these
two scenarios were similar. Therefore, the occurrence probabilities of scenarios are considered as
0.25, 0.5 and 0.25, respectively. Table 1 shows the input, intermediate and output parameters
employed in the first and second stages of the proposed models.

As well, the results of the normalized data under three scenarios are provided in Table 2.

Table 1. The input, intermediate, and output parameters.

Inputs Intermediates Outputs
� Operational costs � Checking deposits � Return on assets
�� Capital costs �� Saving deposits �� Earnings quality
�� Financing costs �� The number of customers �� Interest income
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Table 2A. The normalized data of input, intermediate, and output parameters in three scenarios.

� �� �� �
DMUs � �� �� � �� �� � �� �� � �� ��
1 0.47 0.84 0.66 0.83 0.75 0.78 0.80 0.60 0.72 0.22 0.24 0.23
2 0.74 0.53 0.64 0.67 0.67 0.78 0.90 0.75 0.71 0.13 0.41 0.27
3 0.58 0.69 0.63 1.00 0.73 0.78 0.82 0.50 0.75 0.77 0.07 0.42
4 0.70 0.57 0.63 0.83 0.69 0.78 0.87 0.60 0.72 0.89 0.06 0.47
5 0.77 0.52 0.64 1.00 1.00 0.80 0.60 0.50 0.75 0.58 0.09 0.34
6 0.60 0.66 0.63 0.67 0.86 0.78 0.70 0.75 0.71 0.69 0.08 0.38
7 0.40 1.00 0.70 0.50 0.75 0.78 0.80 1.00 0.75 0.13 0.39 0.26
8 0.59 0.68 0.63 0.67 0.69 0.78 0.87 0.75 0.71 0.38 0.14 0.26
9 0.60 0.67 0.63 0.67 0.75 0.78 0.80 0.75 0.71 0.11 0.45 0.28
10 0.44 0.91 0.67 0.67 0.75 0.78 0.80 0.75 0.71 0.06 0.90 0.48
11 0.57 0.69 0.63 0.67 0.82 0.78 0.73 0.75 0.71 0.15 0.35 0.25
12 1.00 0.40 0.70 0.83 0.69 0.78 0.87 0.60 0.72 0.86 0.06 0.46
13 0.62 0.64 0.63 0.67 0.78 0.78 0.77 0.75 0.71 0.35 0.15 0.25
14 0.65 0.61 0.63 0.83 0.60 0.80 1.00 0.60 0.72 0.10 0.54 0.32
15 0.72 0.55 0.64 0.83 0.77 0.78 0.78 0.60 0.72 0.71 0.07 0.39
16 0.78 0.51 0.65 0.83 0.69 0.78 0.87 0.60 0.72 0.05 1.00 0.53
17 0.81 0.49 0.65 0.67 0.75 0.78 0.80 0.75 0.71 1.00 0.05 0.53
18 0.64 0.62 0.63 0.67 0.86 0.78 0.70 0.75 0.71 0.35 0.15 0.25
19 0.47 0.84 0.66 0.83 0.72 0.78 0.83 0.60 0.72 0.10 0.49 0.30
20 0.76 0.52 0.64 0.83 0.75 0.78 0.80 0.60 0.72 0.31 0.17 0.24
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Table 2B. The normalized data of input, intermediate, and output parameters in three scenarios.

�� �� � �� ��
DMUs � �� �� � �� �� � �� �� � �� �� � �� ��
1 0.50 0.71 0.60 0.37 0.78 0.58 0.47 0.68 0.57 0.36 0.57 0.47 1.00 0.63 0.82
2 0.73 0.48 0.61 0.33 0.88 0.61 0.34 0.92 0.63 0.33 0.63 0.48 0.90 0.71 0.80
3 0.51 0.69 0.60 0.58 0.50 0.54 0.62 0.51 0.56 0.30 0.69 0.49 0.84 0.75 0.80
4 0.52 0.68 0.60 0.64 0.46 0.55 0.71 0.44 0.58 0.41 0.50 0.46 0.90 0.71 0.80
5 0.74 0.48 0.61 1.00 0.29 0.65 0.90 0.35 0.63 0.52 0.40 0.46 0.84 0.75 0.80
6 0.61 0.58 0.59 0.68 0.43 0.55 0.58 0.54 0.56 0.21 1.00 0.60 0.87 0.73 0.80
7 0.35 1.00 0.68 0.29 1.00 0.65 0.32 1.00 0.66 0.29 0.71 0.50 0.74 0.86 0.80
8 0.62 0.57 0.59 0.87 0.34 0.60 0.83 0.38 0.60 0.27 0.76 0.51 0.63 1.00 0.82
9 0.60 0.58 0.59 0.43 0.68 0.56 0.51 0.61 0.56 0.46 0.45 0.45 0.90 0.71 0.80
10 0.55 0.64 0.59 0.43 0.67 0.55 0.48 0.66 0.57 0.38 0.55 0.46 0.90 0.71 0.80
11 0.59 0.60 0.59 0.55 0.54 0.54 0.55 0.57 0.56 0.34 0.61 0.47 0.95 0.67 0.81
12 1.00 0.35 0.68 0.68 0.43 0.56 0.76 0.41 0.59 0.77 0.27 0.52 0.95 0.67 0.81
13 0.64 0.55 0.60 0.49 0.60 0.54 0.59 0.54 0.56 0.39 0.53 0.46 0.90 0.71 0.80
14 0.86 0.41 0.63 0.62 0.47 0.55 0.75 0.42 0.58 0.30 0.69 0.49 0.84 0.75 0.80
15 0.68 0.52 0.60 0.89 0.33 0.61 1.00 0.32 0.66 0.28 0.74 0.51 0.79 0.80 0.80
16 0.79 0.45 0.62 0.42 0.70 0.56 0.59 0.53 0.56 0.30 0.70 0.50 1.00 0.63 0.82
17 0.73 0.48 0.61 0.49 0.60 0.54 0.56 0.57 0.56 0.61 0.33 0.47 0.95 0.67 0.81
18 0.65 0.54 0.60 0.64 0.46 0.55 0.60 0.52 0.56 0.49 0.42 0.45 0.76 0.83 0.80
19 0.52 0.68 0.60 0.35 0.83 0.59 0.44 0.72 0.58 0.24 0.87 0.55 0.68 0.92 0.80
20 0.79 0.45 0.62 0.56 0.53 0.54 0.64 0.49 0.57 1.00 0.21 0.60 0.74 0.86 0.80

First, we obtain the ideal efficiency score of each DMU based on each scenario by applying
models (2), (3) and (5). Then we utilize models (8), (9) and (10) for the efficiency analysis of DMUs.
The related results are given in Table 3. The columns of Table 3 illustrate the ideal efficiency score
according to the values defined under each scenario.

As can be seen, DMUs #3, 5, 8, 9, 11, 13, 14, 16, 17 and 19 gained the efficiency score 1 for all
scenarios in the leader division that is 50% of total branches; in the follower division, DMUs #7 and 20
obtained the efficiency score 1 for all scenarios that is 0.1% of total branches and finally, in the
centralized model none of the DMUs are efficient in all scenarios. Next, we solved models (8), (9) and (10)
to get the efficiency scores for different p-values and probabilities for each scenario that are reported in
Tables 4 to 6. According to these results, models (8), (9) and (10) give infeasible results for some DMUs
when p is small, e.g., p � 0.58 here, thus we do not report the corresponding results here.
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Table 3. Ideal efficiency scores according to three scenarios in Stackelberg and centralized models.

DMUs
Leader Follower Centralized

� �� �� � �� �� � �� ��
1 0.595 0.761 0.846 0.778 0.763 0.774 0.500 0.671 0.762
2 0.521 0.655 0.746 0.700 0.756 0.779 0.375 0.497 0.581
3 1.000 1.000 1.000 0.724 0.814 0.860 0.749 0.831 0.873
4 0.822 0.903 0.938 0.489 0.561 0.624 0.564 0.700 0.767
5 1.000 1.000 1.000 0.554 0.680 0.743 0.562 0.684 0.755
6 0.627 0.726 0.784 0.657 0.775 0.811 0.461 0.600 0.679
7 0.650 0.720 0.767 1.000 1.000 1.000 0.708 0.791 0.836
8 1.000 1.000 1.000 0.426 0.536 0.612 0.426 0.536 0.612
9 1.000 1.000 1.000 0.778 0.789 0.802 0.778 0.792 0.807
10 0.447 0.575 0.655 0.984 0.988 0.992 0.439 0.568 0.649
11 1.000 1.000 1.000 0.644 0.737 0.790 0.644 0.737 0.790
12 0.475 0.618 0.700 0.934 0.965 0.970 0.445 0.603 0.690
13 1.000 1.000 1.000 0.369 0.503 0.590 0.383 0.512 0.597
14 1.000 1.000 1.000 0.625 0.723 0.776 0.757 0.875 0.924
15 0.541 0.615 0.675 0.995 0.987 0.986 0.704 0.767 0.810
16 1.000 1.000 1.000 0.580 0.672 0.731 0.645 0.723 0.772
17 1.000 1.000 1.000 0.631 0.715 0.767 0.750 0.868 0.918
18 0.187 0.307 0.397 1.000 0.999 0.998 0.365 0.508 0.598
19 1.000 1.000 0.987 1.000 0.975 0.872 1.000 0.975 0.951
20 0.464 0.590 0.667 1.000 1.000 1.000 0.538 0.666 0.741

As mentioned before in Section 3.2.2, the proposed models give infeasible results in some
scenarios when small values are considered for p. The p-value is different for each problem and is
determined by the decision-maker. Here, by try and error, we conclude that the p-value must not be
smaller than 0.55. In this study, on the one hand, when p ≤ 0.55 according to the results, our models
gives infeasible results for most of the DMUs. As the p -value increases, the efficiency score is
improved and the number of infeasible DMUs gradually decline and we observe feasible results. On
the other hand, for p � 0.74 the results do not change i.e., the efficiency scores remain fixed. So we
do not continue and stop it for the other p-values. Therefore, here, we only consider p � 0.55 and do
not show the results of p < 0.55.
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Table 4A. The results of solving model (8)/ leader division.

P-value 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64
DMUs
1 0.415 0.406 0.396 0.386 0.376 0.366 0.356 0.346 0.336 0.326
2 0.370 0.361 0.352 0.344 0.335 0.326 0.317 0.308 0.300 0.291
3 0.525 0.512 0.500 0.487 0.475 0.462 0.450 0.437 0.425 0.412
4 0.454 0.452 0.441 0.430 0.419 0.408 0.397 0.386 0.375 0.364
5 0.510 0.498 0.486 0.474 0.461 0.449 0.437 0.425 0.413 0.401
6 0.453 0.442 0.431 0.421 0.410 0.399 0.388 0.377 0.367 0.356
7 0.462 0.434 0.434 0.429 0.418 0.407 0.396 0.385 0.374 0.363
8 0.546 0.533 0.520 0.507 0.494 0.482 0.470 0.459 0.448 0.436
9 0.420 0.410 0.400 0.390 0.380 0.370 0.360 0.350 0.340 0.330
10 0.351 0.342 0.334 0.326 0.317 0.309 0.301 0.292 0.284 0.275
11 0.525 0.513 0.500 0.488 0.475 0.463 0.450 0.438 0.425 0.413
12 0.377 0.368 0.359 0.350 0.341 0.332 0.322 0.313 0.303 0.294
13 0.536 0.523 0.411 0.411 0.411 0.468 0.454 0.441 0.427 0.413
14 0.577 0.564 0.400 0.390 0.380 0.370 0.360 0.350 0.340 0.330
15 0.326 0.318 0.310 0.302 0.295 0.287 0.279 0.271 0.264 0.256
16 INF INF 0.500 0.488 0.475 0.462 0.450 0.438 0.425 0.412
17 0.525 0.512 0.500 0.488 0.475 0.462 0.450 0.437 0.425 0.413
18 INF 0.262 0.256 0.250 0.242 0.236 0.229 0.225 0.217 0.211
19 INF 0.353 0.353 0.376 0.353 0.353 0.349 0.336 0.356 0.356
20 0.350 0.342 0.333 0.320 0.315 0.306 0.296 0.313 0.472 0.472
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Table 4B. The results of solving model (8)/ leader division.

P-value 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74
DMUs
1 0.317 0.307 0.297 0.287 0.277 0.271 0.257 0.257 0.257 0.257
2 0.282 0.273 0.264 0.255 0.247 0.238 0.228 0.228 0.229 0.229
3 0.400 0.387 0.375 0.362 0.350 0.337 0.325 0.325 0.324 0.324
4 0.353 0.342 0.331 0.320 0.309 0.298 0.286 0.286 0.286 0.286
5 0.389 0.376 0.364 0.352 0.340 0.328 0.317 0.316 0.316 0.316
6 0.345 0.334 0.324 0.313 0.302 0.291 0.281 0.281 0.280 0.280
7 0.352 0.341 0.330 0.319 0.308 0.297 0.286 0.286 0.286 0.286
8 0.425 0.414 0.402 0.391 0.380 0.368 0.363 0.359 0.357 0.357
9 0.320 0.310 0.300 0.290 0.280 0.270 0.262 0.261 0.260 0.260
10 0.267 0.259 0.250 0.242 0.234 0.225 0.217 0.217 0.217 0.217
11 0.400 0.388 0.375 0.363 0.350 0.338 0.326 0.326 0.325 0.325
12 0.285 0.275 0.266 0.257 0.247 0.238 0.234 0.228 0.228 0.228
13 0.400 0.386 0.372 0.359 0.345 0.331 0.318 0.318 0.318 0.318
14 0.440 0.426 0.412 0.399 0.306 0.306 0.306 0.306 0.306 0.306
15 0.404 0.391 0.378 0.366 0.353 0.340 0.329 0.328 0.328 0.328
16 0.400 0.388 0.375 0.363 0.350 0.338 0.325 0.325 0.325 0.325
17 0.400 0.388 0.375 0.363 0.417 0.338 0.337 0.328 0.325 0.325
18 0.205 0.199 0.193 0.187 0.180 0.174 0.167 0.167 0.167 0.167
19 0.305 0.294 0.285 0.277 0.268 0.401 0.389 0.389 0.389 0.389
20 0.294 0.287 0.280 0.265 0.267 0.255 0.246 0.244 0.243 0.243

For instance, with increasing the p -value from 0.56 to 0.70, the efficiency score of DMU16
changes. This change also can be seen in other DMUs such as 18 and 19. Models (8), (9) and (10)
maximize the expected efficiency scores of a DMU (here, a bank branch) based on each scenario
while p -robust constraints control the relative difference between its efficiency score generated by
the model and ideal efficiency in each scenario.
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Table 5A. The results of solving model (9)/ follower division.

P-value 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64
DMUs
1 0.229 0.222 0.216 0.209 0.202 0.196 0.190 0.185 0.180 0.174
2 0.232 0.227 0.221 0.216 0.210 0.205 0.199 0.193 0.188 0.182
3 0.227 0.222 0.216 0.211 0.206 0.200 0.195 0.189 0.183 0.178
4 INF INF INF 0.144 0.141 0.137 0.139 0.140 0.136 0.131
5 0.346 0.340 0.333 0.327 0.320 0.314 0.263 0.256 0.248 0.288
6 0.266 0.246 0.256 0.242 0.244 0.222 0.216 0.210 0.204 0.211
7 0.294 0.287 0.280 0.273 0.266 0.296 0.256 0.245 0.238 0.384
8 0.299 0.298 0.291 0.285 0.278 0.271 0.264 0.258 0.251 0.244
9 0.450 0.439 0.428 0.417 0.421 0.417 0.412 0.408 0.411 0.405
10 0.352 0.245 0.352 0.259 0.230 0.289 0.215 0.380 0.344 0.260
11 0.361 0.353 0.345 0.336 0.327 0.319 0.310 0.302 0.293 0.285
12 0.528 0.405 0.521 0.521 0.359 0.359 0.365 0.359 0.359 0.359
13 INF 0.197 0.193 0.188 0.183 0.178 0.173 0.168 0.164 0.159
14 0.387 0.378 0.369 0.427 0.355 0.358 0.350 0.341 0.332 0.312
15 0.454 0.444 0.433 0.513 0.412 0.405 0.393 0.382 0.372 0.361
16 0.303 0.296 0.289 0.282 0.275 0.267 0.260 0.253 0.246 0.277
17 0.405 0.387 0.378 0.377 0.358 0.365 0.339 0.329 0.319 0.310
18 0.466 0.430 0.427 0.542 0.432 0.564 0.380 0.385 0.352 0.346
19 0.471 0.467 0.467 0.499 0.462 0.450 0.438 0.458 0.414 0.401
20 0.270 0.406 0.406 0.399 0.481 0.332 0.332 0.486 0.350 0.358
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Table 5B. The results of solving model (9)/ follower division.

P-value 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74
DMUs
1 0.169 0.169 0.169 0.169 0.169 0.169 0.169 0.169 0.169 0.169
2 0.177 0.213 0.208 0.160 0.185 0.194 0.189 0.189 0.189 0.189
3 0.172 0.166 0.161 0.155 0.150 0.149 0.147 0.143 0.143 0.143
4 0.126 0.121 0.117 0.112 0.108 0.103 0.099 0.099 0.099 0.099
5 0.234 0.226 0.259 0.253 0.204 0.197 0.190 0.190 0.190 0.190
6 0.192 0.186 0.196 0.174 0.168 0.162 0.157 0.157 0.157 0.157
7 0.256 0.256 0.382 0.260 0.257 0.254 0.249 0.249 0.249 0.249
8 0.237 0.231 0.224 0.217 0.210 0.202 0.197 0.195 0.195 0.195
9 0.405 0.382 0.380 0.417 0.329 0.358 0.359 0.358 0.357 0.357
10 0.260 0.421 0.258 0.427 0.260 0.268 0.364 0.363 0.363 0.363
11 0.276 0.267 0.259 0.250 0.241 0.232 0.223 0.224 0.223 0.223
12 0.359 0.359 0.362 0.359 0.359 0.359 0.359 0.359 0.359 0.359
13 0.154 0.153 0.144 0.152 0.152 0.152 0.152 0.152 0.152 0.152
14 0.315 0.293 0.285 0.284 0.276 0.268 0.263 0.260 0.257 0.256
15 0.349 0.341 0.332 0.330 0.322 0.314 0.306 0.306 0.305 0.305
16 0.231 0.260 0.267 0.258 0.249 0.226 0.219 0.219 0.218 0.218
17 0.304 0.307 0.293 0.284 0.275 0.274 0.269 0.264 0.261 0.260
18 0.351 0.379 0.355 0.347 0.355 0.310 0.304 0.305 0.304 0.304
19 0.389 0.377 0.415 0.358 0.377 0.365 0.356 0.356 0.356 0.356
20 0.350 0.350 0.626 0.558 0.553 0.543 0.540 0.537 0.534 0.534

It should be noted that the overall efficiency for stochastic p-robust Stackelberg game models (8)

and (9) can be determined as ��
�∗ � ��

�∗ � ��
��∗. Table 6 shows the product of the efficiency results of

first and second stages (i.e., leader and follower models) for three scenarios.
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Table 6A. The product of the efficiency results of models (8) and (9).

P-value 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64
DMUs
1 0.095 0.090 0.086 0.081 0.076 0.072 0.068 0.064 0.060 0.057
2 0.086 0.082 0.078 0.074 0.070 0.067 0.063 0.059 0.056 0.053
3 0.119 0.114 0.108 0.103 0.098 0.092 0.088 0.083 0.078 0.073
4 INF INF INF 0.062 0.059 0.056 0.055 0.054 0.051 0.048
5 0.176 0.169 0.162 0.155 0.148 0.141 0.115 0.109 0.102 0.115
6 0.120 0.109 0.110 0.102 0.100 0.089 0.084 0.079 0.075 0.075
7 0.136 0.125 0.122 0.117 0.111 0.120 0.101 0.094 0.089 0.139
8 0.163 0.159 0.151 0.144 0.137 0.131 0.124 0.118 0.112 0.106
9 0.189 0.180 0.171 0.163 0.160 0.154 0.148 0.143 0.140 0.134
10 0.124 0.084 0.118 0.084 0.073 0.089 0.065 0.111 0.098 0.072
11 0.190 0.181 0.173 0.164 0.155 0.148 0.140 0.132 0.125 0.118
12 0.199 0.149 0.187 0.182 0.122 0.119 0.118 0.112 0.109 0.106
13 INF 0.103 0.079 0.077 0.075 0.083 0.079 0.074 0.070 0.066
14 0.223 0.213 0.148 0.167 0.135 0.132 0.126 0.119 0.113 0.103
15 0.148 0.141 0.134 0.155 0.122 0.116 0.110 0.104 0.098 0.092
16 INF INF 0.145 0.138 0.131 0.123 0.117 0.111 0.105 0.114
17 0.213 0.198 0.189 0.184 0.170 0.169 0.153 0.144 0.136 0.128
18 INF 0.113 0.109 0.136 0.105 0.133 0.087 0.087 0.076 0.073
19 INF 0.165 0.165 0.188 0.163 0.159 0.153 0.154 0.147 0.143
20 0.095 0.139 0.135 0.128 0.152 0.102 0.098 0.152 0.165 0.169
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Table 6B. The product of the efficiency results of models (8) and (9).

P-value 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74
DMUs
1 0.054 0.052 0.050 0.049 0.047 0.046 0.043 0.043 0.043 0.043
2 0.050 0.058 0.055 0.041 0.046 0.046 0.043 0.043 0.043 0.043
3 0.069 0.064 0.060 0.056 0.053 0.050 0.048 0.046 0.046 0.046
4 0.044 0.041 0.039 0.036 0.033 0.031 0.028 0.028 0.028 0.028
5 0.091 0.085 0.094 0.089 0.069 0.065 0.060 0.060 0.060 0.060
6 0.066 0.062 0.064 0.054 0.051 0.047 0.044 0.044 0.044 0.044
7 0.090 0.087 0.126 0.083 0.079 0.075 0.071 0.071 0.071 0.071
8 0.101 0.096 0.090 0.085 0.080 0.074 0.072 0.070 0.070 0.070
9 0.130 0.118 0.114 0.121 0.092 0.097 0.094 0.093 0.093 0.093
10 0.069 0.109 0.065 0.103 0.061 0.060 0.079 0.079 0.079 0.079
11 0.110 0.104 0.097 0.091 0.084 0.078 0.073 0.073 0.072 0.072
12 0.102 0.099 0.096 0.092 0.089 0.085 0.084 0.082 0.082 0.082
13 0.062 0.059 0.054 0.055 0.052 0.050 0.048 0.048 0.048 0.048
14 0.139 0.125 0.117 0.113 0.084 0.082 0.080 0.080 0.079 0.078
15 0.141 0.133 0.125 0.121 0.114 0.107 0.101 0.100 0.100 0.100
16 0.092 0.101 0.100 0.094 0.087 0.076 0.071 0.071 0.071 0.071
17 0.122 0.119 0.110 0.103 0.115 0.093 0.091 0.087 0.085 0.085
18 0.072 0.075 0.069 0.065 0.064 0.054 0.051 0.051 0.051 0.051
19 0.119 0.111 0.118 0.099 0.101 0.146 0.138 0.138 0.138 0.138
20 0.103 0.100 0.175 0.148 0.161 0.138 0.133 0.131 0.130 0.130

In order to compare models (8), (9) and (10), we consider p � 0.58 and the related results are
reported in Tables 6 and 7. After that, we reported the efficiency scores in Table 8 and also
illustrated in Figure 2.
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Table 7A. The results of solving model (10)/centralized.

P-value 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64
DMUs
1 0.282 0.275 0.269 0.262 0.255 0.248 0.242 0.235 0.228 0.222
2 INF 0.205 0.199 0.194 0.189 0.184 0.179 0.174 0.170 0.165
3 0.383 0.374 0.365 0.355 0.346 0.337 0.327 0.318 0.309 0.300
4 0.308 0.301 0.294 0.286 0.279 0.272 0.264 0.257 0.239 0.242
5 0.307 0.307 0.320 0.304 0.296 0.287 0.278 0.270 0.261 0.252
6 0.253 0.247 0.241 0.235 0.231 0.225 0.218 0.212 0.205 0.199
7 0.376 0.367 0.358 0.349 0.340 0.331 0.322 0.313 0.304 0.295
8 0.225 0.180 0.176 0.172 0.167 0.198 0.161 0.161 0.161 0.177
9 0.260 0.254 0.248 0.242 0.236 0.230 0.223 0.217 0.211 0.205
10 0.239 0.233 0.227 0.222 0.216 0.210 0.205 0.199 0.193 0.188
11 0.309 0.349 0.340 0.332 0.323 0.314 0.306 0.297 0.288 0.280
12 0.253 0.247 0.241 0.235 0.229 0.223 0.217 0.211 0.205 0.199
13 0.215 0.210 0.205 0.200 0.195 0.190 0.184 0.179 0.174 0.169
14 0.285 0.285 0.285 0.301 0.292 0.284 0.284 0.284 0.284 0.284
15 0.322 0.314 0.307 0.299 0.291 0.284 0.276 0.268 0.261 0.253
16 0.373 0.364 0.355 0.346 0.275 0.328 0.320 0.311 0.302 0.293
17 0.439 0.431 0.416 0.407 0.382 0.374 0.366 0.358 0.350 0.342
18 0.213 0.208 0.203 0.198 0.193 0.188 0.183 0.178 0.173 0.168
19 0.312 0.304 0.297 0.290 0.286 0.284 0.281 0.278 0.278 0.278
20 0.324 0.317 0.319 0.270 0.255 0.314 0.290 0.240 0.232 0.225
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Table 7B. The results of solving model (10)/centralized.

P-value 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74
DMUs
1 0.215 0.208 0.201 0.195 0.188 0.181 0.175 0.175 0.175 0.175
2 0.160 0.154 0.149 0.144 0.140 0.135 0.132 0.130 0.130 0.130
3 0.291 0.282 0.273 0.264 0.255 0.246 0.239 0.236 0.236 0.236
4 0.235 0.228 0.220 0.213 0.206 0.198 0.193 0.192 0.191 0.191
5 0.244 0.235 0.227 0.219 0.211 0.204 0.196 0.196 0.196 0.196
6 0.192 0.186 0.180 0.174 0.168 0.162 0.156 0.156 0.156 0.156
7 0.286 0.278 0.269 0.260 0.251 0.242 0.234 0.234 0.233 0.233
8 0.161 0.161 0.197 0.156 0.150 0.148 0.148 0.148 0.148 0.148
9 0.199 0.193 0.238 0.180 0.174 0.214 0.206 0.206 0.206 0.206
10 0.182 0.176 0.170 0.165 0.159 0.153 0.148 0.148 0.148 0.148
11 0.271 0.263 0.254 0.246 0.237 0.229 0.220 0.220 0.220 0.220
12 0.193 0.187 0.181 0.175 0.169 0.163 0.159 0.157 0.157 0.157
13 0.165 0.165 0.166 0.163 0.153 0.148 0.142 0.142 0.142 0.142
14 0.284 0.284 0.283 0.274 0.264 0.254 0.245 0.245 0.245 0.245
15 0.245 0.243 0.230 0.222 0.215 0.207 0.254 0.252 0.252 0.252
16 0.284 0.275 0.269 0.257 0.249 0.195 0.207 0.207 0.207 0.207
17 0.334 0.305 0.286 0.305 0.276 0.272 0.251 0.249 0.249 0.249
18 0.162 0.157 0.152 0.150 0.149 0.142 0.137 0.137 0.137 0.137
19 0.278 0.302 0.293 0.283 0.273 0.263 0.256 0.255 0.254 0.254
20 0.219 0.239 0.207 0.209 0.202 0.186 0.185 0.184 0.184 0.184

As shown in the last two columns of Table 8, the efficiency scores of the stochastic p-robust
centralized model (10) yields better results for the overall efficiency scores than the stochastic
p-robust Stackelberg model. So it can be deduced that selection of the centralized/cooperative
strategy is preferable over the non-centralized/non-cooperative (or, Stackelberg) strategy.
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Table �. The results of the efficiency scores models (8), (9) and (10) with p �0.58.

P � 0.58 ��
� ��

�� ��
� � ��

� ∗ ��
�� ���−�

DMUs Leader Follower leader * follower Centralized
1 0.386 0.209 0.081 0.262
2 0.344 0.216 0.074 0.194
3 0.487 0.211 0.103 0.355
4 0.430 0.144 0.062 0.286
5 0.474 0.327 0.155 0.304
6 0.421 0.242 0.102 0.235
7 0.429 0.273 0.117 0.349
8 0.507 0.285 0.144 0.172
9 0.390 0.417 0.163 0.242
10 0.326 0.259 0.084 0.222
11 0.488 0.336 0.164 0.332
12 0.350 0.521 0.182 0.235
13 0.411 0.188 0.077 0.200
14 0.390 0.427 0.167 0.301
15 0.302 0.513 0.155 0.299
16 0.488 0.282 0.138 0.346
17 0.488 0.377 0.184 0.407
18 0.250 0.542 0.136 0.198
19 0.376 0.499 0.188 0.290
20 0.320 0.399 0.128 0.270

Also, Figure 2 represents efficiency scores of stochastic p-robust centralized model and
Stackelberg model that is model (10) and the product of models (8) and (9) for each DMUs with
p �0.58 in three scenarios.

Figure 2. Comparison of the efficiency of models (8), (9) and (10) with p � 0.58.
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As can be seen, for all DMUs (branches) the stochastic p-robust centralized efficiency scores
are better than the other one. Therefore, the stochastic p -robust centralized model as the preferred
model is selected and to get deep insight from stochastic p-robust NDEA models, we compare model

(10) with deterministic model. To this end, we propound two scales as EV � ��� �
� ������ and

Reg � ��� �
�� Zs∗−����� Zs∗ that the first scale calculates the expected efficiency score of all

DMUs by taking into account the occurrence probabilities of the each abovementioned scenario i.e.,
0.25, 0.5 and 0.25, respectively and the second scale computes the expected relative regret for each
DMU. Ultimately, the calculated efficiency scores by the robust model (10) are compared with these
two scales for three scenarios. The results are reported in Table 9 and illustrated in Figure 2. In this
experiment, we let p �0.58.

Table 9. Results of EV and Reg of model (5) and model (10).

P � 0.58 Expected scores p-robust centralized
DMUs EV Reg EV Reg
1 0.562 0.1880 0.262 0.0809
2 0.353 0.1345 0.194 0.1295
3 0.462 0.3590 0.355 0.3430
4 0.353 0.3298 0.286 0.2968
5 0.667 0.0158 0.304 0.0043
6 0.562 0.1090 0.235 0.0230
7 0.500 0.2815 0.349 0.2505
8 0.400 0.1275 0.172 0.0845
9 0.353 0.4393 0.242 0.1413
10 0.450 0.1060 0.222 0.0950
11 0.462 0.2650 0.332 0.2450
12 0.450 0.1353 0.235 0.1253
13 0.400 0.1010 0.200 0.1010
14 0.353 0.5048 0.301 0.4868
15 0.667 0.2170 0.299 0.0100
16 0.462 0.2538 0.346 0.2268
17 0.545 0.1841 0.407 0.1840
18 0.400 0.0948 0.137 0.0948
19 0.400 0.5753 0.254 0.0893
20 0.562 0.2473 0.184 0.0908

As shown in this Table 9, the efficiency scores of the p -robust centralized model (10) for all
DMUs are smaller than the efficiency score of the expected centralized model (5). On the other hand,
we indicated that the expected relative regret in both models is not equal. Moreover, from Table 9 we
find that, DMU5 and DMU15 have better performance compared with other units in both of them,
whereas DMU17 has better performance compared with other units in the P-robust centralized model.
Further, in expected model (5), some DMUs have earned a similar rank, in other words, there is no
discrimination among some DMUs. For example, according to Table 9, the efficiency scores in
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DMUs #8, 13, 18 and 19 are equal, while this is not the case in model (10). Therefore, the
performance of the model (10) is like a ranking model, and this affirms the superiority of it.
Although, it seems that the efficiency scores in the expected model (5) are greater than model (10)
but it does not provide a more distinguishing efficiency score among some DMUs. As can be seen, in
model (10), none of the DMUs have equal efficiency scores.

Figure 2 shows the expected efficiency scores between the two models based on the EV scale in
each scenario. We should note that, EV scale is only defined for the centralized model (5), and it is
the efficiency scores in the model (10).

Figure 3. Comparison of EV efficiency of expected model (5) and model (10).

As seen from Figure 3. the EV scale values show that the efficiency scores of p -robust
centralized model (10) is less than the other one. Also, the Reg scale values of model (10) is less than
or equal the other one. As mentioned before, the relative regret amount shows the relative difference
between the ideal efficiency obtained from each scenario and efficiency of each model that showed
by Theorem 3.2.2 and Theorem 3.2.3.

5. Sensitivity analysis results

In this section, we perform sensitivity analysis for the expected version of the centralized model
(5) and model (10) to different probabilities. We ran these models considering a set of different
probability vectors. The related results are summarized in Tables 10 and 11, where the first row shows
the value of probabilities as �� � �ᤑ��ᤑ�� and columns 2–9 present the difference between the
expected efficiency values of each model with the expected ideal efficiency score, in the other words,
i.e. the � values. As a matter of fact, this difference, for both abovementioned models, shows the
amount of error with pertinent probabilities in each scenario. It is clear that the smaller the difference
value, the better the result. Since the expected efficiency value of that model is closer to the ideal
expected efficiency value, thus it produces more precise results.
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Table 10. Sensitivity analysis results for expected centralized model (5).

qs (0.3,0.6,0.1) (0.15,0.15,0.7) (0.15,0.7,0.15) (0.1,0.6,0.3) (0.1,0.5,0.4) (0.5,0.4,0.1) (0.25,0.35,0.4) (0.4,0.35,0.25)

DMUs
1 0.2108 0.1920 0.1960 0.2182 0.2273 0.2000 0.2017 0. 1624
2 0.1555 0.1364 0.1383 0.1570 0.1654 0.1402 0.1471 0.1162
3 0.3695 0.3610 0.3630 0.3734 0.3776 0.3650 0.3653 0.3467
4 0.3465 0.3332 0.3367 0.3535 0.3602 0.3401 0.3398 0.3094
5 0.0220 0.0068 0.0094 0.0261 0.0332 0.0119 0.0149 0.0181
6 0.1288 0.1120 0.1150 0.1338 0.1417 0.1180 0.1209 0. 0882
7 0.2928 0.2834 0.2853 0.2962 0.3007 0.2872 0.2883 0.2691
8 0.1465 0.1292 0.1309 0.1478 0.1554 0.1326 0.1389 0.1110
9 0.4430 0.4392 0.4392 0.4421 0.4436 0.4391 0.4415 0.4372
10 0.1263 0.1084 0.1108 0.1294 0.1375 0.1132 0.1182 0.0867
11 0.2783 0.2670 0.2690 0.2816 0.2869 0.2710 0.2730 0.2511
12 0.1570 0.1388 0.1424 0.1633 0.1720 0.1459 0.1483 0.1116
13 0.1223 0.1032 0.1054 0.1246 0.1331 0.1076 0.1138 0.0817
14 0.5170 0.5082 0.5117 0.5249 0.5298 0.5151 0.5121 0.4871
15 0.2278 0.2180 0.2190 0.2286 0.2329 0.2200 0.2235 0.2076
16 0.2660 0.2552 0.2567 0.2679 0.2728 0.2581 0.2611 0.2421
17 0.1965 0.1874 0.1908 0.2042 0.2092 0.1942 0.1915 0.1663
18 0.1173 0.0974 0.1001 0.1207 0.1297 0.1027 0.1083 0.0733
19 0.5693 0.5752 0.5752 0.5703 0.5679 0.5751 0.5717 0.5790
20 0.1095 0.0934 0.0961 0.1137 0.1212 0.0987 0.1020 0.0716

As it can be seen from Tables 10 and 11, our proposed model (10) generates better results
compared to the other one. Comparison of the above-mentioned models with varying probabilities
corroborates that the stochastic p-robust NDEA model (i.e., model (10)) gives better results than the
expected centralized model (5). This supports the advantage of our stochastic p-robust NDEA model
(10) in contrast to other NDEA models.
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Table 11. Sensitivity analysis results for stochastic p-robust centralized model (10).

qs (0.3,0.6,0.1) (0.15,0.15,0.7) (0.15,0.7,0.15) (0.1,0.6,0.3) (0.1,0.5,0.4) (0.5,0.4,0.1) (0.25,0.35,0.4) (0.4,0.35,0.25)

DMUs
1 0.1118 0.0930 0.0970 0.1192 0.1283 0.1010 0.1027 0.0634
2 0.1505 0.1314 0.1333 0.1520 0.1604 0.1352 0.1421 0.1112
3 0.3535 0.3450 0.3470 0.3574 0.3616 0.3490 0.3493 0.3307
4 0.3135 0.3002 0.3037 0.3205 0.3272 0.3071 0.3068 0.2764
5 0.0180 0.0028 0.0054 0.0221 0.0292 0.0079 0.0109 0.0141
6 0.0428 0.0260 0.0290 0.0478 0.0557 0.0320 0.0349 0.0021
7 0.2618 0.2524 0.2543 0.2652 0.2697 0.2562 0.2573 0.2381
8 0.1035 0.0862 0.0879 0.1048 0.1124 0.0896 0.0959 0.0680
9 0.1450 0.1412 0.1412 0.1441 0.1456 0.1411 0.1435 0.1392
10 0.1153 0.0974 0.0998 0.1184 0.1265 0.1022 0.1072 0.0757
11 0.2583 0.2470 0.2490 0.2616 0.2669 0.2510 0.2530 0.2311
12 0.1470 0.1288 0.1324 0.1533 0.1620 0.1359 0.1383 0.1016
13 0.1223 0.1032 0.1054 0.1246 0.1331 0.1076 0.1138 0.0817
14 0.4990 0.4902 0.4937 0.5069 0.5118 0.4971 0.4941 0.4691
15 0.0208 0.0110 0.0120 0.0216 0.0259 0.0130 0.0165 0.0005
16 0.2390 0.2282 0.2297 0.2409 0.2458 0.2311 0.2341 0.2151
17 0.1965 0.1874 0.1908 0.2042 0.2092 0.1942 0.1915 0.1663
18 0.1173 0.0974 0.1001 0.1207 0.1297 0.1027 0.1083 0.0733
19 0.0833 0.0892 0.0892 0.0843 0.0819 0.0891 0.0857 0.0930
20 0.0185 0.0024 0.0051 0.0227 0.0302 0.0077 0.0110 0.0195

6. Concluding remarks

Uncertainty is an inherent part of real performance evaluation problems and protecting versus
the worst-case is impossible, intricate, and time-consuming. To tackle this issues, and in order to
evaluate the efficiency of the two-stage process, a scenario-based robust optimization model
according to the Snyder and Daskin’s approach (2006) is designed to develop the two-stage NDEA
models dealing with uncertainty. This model incorporates the benefits of original stochastic and
robust optimization models, therefore, can dominate the difficulties of models in uncertain
parameters and give more acceptable results compared the other existing models. The main
contributions of this model are as follows. It is less conservative than the other existence worst-case
models and enables decision makers to make a benchmark between the expected efficiency of DMUs
in different scenarios, a benchmark between robustness of the solution and the robustness of the
model. We presented the stochastic p -robust two-stage NDEA model for both cooperative and
non-cooperative forms. Further, in Theorems 3.2.1, 3.2.2 and 3.2.3 in Subsection 3.2 it is proved that
the choice of the cooperative model provides better efficiency in comparison with the
non-cooperative form.

Moreover, the performance of our proposed cooperative model is like a ranking model, and it
provides a more distinguishing efficiency score among DMUs. Also, p-robustness adds a feasibility
theme that is not present in most other robustness measures. Sensitivity analysis on different
probability vectors can derive a spectrum of solutions that may be helpful for managerial tradeoffs.
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Finally, the applicability of the proposed models, are discussed for a case study in the banking
industry showing their advantages over the other models.

The concept of uncontrollable inputs and undesirable outputs has also widespread applications,
thus, including them in the model would be an interesting future research direction. Moreover, the
parameters of the proposed model may be changed during the planning. Therefore, we can expand
the suggested model into the Malmquist model in dynamic condition. Since the return to scale model
is linear, under the uncertainty situations, one can apply the proposed model to analyze the efficiency
of DMUs. The combination of stochastic p -robust approach with other NDEA models such as
additive and slack based NDEA measures with shared resources could also be considered for future
research direction.
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