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Abstract: The purpose of this paper is to focus on the losses of two very big banks, Citigroup (Citi)
and Wells Fargo & Company (Wells Fargo), and two very small banks, First Busey Corporation
(Busey) and Capital City Bank Group (Capital), over the period 1991-2016. The federal government
actually bailed out the two big banks, as measured by total assets, whereas neither of the two small
banks required a bail out. Clearly, if one is able to use a variety of predictor variables to forecast
accurately the losses of banks of various sizes, in different geographical locations, and operating a
variety of business models, this may help identify potential causes of future banking problems and
thereby lessen, if not eliminate, the need for future bailouts. This is important for both the banks and
the bank regulatory authorities. In particular, those banks expected to suffer significant losses on
loans may be in a position to increase their provisioning and thus loan loss allowances. If such banks
are unable to take this type of action or other corrective action to address expected losses, regulatory
action may become necessary in response to this situation. The motivation for our paper is this very
issue: can one obtain accurate forecasts of losses, or the net charge-off rates, of banks? We provide
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an answer to this question by examining the four banks mentioned using several hundred predictor
variables and several different forecast techniques.
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1. Introduction

The US housing boom and bust in the first decade of this century led to the worst financial crisis
and severe recession since the Great Depression. The estimated cost of this dire situation is $6
trillion to $14 trillion, which translates into $50,000 to $120,000 for every household. At the same
time, household net worth plunged $19 trillion. Beyond these monetary costs are the psychological
consequences of the high and extended unemployment associated with the crisis and recession
(Luttrell et al., 2013).

The federal government responded to the downturn in financial and economic activity in the fall
of 2008 by providing extraordinary assistance, including bailouts to hundreds of financial institutions.
The estimated direct government support for the financial sector totaled approximately $12.6 trillion
(Luttrell et al., 2013). These and other efforts by both the government and private sector prevented
a complete collapse and contributed to the subsequent growth in the economy and the
improvement in the health of financial institutions.

In an attempt to prevent similar episodes from occurring in the future, the government enacted
the Dodd-Frank Wall Street Reform Act (Dodd-Frank Act) in July 2010. The new law, which is the
most comprehensive financial reform since the 1930s, aims to promote a safer and sounder financial
system. If successful, the Dodd-Frank Act—through the implementation of stricter regulations and
supervisory practices—will help prevent another system-wide banking crisis. Of course, banks will
always incur some losses insofar as such institutions are by their very nature engaged in risky
activities. However, the goal of banks and their regulators is to allow for losses that will inevitably
occur but not so large and/or widespread that the entire banking sector finds itself so deeply in
trouble that government bailouts are deemed necessary.

The purpose of this paper is to focus on the losses of two very big banks, Citigroup (Citi) and
Wells Fargo & Company (Wells Fargo), and two very small banks, First Busey Corporation (Busey)
and Capital City Bank Group (Capital), over the period 1991-2016. The federal government actually
bailed out the two big banks, as measured by total assets, whereas neither of the two small banks
required a bail out. Clearly, if one is able to use a variety of predictor variables to accurately forecast
the losses of banks which have various sizes and operate in different geographical location with a
variety of business models, this may help identify potential causes of future banking problems and
thereby lessen, if not eliminate, the need for future bailouts. This is important for both the banks and
the bank regulatory authorities. In particular, those banks expected to suffer significant losses on
loans may be in a position to increase their provisioning and thus loan loss allowances. If such banks
are unable to take this type of action or other corrective action to address expected losses, regulatory
action may become necessary in response to this situation. The motivation for our paper is this very
issue: Can one obtain accurate forecasts of losses, or the net charge-off rates, of banks? We provide
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an answer to this question by examining the four banks mentioned using several hundred predictor
variables and several different forecast techniques.

The remainder of the paper proceeds as follows. In the next section, we discuss the
importance of recent regulatory and other developments in the banking sector that underscore the
need for banks to devote more effort to obtaining accurate forecasts of net charge-off rates, among
other on- and off-balance sheet items as well as income statement items. In Section 3, we describe
and discuss several important regression models that are used for forecasting purposes, including
some models that allow for situations in which the number of predictor variables exceeds the number
of observations. Section 4 follows with a presentation and discussion of our empirical findings
regarding forecast accuracy based on the different regression models. As discussed in more detail
later, we find that the ridge regression model and elastic net model outperform the other models over
forecast horizons of four or more quarters. The other models examined, however, outperform a
benchmark random walk model over various forecast horizons. This section also identifies the best
model as well as the explanation for its choice. The last section contains the conclusions.

2. Pressure for improved bank forecast accuracy grows

A variety of factors in recent years have led to an increase in the pressure on a bank to improve
the accuracy of its forecasts for the key variables that ultimately determine whether it will remain
profitable or be forced to merge with a healthier bank, if not seized by a bank regulatory agency.
Clearly, the more accurate the forecasts the better positioned will be a bank to compete in an
increasingly competitive financial marketplace. Banks not only compete with one another but also
compete in various ways with financial firms. For example, they compete with firms in the so-called
shadow banking sector, where shadow banks are similar to traditional banks, but are not subject to
traditional bank regulations and do not have traditional depositors whose funds are covered by
insurance, they are in the “shadow” (Adrian and Ashcraft, 2016). Banks also compete with the more
recently established and growing FinTech companies, which also are involved in the financial sector
by facilitating payments and loans. Banks are facing increasing competition from FinTech start-ups
such as Stripe and Square as well as established IT companies such as PayPal, Facebook, Apple,
Google, and Amazon that are offering some traditional banking services (Jaksi¢ and Marin¢, 2017).
For example, Stripe utilizes its business software to help companies take and track digital payments,
and has been valued at $9.2 billion (Fitzpatrick et al., 2017). Numerous other startups such as SoFi
and GreenSky are also altering the financial services industry by providing personal loans through new
technology platforms. Moreover, Facebook, as an established IT company, supports money transfers,
and Apple, Samsung, and Google provide for mobile payments in the form of Apple Pay, Samsung
Pay, and Google Wallet.

Competition necessarily provides the incentive for banks to operate more efficiently and to
undertake actions that enable them to remain profitable on an ongoing basis. This requires a
balancing of risk and return over time. Too much risk can lead to excessive losses, but too little risk
can lead to inadequate profitability. It is for this reason that forecasting losses or net charge-offs is
important. Since there will always be loans that must be charged off, obtaining accurate forecasts is
not only to assess the magnitude of expected future losses, but also identify some of the key factors
that contribute to those losses.
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As already noted, the Dodd-Frank Act increased the restrictions imposed on various activities
and operations of banks. The Act also mandated an annual assessment by the Federal Reserve of
banks with $50 billion or more in total assets in terms of their ability to absorb losses. In particular,
the Comprehensive Capital Analysis and Review (CCAR) and Dodd-Frank Act Stress Testing
(DFAST) programs were established to determine whether such big banks have effective capital
adequacy processes and sufficient capital to absorb losses under stressful conditions. CCAR and
DFAST are complementary exercises. In the case of CCAR, the Federal Reserve evaluates
institutions’ capital adequacy, their internal capital adequacy assessment processes, and their
individual plans to make capital distributions, such as dividend payments or stock repurchases. As
regards, DFAST is a forward-looking quantitative evaluation of the effect of stressful economic and
financial market conditions on a bank’s capital (Barth and Miller, 2017).

In 2012, the Federal Reserve finalized the rules that implement the stress test requirements
under the Dodd-Frank Act. Banks with $10 billion or less are exempt from CCAR and DFAST.
However, all banks with $10 billion or more in total assets are required to conduct an annual
firm-run stress test. Banks with assets greater than $50 billion, moreover, must conduct semiannual
firm-run stress tests and are subject to stress tests conducted by the Federal Reserve (i.e., CCAR and
DFAST). The estimated losses resulting from these tests are subtracted from a bank’s capital to
determine the financial buffer that a bank has to insulate itself from losses. A bank effectively fails
the tests if its capital falls below a required minimum level after the theoretical losses (Barth and
Miller, 2017).

The goal of stress tests conducted under the Dodd-Frank Act is to provide forward-looking
information to banks supervisory authorities to assist in their overall assessments of a bank’s capital
adequacy and to aid in identifying downside risks and the potential impact of adverse outcomes on
the bank. Furthermore, these stress tests support ongoing improvement in a bank’s internal
assessments of capital adequacy and overall capital planning.

It is clear that CCAR and DFAST put additional pressure on large financial institutions subject
to such stress tests to obtain forward-looking information on potential losses or net charge-off rate to
determine whether there will be sufficient capital to meet the minimum requirements. Since it is
costly for banks to hold excess capital, accurate predictions of net charge-offs of loan portfolios
enable banks to assess whether they will satisfy, for instance, the minimum required tier 1 common
regulatory capital ratio (Covas et al., 2014). More generally, even those banks not subject to CCAR
and DFAST would want to obtain accurate forward-looking information to help ensure their
profitability and even ongoing survivability in the financial marketplace.

In the next section, the different models that are used to forecast the net charge-off rates over
three-year horizons for our four banks mentioned are discussed.

3. Forecasting models
3.1. Factor model
Assume information is available for a large number of predictor variables as follows,

x = [x1,%g, ., Xy], Where x; = [x;4, X2, ;7] » i=1,2,..,N, and t =1,2,..,T . Assume
further that y is the corresponding vector for the target variable and that:
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Yt+h = “'ft + Byt + Et4n (1)

In this equation, h = 0 indicates the forecast horizon for the target variable using the predictor
variables. We estimate a vector of the latent common factors, f;, and the associated loading
coefficients, 4;, via the principal component method. In particular, as suggested by Bai and Ng (2004),
since €; may be an integrated process, first-differences of the predictors are used. Assuming
that Ax;, contains information about Af;, this relationship can be expressed as:

Axy = AéAft + et (2)

This is the factor representation of the data, where Af; = [Af;1, Afia, ..., Afer] is a R X 1 vector
of the common factors, A; = [Ai,p Ai2s s /1”], is the corresponding vector of factor loadings, and e;;
is an idiosyncratic error term. We treat f; as the common shocks that cause co-movements in the
predictors. Using a principal component estimator, y; ., is regressed on f; to yield estimates of '
and f in Equation 1. The factor model assumes the target variable follows a random walk when
B = 1. In this particular case, we refer to the model as a factor-model random walk, in contrast to
simply a factor model.

3.2. Partial least squares

Similar to the factor model, the linear partial least square (PLS) regression approach is used to
extract factors from the vector of predictor variables, or x matrix, that are used in predicting y;,
Referring to Equation 1, let Af;q, Afio, ..., Afir, with R < N, represent a linear combination of the
original predictor variables. That is:

Afer = Iiv=1 Wi Xy (3)

Where t =1,2,...,T and Af;- (r=1,...,R). The estimated latent common factors are
referred to as x-scores' and constants. They are estimated as linear combinations of the original
predictors X;;, with weights wy,.. The x-scores have the following two properties:

e The matrix x can be expressed as x = AFP’ + E, where AF is a matrix whose columns are x-scores,
P is a matrix whose columns are called x-loadings, and E is a matrix of idiosyncratic error
terms. In other words, x-scores are multiplied by the loadings p,.;, which provides sufficient
summaries of x, so that the residuals of X, e;;, are minimized in the following equation:

X = 25 Afer Dri + € “4)

® y..n is modeled as a linear regression on the x-scores”. Then the x-scores are used as
predictors of y;,, based on the following equation:

Vet = 2n CrAfer + Bye + ft+j &)

Where h=1,2,...H, c¢,’s are y-weights, and the y-residuals, {;, represent the deviations
between the observed values and estimated model values. It is important to note that nonlinear

' The x-scores are orthogonal predictors of both y and x.
* In many cases, the goal is to model x and y with a small number of factors, so that the matrix x is never
fully decomposed.
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iterative partial least squares (NIPALS) does not estimate all the principal components at once. Since
the y-residuals may contain information that is not captured from previous components, Af,_;Py_1,
we use the residuals to calculate Af;, and p, (see the appendix for more detail regarding the
algorithm used in the estimation). The factor model assumes a random walk process for the target
variable, y;, when § = 1. In this particular case, we refer to model as a PLS random walk model.
This model may also be estimated with and without a lagged target variable. When y; is included as
a common factor in the estimation, we refer to this model as a Pure PLS model, whereas when it is
included as a separate explanatory variable we refer to the model as a PLS model.

Based on the above equations, we can now express our regression model as the following
multiple-variable regression model:

Ve+h = Z$=1 Cr Zliv=1 WerXe; + By + ‘ft+j (6)

If the constants wy,.'s are chosen judiciously, then partial least squares regression approaches
can often outperform a two-stage factor model approach, as discussed in the previous section, as well
as a least squares regression approach (Geladi and Kowalski, 1986 and Barth et al., 2018).

3.3. Ridge regression, LASSO regression, and elastic net

Ridge regression. A basic linear regression model can be used to predict a target variable over h
horizons, y, with a large number of predictors, x, as follows:

Yern =1+ xB+ & (7)

Where [ is the vector of the regression coefficients of the predictors and ¢; is a random error
term. However, a ridge regression model is ideal when there are many predictors and all have
non-zero coefficients. Moreover, such a model performs well with many predictors and a relatively
high degree of multicollinearity among them. Furthermore, a ridge regression model does not force any
of the coefficients to equal zero, thereby avoiding including only the most relevant subset of predictors.

The estimation of a ridge regression model relies on the following penalized least squares approach:

BAridge = argmbin“y - xﬁllz + A“BHZ )
Where ||y — xB||? = ¥, (y; — x;8)% is a quadratic loss function, x; is the i-th row of x,
1Bl = ’;zl(ﬁj )2 is the quadratic penalty imposed on 8, and A = 0 is the penalty parameter which

determines the degree of the linear shrinkage in the coefficients. The higher the value of A, the
greater is the amount of shrinkage. The regularization parameter lambda is chosen based on the data
in order to minimize the residual sum of squares. In this setting, if lambda is set to 0, one simply
obtains the least squares solution.

LASSO regression. As with ridge regression, the LASSO (Least Absolute Shrinkage Selection
Operator) shrinks some coefficient estimates towards zero, while setting others exactly to zero
(Tibshirani, 1996). The LASSO attempts to balance the benefit of dimension reduction against the
cost of including all predictors. For some values of A, the norm penalty function of the LASSO has
the effect of forcing some of the coefficient estimates to be set exactly to zero. Therefore, models
estimated by LASSO include only a subset of predictors and thereby naturally performs feature
selection, or variable selection (Zou and Hastie, 2010). It is clear that the lasso has an edge over
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ridge regression, in that it yields simpler and more interpretable models than those estimated by ridge
regression. Unlike the LASSO, ridge regression does not perform feature selection. In other words,
ridge regression will include all predictors in the final model and will not set any of predictors
exactly to zero. Such a characteristic may not be a problem for prediction accuracy but can make it
difficult to interpret models in settings in which the number of predictors is large. However, the
LASSO regression approach is not robust to a high degree of correlation among a large number of
predictors. The result is that some predictors are included, while others may be arbitrarily omitted.

A basic linear regression model can be used to predict a target variable with a large number of
predictors, x, as follows:

Veeh = L+ xB + & )

Where £ is the vector of the regression coefficients of the predictors. Similar to the ridge
regression approach a LASSO regression model also relies on a penalized least squares approach. In
particular, the estimation of a LASSO regression relies on the following penalized least squares equation:

Brasso = argmﬁinlly —xBII* + B (10)

Where ||B]| = 5.’=1| ﬁj| is the norm penalty function on £, which induces sparsity in the
optimization procedure, and A > 0 is a penalty parameter. The penalty term in the LASSO regulates
the degree of the linear shrinkage in the least squares fit and sets some components of Bpasso to zero
for some arbitrarily chosen value of A. The particular value is chosen based on a data-driven method,

such as cross-validation.

Elastic net. As with ridge and LASSO, the elastic net simultaneously does automatic variable
selection and continuous shrinkage, and it can select groups of correlated variables (Zou and Hastie,
2010). Ridge and LASSO work on the same principle. Both methods penalize the beta coefficients
so that one can identify the important variables. Ridge and LASSO shrink the beta coefficient
towards zero for meaningless variables. As noted in the previous sections, these methods are
commonly used when one has more predictors than observations. The only difference between these
two techniques is whether alpha is set equal to one or zero. Based on the generalized formula in Eq
11, the importance of alpha becomes clear. When alpha is equal to one, Lasso is the result, whereas
when it is equal to zero, ridge is the result. For values of alpha between zero and one, elastic net is
the result.

. 1
ming, g~ X5 wil (v, Bo + BTx) + L1 — IBIZ/2 + allBll], (11)
Where A is the penalty parameter. Thus, when a = 0, it will become Ridge and when a = 1, it
will become LASSO. The elastic net witha = 1 — ¢ for some small € > 0 performs much like the
LASSO. More generally, the elastic net compromises between ridge and LASSO.

3.4. Random walk model as a benchmark

We use the random walk model as a benchmark by which to assess the forecast accuracy of the
models discussed in the previous sections. According to this model, the best forecast of the next
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quarter charge-off rate is this quarter’s observed charge-off rate. The random walk model can be

expressed as follows:
Ye+rnh = Ve t & (12)

A random walk is a common benchmark model used to compare the forecast accuracy of
competing forecast models (Hyndman and Koehler, 2006).

4. Empirical findings

This section presents and discusses our empirical findings regarding forecasting the net charge-off
rates for four banks (Citi, Wells Fargo, Busey, and Capital) using the techniques described in the
previous sections. Figure 1 shows the charge-off rates for each of these banks. As may be seen, there
is substantial variation in the rates over the nearly 30-year period. All four banks tend to experience
relatively high charge-off rates for several quarters following the banking crisis of 2007-2008 and
the severe recession from late 2007 to the summer of 2009. With a few quarterly exceptions, Citi
tended to have the highest rates over the entire period.

0.037

Busey (IL)

0.032

0.027

0.022

0.017

Capital (FL)

Net Charge-Off Rates

0.012

Wells Fargo

0.007
Citi

0.002

Citi Wells Fargo Busey (IL) Capital (FL)

Figure 1. Net charge-off rates for selected banks.

We begin with a description of the predictor variables used in our analysis to forecast the net
charge-off rates for the four banks. This is followed by a discussion of the basis for choosing the best
forecasting model that is obtained when using nine different empirical techniques. This section also
compares and contrasts the forecasting performance of the different techniques, which enables us to
identify the best forecasting model. The last section presents the out-of-sample forecasts for the
selected banks as well as discusses the relative importance of the various predictor variables used in
obtaining the forecasts.
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The important advantage of the techniques employed is that they allow for more predictors than
observations through a dimension reduction approach. Although we are interested in prediction
accuracy, we are choosing predictor variables based upon their importance to understanding
banking-sector performance. This enables us to not only interpret the relationship of the predictors to
the target variable, but also to discuss the importance of the relationship for specific predictor variables.

Of course, there are other studies in which various forecast techniques are used to gauge the
way in which selected factors are expected to influence future bank performance. Some of these
studies include the following: (1) Covas et al. (2014) estimate capital shortfalls of banks during
periods of financial stress using a fixed effects quantile autoregressive model with exogenous
macroeconomic covariates; (2) Bernoth and Pick (2011) use unobserved common factors in addition
to macroeconomic variables to forecast the fragility of banks and insurance companies based on the
CCE estimator of Pesaran (2006); (3) Drehmann and Juselius (2014) assess the performance of
different early warning indicators in terms of the accuracy of their forecast regarding the likelihood
that a banking crisis will occur, given a set of covariates, from the sector of macroprudential policy;
(4) Guerrieri and Welch (2012) examine the forecast accuracy of combination models (i.e., an
equal-weighted average of simple models) as compared to a random walk model for three classes of
bank variables, credit measures, revenue measures, and capital measures; (5) Hirtle et al. (2016)
examine the impact of macroeconomic conditions on banks using a “top-down” model of the
banking industry that generates projections of bank income and capital based on regression models
of components of bank income, expense and loan performance, combined with assumptions about
provisioning, dividends, asset growth and other factors; (6) Crook and Banasik (2012) model
aggregate consumer default rates over a twenty year period using a cointegration technique and
compare the forecasting performance of this econometric technique with ARIMA models; (7)
Bastos (2010) evaluates the performance of a fractional response regressions and a nonparametric
and nonlinear regression tree model in forecasting recovery rates of bank loans; and (8) Kupiec (2018)
uses the 2008 financial crisis to assess the forecast accuracy of competing stress test models for an
average or representative bank from March 1993 through June 2008.

As just discussed, there are these and other studies that focus on forecasting various measures
of bank performance as well as examining the forecast accuracy of different forecasting models.
Our contribution to this literature is to examine the forecasting performance using nine different
models based on two big banks and two small banks. To our knowledge, no study has conducted
such an examination.

4.1. Data description

As Tablel shows, there are 364 predictors employed in our analysis. They are grouped into
bank, national, and state categories. The reason for choosing these three categories is that we have
selected four banks that differ substantially in asset size. In the case of the two biggest banks, Citi
and Wells Fargo, that operate across many geographical areas we expect that the national variables
might be more important for improving forecast accuracy than the state variables. Conversely, for the
two smaller banks, Busey and Capital, that mainly operate in single states we expect that the state
variables might be more important.
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The empirical analysis is based on quarterly data for the period 1991 to 2016 obtained from
FRY-9C reports.” We used R to estimate all models presented in our paper. We also did the coding
of the models, except for ridge, LASSO, and elastic net. Specifically, we used the glmnet package
available in R to estimate the ridge, LASSO, and elastic net models. A detailed description of each of
the predictor variables is provided in Appendix A.

Table 1. Categories of bank, national, and state predictor variables.

Group Variable

D D Categories

#1 1-27 Bank variables

#2 28-40 National variables—Employment

#3 41-48 National variables—Housing

#4 49-55 National variables—Industrial

#5 56-81 National variables—GDP and personal income

46 8-112 National variables—Consumer prices indices, interest rates, and financial
markets

#7 113-162 State variables—Unemployment rate

#8 163-313 State variables—Housing

#9 314-364 State variables—Personal income

4.2. Choosing the best forecasting model

The basis for choosing the best forecasting model over the 12-quarter horizons employed here is
to compare the nine techniques to two benchmark models (BM), the autoregressive (AR) model and
the random walk (RW) model. In particular, we calculate the ratio of the root mean squared
prediction errors (RMSE) for both the AR and RW models divided by the RMSE for each model
(CM) using the nine techniques discussed earlier in Section 3. The actual equation is as follows:

1 T ( BM )2
\/T—TO—]ZH'TO‘*‘J' Et+j|t

2
T (M)
\/T_To_lzt+T0+] Et+j|t

RRMSPE (j) = (13)

* The FRY-9C reports provide basic financial information for banks. The reports are prepared by
the Federal Reserve based on information required of banks and then made publicly available on a
quarterly basis. The FRY-9C is a primary analytical tool used by the Federal Reserve to monitor
financial institutions between on-site inspections. For more detail on these reports, see
https://www.federalreserve.gov/apps/reportforms/reportdetail.aspx?sOoY J+5BzDal8cbqnRxZR g==.
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Where sth’]’-“ = Yegj — ﬁﬁﬁ”, eﬂ/j-u = Y+ — ?]ﬁf’, BM = AR or RW, CM = Factor model,
Factor RW, Pure PLS, PLS, PLS RW without lagged target variable, PLS RW with lagged target
variable, Ridge, LASSO, or Elastic Net with « = 0.3, 0.5, and 0.7.

Table 2. Net charge-off rates for selected banks: Comparison of AR/RW to ridge and elastic net (a = 0.5).

Citi Bank  RRMSPE Wells Fargo RRMSPE
) RW(/Elastic Net . RWr/Elastic Net
h AR/RW RW/Ridge h AR/RW RW/Ridge
(a=0.5) (a=0.5)
1 1.672 0.435 0.596 1 3.395 0.409 0418
2 1.445 0.689 0.912 2 2.435 0.625 0.671
3 1.290 0.944 1.215 3 2.062 0.819 0.780
4 1.174 1.296 1.496 4 1.721 1.047 1.015
5 1.208 1.563 1.832 5 1.662 1.120 1.194
6 1.219 1.879 1.950 6 1.600 1.202 1.286
7 1.248 1.857 1.942 7 1.500 1.568 1.661
8 1.269 1.926 1.948 8 1.354 1.837 1.896
9 1.335 1.943 1.831 9 1.429 1.675 1.610
10 1.403 1.903 1.828 10 1.420 1.594 1.522
11 1.455 1.968 1.990 11 1.389 1.721 1.725
12 1.486 1.860 1.878 12 1.360 1.784 1.929
First Busey Capital City
RRMSPE RRMSPE
(IL) (FL)
. RW/Elastic Net . RW/Elastic Net
h AR/RW RW/Ridge h AR/RW RW/Ridge
(a=0.5) (a=0.5)
1 1.714 0.846 0.557 1 1.221 0.652 0.754
2 1.620 1.243 1.035 2 1.273 0.828 0.921
3 1.536 1.356 1.094 3 1.204 0.981 0.977
4 1.290 1.303 1.143 4 1.148 1.062 1.210
5 1.230 1.387 1.293 5 1.140 1.269 1.347
6 1.044 1.477 1.227 6 1.128 1.347 1.384
7 1.071 1.388 1.254 7 1.116 1.449 1.480
8 0.912 1.423 1.200 8 1.012 1.447 1.336
9 0.802 1.422 1.356 9 1.079 1.397 1.392
10 0.793 1.422 1.302 10 1.113 1.497 1.522
11 0.789 1.465 1.295 11 1.169 1.409 1.370
12 0.782 1.575 1.648 12 1.180 1.520 1.457

Note: RRMSPE refers to the ratio of the root mean squared prediction error. We calculate RRMSPE based on the
mean squared prediction error (RMSPFE) from the RW model (benchmark model) divided by the RMSPE from the
ridge regression model and elastic net model (competing models), respectively. Note that the ridge regression
model or the elastic net model outperform the benchmark model when RRMSPE is greater than 1. We implement a
fixed-sized rolling window method and use the first 50% observations as a training set to evaluate out-of-sample

forecasting performance.

* Alternatively, one can, through numerous iterations, allow alpha to be determined as that value which produces the best
forecast. Here, we simply wish to choose values that are close to the ridge model, the LASSO model, and the midpoint

between the two models.
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Using this equation, we are able to determine which of the two benchmark models, AR or RW,
provides the best forecast of the net charge-off rate for each of the four selected banks. Table 2
indicates that for each of the banks the RW model outperforms the AR model, since the ratio of AR
to RW is greater than one for all 12 quarters of the forecast horizon. This means that the RMSE for
the RW model is lower than the RMSE for the AR model. The table also indicates that the ridge and
elastic net models outperform the RW model in terms of forecast accuracy after two or four quarters,
depending upon the bank. More specifically, the elastic net regression, in general, is the best for Citi,
Wells Fargo, and Capital in the fourth quarter and thereafter. Interestingly enough in the case of
Busey, the ridge estimator produces the best forecast accuracy of the net charge-off rate as compared
to the RW model in the second quarter and thereafter. The RW model provides the best forecast for
the shorter horizons in the case of all four banks.

Figure 2 shows the forecast accuracy for each of the four banks based on the ridge and the
elastic net (o = 0.5) regression models as compared to the random walk model. As may be seen, no
one bank dominates over all 12 forecast horizons. When the elastic net is used, the forecast accuracy
is greatest for Wells Fargo after four quarters, followed by Citi. Yet, when the ridge regression is
implemented, the forecast accuracy is greatest for Citi after four quarters, while Wells Fargo is
second after seven quarters. The two quite small banks rank about equally after seven quarters.

RW/Elastic Net (Wells Fargo) —e— RW/RIDGE (Citi)
RW/Elastic Net (Citi)
RW/RIDGE (Citi)
RW/RIDGE. (Wells Fargo)

RW/RIDGE (Wells Fargo)
o RW/Elastic Net (Busey (IL)) w re)

o RW/RIDGE (Busey (IL))
. el ¥ RW/RIDGE (Capital (FL))
i e . o 4 ..~® RW/Elastic Net (Capital (FL)) RW/RIDGE (Busey (IL))

RW/RIDGE (Capital (FL))

RRMSPE

1.000 RW/Elastic Net (Citi)

RW/Elastic Net (Wells Fargo)

--@-- RW/Elastic Net (Busey (IL))

--@-- RW/Elastic Net (Capital (FL))

1 2 3 4 H 6 7 8 ° 10 1 12
Forecasting Horizon

Figure 2. Net charge-off rates for selected banks: Forecast comparisons for best model
(elastic net when a = 0.5).

We now discuss in more detail in the next section how the ridge and the elastic net regressions

compare in terms of forecast accuracy to the other seven regression techniques used in our analysis.
The comparison is based on the out-of-sample forecasting accuracy for each of the four banks.
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4.3. Out-of-sample forecasting

In the case of Citi and the other banks, the RRMSPE is calculated for each of the nine models.
As Table 3 shows, the best models in terms forecasting accuracy for Citi are the ridge and the elastic
net models, but only after three quarters. Except for nine and ten quarters, the elastic net model
outperforms the ridge regression. However, it is important to note that every other model provides
more accurate forecasts over some horizons than the RW benchmark model. The ranking of the other
models in terms RRMSPE is as follows: The Factor model with one factor performs best over
horizons of four to seven quarters; the LASSO model performs best over horizons of eight to eleven
quarters; and the Pure PLS model with one factor performs best over a horizon of twelve quarters.

Turning to Wells Fargo, the best models are the ridge and the elastic net models, but only after
two quarters. As in the case of Citi, the elastic net outperforms the ridge regression over most
forecast horizons, except for four and ten quarters. However, as in the case of Citi, every other model
provides more accurate forecast over some horizons than the RW benchmark model. The ranking of
the other models in terms RRMSPE is as follows: The Factor model with one factor performs best
over horizons of four to seven quarters; the LASSO model performs best over horizons of eight to
eleven quarters; and the Pure PLS with one factor performs best over a horizon of twelve quarter.

As shown in Table 5 for Busey, the best models are the ridge and the elastic net models, but in
this case it does so after the very first quarter. Unlike the previous two big banks, the ridge regression
outperforms the elastic net model over most forecast horizons, except for nine and twelve quarters.
However, as is the case for the two biggest banks, every other model provides more accurate forecast
over some horizons than the RW benchmark model. In particular, the ranking of the other models is
as follows: The Pure PLS model with one factor performs best over a horizon of three quarters and
the LASSO model performs best after the first quarter, as is the case of the ridge model.

As shown in Table 6 for Capital, the RRMSPE is calculated for each of the nine models. The
best model for Capital, as shown in Table 6, is the PLS RW model with lagged dependent variable in
the second quarter when one and three factors are extracted. The ridge and the elastic net models are
the best models only after two quarters. In general, the elastic net regression outperforms the ridge
regression over shorter forecast horizons. Once again, every other model provides more accurate
forecast over some horizons than the RW benchmark model. The ranking of the other models is as
follows: (1) the Factor RW model with one factor performs best over horizons of three and five
quarters; (2) PLS RW with lagged target variable and one factor performs best over a horizon of four
quarter; (3) the LASSO model performs best over horizons of six, seven, ten, eleven, and twelve
quarters; (4) the Pure PLS model with one factor performs best over a horizon of eight quarters; and
(5) the Factor model with one factor performs best over a horizon of nine quarters.
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Table 3. Citi—best forecasting model based on RW benchmark.

PLS RW PLS RW . . .
Factor Factor . Elastic Net  Elastic Net Elastic Net
Pure PLS PLS w/o Lagged  w/Lagged  Ridge Lasso Best
Model RW (a=0.3) (a=0.5) (a=0.7)
DV DV

No. of Forecasting

Factors Horizon RRMSPE

j h

1 1 0.301 0.323 0.873 0.977 0.971 0.959 0.435 0.294 0.559 0.596 0.555 RW
2 0.442 0.477 0.931 0.974 0.956 0.941 0.689 0.434 0.867 0.912 0.925 RW
3 0.597 0.605 0.993 0.977 0.969 0.993 0.944  0.580 1.220 1.215 1.262 EN (0.7)
4 0.738 0.765 1.024 0.970 0.964 0.995 1.296  0.723 1.385 1.496 1.469 EN (0.5)
5 0.888 0.891 1.070 0.966 0.964 0.982 1.563 0.860 1.895 1.832 1.939 EN (0.7)
6 0.991 0.989 1.102 0.958 0.958 0.908 1.879  0.986 1.944 1.950 1.932 EN (0.5)
7 1.071 1.060 1.143 0.964 0.963 0.887 1.857 1.105 1.995 1.942 1.804 EN (0.3)
8 1.146 1.125 1.160 0.974 0.969 0.971 1.926 1.202 1.924 1.948 1.880 EN (0.5)
9 1.237 1.205 1.243 0.981 0.980 0.979 1.943 1.286 1.846 1.831 1.839 RIDGE
10 1.316 1.286 1.304 0.999 1.001 0.994 1.903 1.357 1.863 1.828 1.805 RIDGE
11 1.374 1.303 1.341 1.007 1.014 1.005 1.968 1.398 1.973 1.990 2.030 EN (0.7)
12 1.393 1.335 1.352 1.032 1.046 1.055 1.860 1.388 1.878 1.878 1.827 EN (0.3)

2 1 0.287 0.322 0.841 0.940 0.944 0.876 0.435 0.294 0.559 0.596 0.555 RW
2 0.423 0.471 0.863 0.905 0.946 0.883 0.689 0.434 0.867 0.912 0.925 RW
3 0.552 0.591 0.914 0.889 0.904 0.857 0.944  0.580 1.220 1.215 1.262 EN (0.7)
4 0.661 0.759  0.958 0.903 0.933 0.878 1.296  0.723 1.385 1.496 1.469 EN (0.5)
5 0.790 0.889 1.019 0.917 0.941 0.845 1.563 0.860 1.895 1.832 1.939 EN (0.7)
6 0.879 0.992 1.056 0.924 0.944 0.808 1.879  0.986 1.944 1.950 1.932 EN (0.5)
7 0.959 1.062 1.093 0.927 0.935 0.777 1.857 1.105 1.995 1.942 1.804 EN (0.3)
8 1.043 1.121 1.133 0.943 0.955 0.831 1.926 1.202 1.924 1.948 1.880 EN (0.5)
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Pure Factor Factor PLS RW PLS RW . Elastic Elastic Net  Elastic Net
PLS PLS Model RW w/o Lagged w/Lagged Ridge Lasso Net(a= (€=05) (= 0.7) Best
DV DV 0.3)
9 1.104 1.191  1.203 0.956 0.949 0.858 1.943  1.286 1.846 1.831 1.839 RIDGE
10 1.162 1.262  1.263 0.982 0.961 0.904 1.903  1.357 1.863 1.828 1.805 RIDGE
11 1.170 1.258  1.300 1.001 0.955 0.923 1.968  1.398 1.973 1.990 2.030 EN (0.7)
12 1.247 1.244  1.321 1.056 0.994 1.005 1.860  1.388 1.878 1.878 1.827 EN (0.3)
3 1 0.285 0.254  0.805 0.878 0.886 0.822 0435 0.294  0.559 0.596 0.555 RW

2 0.429 0377  0.831 0.891 0.941 0.847 0.689 0.434  0.867 0.912 0.925 RW
3 0.529 0.472  0.883 0.861 0.896 0.769 0.944  0.580 1.220 1.215 1.262 EN (0.7)
4 0.701 0.624  0.937 0.894 0.945 0.832 1.296  0.723 1.385 1.496 1.469 EN (0.5)
5 0.847 0.743  1.000 0.901 0.940 0.822 1.563  0.860 1.895 1.832 1.939 EN (0.7)
6 0.915 0.811  1.020 0.900 0.918 0.801 1.879  0.986 1.944 1.950 1.932 EN (0.5)
7 1.000 0.883  1.064 0.899 0.899 0.820 1.857  1.105 1.995 1.942 1.804 EN (0.3)
8 1.045 1.134  1.100 0.904 0.948 0.866 1.926  1.202 1.924 1.948 1.880 EN (0.5)
9 1.170 1.188  1.168 0.915 0.921 0.897 1.943  1.286 1.846 1.831 1.839 RIDGE
10 1.261 1.246  1.223 0.938 0.929 0914 1.903  1.357 1.863 1.828 1.805 RIDGE
11 1.274 1.236  1.266 0.944 0.907 0.961 1.968  1.398 1.973 1.990 2.030 EN (0.7)
12 1.320 1.225  1.292 1.010 0.940 1.057 1.860  1.388 1.878 1.878 1.827 EN (0.3)

Note: RRMSPE refers to the ratio of the root mean squared prediction error. We calculate RRMSPE based on the root mean squared prediction error (RMSPE) from
the RW model (benchmark model) divided by the RMSPE from the corresponding competing model. Note that the competing model outperforms the benchmark
model when RRMSPE is greater than 1. We implement a fixed-sized rolling window method and use the first 50% observations as a training set to evaluate out-of-
sample forecasting performance.
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Table 4. Wells Fargo—best forecasting model based on RW benchmark.

PLS RW

PLS RW

Pure PLS  PLS Factor  Factor wio Lagged  w/Lagged Ridge Lasso Elastic Net  Elastic Net  Elastic Net Best
Model RW DV DV (a=0.3) (a=0.5) (a=0.7)

No. of Forecasting

factor Horizon RRMSPE

] h

1 1 0.276 0.305 0.505 0418 0.466 0.107 0.409 0.308 0.419 0.418 0.418 RW
2 0.367 0.443  0.547 0445 0.511 0.146 0.625 0.480 0.653 0.671 0.675 RW
3 0.543 0.562 0.764 0.657 0.722 0.194 0.819 0.619  0.824 0.780 0.791 RW
4 0.719 0.685 0.801 0.671  0.739 0.224 1.047 0.745 1.024 1.015 1.018 RIDGE
5 0.634 0.770  0.853 0.712  0.791 0.244 1.120 0.856 1.216 1.194 1.189 EN (0.3)
6 0.400 0.897 0920 0.751 0.854 0.249 1.202 0.967 1.319 1.286 1.298 EN (0.3)
7 0.511 1.041 1.105 0.874  0.962 0.267 1.568 1.091 1.655 1.661 1.626 EN (0.5)
8 0.921 1.161 1.213 0934  0.968 0.346 1.837 1.198 1.878 1.896 1.906 EN (0.7)
9 1.045 1.240 1.257 0921  0.953 0.364 1.675 1.300 1.748 1.610 1.621 EN (0.3)
10 1.198 1.213 1.155 0936 0.946 0.388 1.594 1.385 1.548 1.522 1.350 RIDGE
11 1.407 1.325 1.241 0946  0.958 0.387 1.721 1.447 1.709 1.725 1.772 EN (0.7)
12 1.459 1.380 1.254 0934  0.936 0.388 1.784 1.485 1.975 1.929 2.018 EN (0.7)

2 1 0.278 0.263 0.214 0.113  0.133 0.102 0.409 0.308 0419 0.418 0.418 RW
2 0.487 0.302 0.249 0.149 0.187 0.145 0.625 0.480  0.653 0.671 0.675 RW
3 0.481 0464 0390 0206 0.219 0.183 0.819 0.619  0.824 0.780 0.791 RW
4 0.579 0475 0313 0230 0.290 0.221 1.047 0.745 1.024 1.015 1.018 RIDGE
5 0.809 0468 0335 0.253  0.292 0.241 1.120 0.856 1.216 1.194 1.189 EN (0.3)
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PLS RW PLS RW i ) )
Pure PLS  PLS Factor  Factor wlo Lagged  w/Lagged Ridge Lasso Elastic Net  Elastic Net  Elastic Net st
Model RW DV DV (a=0.3) (a=0.5) (a=0.7)
6 0.747 0.432 0318 0.264 0.260 0.250 1.202 0.967 1.319 1.286 1.298 EN (0.3)
7 0.885 0446 0358 0.293  0.271 0.292 1.568 1.091 1.655 1.661 1.626 EN (0.5)
8 0.977 0.660 0.583 0.385 0.423 0.393 1.837 1.198 1.878 1.896 1.906 EN (0.7)
9 1.077 0.716  0.921 0.405 0.445 0.418 1.675 1.300 1.748 1.610 1.621 EN (0.3)
10 1.276 0.982 1.199 0439 0.465 0.485 1.594 1.385 1.548 1.522 1.350 RIDGE
11 1.237 1.077 1.208 0.428 0.448 0.468 1.721 1.447 1.709 1.725 1.772 EN (0.7)
12 1.182 1.078 1.196 0.425 0.446 0.468 1.784 1.485 1.975 1.929 2.018 EN (0.7)
3 1 0.275 0.182 0.199 0.108 0.082 0.100 0.409 0.308 0.419 0.418 0.418 RW
2 0.397 0.361 0.294 0.149 0.126 0.149 0.625 0.480 0.653 0.671 0.675 RW
3 0.427 0.246 0.375 0.198 0.163 0.174 0.819 0.619 0.824 0.780 0.791 RW
4 0.632 0.485 0.342 0.229 0.185 0.212 1.047 0.745 1.024 1.015 1.018 RIDGE
5 0.544 0.501 0.398 0.256 0.216 0.231 1.120 0.856 1.216 1.194 1.189 EN (0.3)
6 0.525 0.444 0.369 0.267 0.258 0.239 1.202 0.967 1.319 1.286 1.298 EN (0.3)
7 0.679 0.467 0.479 0.303 0.306 0.266 1.568 1.091 1.655 1.661 1.626 EN (0.5)
8 1.169 0.670 0.867 0.397 0.352 0.346 1.837 1.198 1.878 1.896 1.906 EN (0.7)
9 1.178 0.694 1.094 0.422 0.375 0.368 1.675 1.300 1.748 1.610 1.621 EN (0.3)
10 1.040 0.590 1.007 0.450 0.419 0.411 1.594 1.385 1.548 1.522 1.350 RIDGE
11 1.004 0.484 1.138 0.436 0.417 0.408 1.721 1.447 1.709 1.725 1.772 EN (0.7)
12 1.317 0.533 1.196 0.435 0.413 0.432 1.784 1.485 1.975 1.929 2.018 EN (0.7)

Note: RRMSPE refers to the ratio of the root mean squared prediction error. We calculate RRMSPE based on the root mean squared prediction error (RMSPE) from the

RW model (benchmark model) divided by the RMSPE from the corresponding competing model. Note that the competing model outperforms the benchmark model

when RRMSPE is greater than 1. We implement a fixed-sized rolling window method and use the first 50% observations as a training set to evaluate out-of-sample

forecasting performance.
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Table 5. Busey (IL)—best forecasting model based on RW benchmark.

PLS RW PLS RW ) ) )
Pure PLS  PLS Factor Factor wioLagged  w/Lagged Ridge Lasso Elastic Net  Elastic Net  Elastic Net Best
Model RW DV DV (a=10.3) (a.=0.5) (a=0.7)

No. of  Forecasting

Factors Horizon RRMSPE

j h

1 1 0.677 0.666 0.565 0.975 0.968 0.967 0.846 0.675 0.568 0.557 0.535 RW
2 1.023 0.875 0.676 0.944 0.910 0.946 1.243  1.033 1.068 1.035 0.752 RIDGE
3 1.123 0933 0.732 0961 0.936 0.962 1.356  1.117 1.115 1.094 1.027 RIDGE
4 1.054 0.998 0.773 0.920 0.898 0.907 1.303  1.151 1.079 1.143 1.129 RIDGE
5 1.083 1.103  0.759 0.927 0.929 0.932 1.387 1.233 1.312 1.293 1.265 RIDGE
6 1.189 1.180 0.893 0.974 0.976 1.033 1.477 1.293 1.257 1.227 1.260 RIDGE
7 1.172 1.197 0.878 0.984 0.978 0.989 1.388  1.293 1.228 1.254 1.253 RIDGE
8 1.210 1.291 1.075 0.984 0.987 0.941 1.423  1.309 1.188 1.200 1.164 RIDGE
9 1.188 1.321  1.295 0986 0.986 0.934 1.422  1.338 1.462 1.356 1.356 EN (0.3)
10 1.233 1.330  1.297 0.999 0.994 0.981 1422 1.354 1.366 1.302 1.346 RIDGE
11 1.281 1.352 1.297  0.999  0.996 0.992 1.465 1.375 1.283 1.295 1.405 RIDGE
12 1.366 1.385 1.347 1.010 1.010 1.010 1.575  1.393 1.634 1.648 1.651 EN (0.7)

2 1 0.658 0470 0.563 0.966 0.794 0.950 0.846 0.675 0.568 0.557 0.535 RW
2 0.965 0.798 0.650 0941 0.678 0.927 1.243  1.033 1.068 1.035 0.752 RIDGE
3 1.060 1.035 0.721 0953  0.853 0.925 1.356  1.117 1.115 1.094 1.027 RIDGE
4 1.040 0.757 0.764 0913  0.887 0.895 1.303  1.151 1.079 1.143 1.129 RIDGE
5 1.111 0.756 0.748 0918  0.852 0.938 1.387 1.233 1.312 1.293 1.265 RIDGE
6 1.333 0.760 0.884 0.946  0.829 1.036 1.477 1.293 1.257 1.227 1.260 RIDGE
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PLS RW PLS RW ) i )
Pure PLS  PLS Factor Factor wioLagged wilagged Ridge Lasso Elastic Net  Elastic Net  Elastic Net st
Model RW DV DV (a=0.3) (a=0.5) (a=0.7)

7 1.335 0.903 0.874 0.960 0.947 1.004 1.388  1.293 1.228 1.254 1.253 RIDGE

1.183 1.136  1.079 0.972  0.960 0.905 1.423  1.309 1.188 1.200 1.164 RIDGE
9 1.165 1.138  1.266 0.967  0.947 0.896 1.422  1.338 1.462 1.356 1.356 EN (0.3)
10 1.240 1.227 1.245 0967 0.966 0.939 1422  1.354 1.366 1.302 1.346 RIDGE
11 1.353 1.375 1.282  0.982 0.994 0.976 1.465 1375 1.283 1.295 1.405 RIDGE
12 1.413 1.382  1.345 1.004  0.997 0.991 1.575 1.393 1.634 1.648 1.651 EN (0.7)

3 1 0.654 0.524 0.568 0.965 0.855 0.889 0.846  0.675 0.568 0.557 0.535 RW

2 0.993 0.764 0.650 0.936  0.646 0.919 1.243  1.033 1.068 1.035 0.752 RIDGE
3 1.089 0.926 0.713 0946 0.788 0.927 1.356  1.117 1.115 1.094 1.027 RIDGE
4 1.003 0.852 0.766 0914  0.908 0.846 1.303  1.151 1.079 1.143 1.129 RIDGE
5 1.038 0.829 0.779 0941 0.871 0.864 1.387  1.233 1.312 1.293 1.265 RIDGE
6 1.372 0.851 0946 0989 0.872 1.003 1.477  1.293 1.257 1.227 1.260 RIDGE
7 1.266 0.996 0.900 0.976 0978 0.941 1.388  1.293 1.228 1.254 1.253 RIDGE
8 1.165 1.165 1.099 0.975 0.969 0.897 1.423  1.309 1.188 1.200 1.164 RIDGE
9 1.096 1.188 1.257 0.961 0.978 0.898 1.422  1.338 1.462 1.356 1.356 EN (0.3)
10 1.040 1.193  1.235 0962 0975 0.850 1422 1.354 1.366 1.302 1.346 RIDGE
11 1.176 1.294 1.269 0.979 0.988 0.901 1.465 1.375 1.283 1.295 1.405 RIDGE
12 1.366 1.240 1.330 0.997 1.003 0.987 1.575 1.393 1.634 1.648 1.651 EN (0.7)

Note: RRMSPE refers to the ratio of the root mean squared prediction error. We calculate RRMSPE based on the root mean squared prediction error (RMSPE) from the

RW model (benchmark model) divided by the RMSPE from the corresponding competing model. Note that the competing model outperforms the benchmark model

when RRMSPE is greater than 1. We implement a fixed-sized rolling window method and use the first 50% observations as a training set to evaluate out-of-sample

forecasting performance.
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Table 6. Capital (IL)—best forecasting model based on RW benchmark.

PLS RW PLS RW

Pure PLS  PLS Factor  Factor wio Lagged  w/Lagged Ridge  Lasso Elastic Net Elastic Net  Elastic Net Best
Model RW DV DV (a=0.3) (a=0.5) (a=0.7)

No.of  Forecasting

Factors  Horizon RRMSPE

] h

1 1 0.502 0.481 0.847 0.972 0.964 0.970 0.652 0.509 0.749 0.754 0.746 RW
2 0.601 0.574 0.825 1.008 1.001 1.012 0.828 0.599 0.919 0.921 0.895 PLSRWw/Lag
3 0.722 0.663 0.894  0.975 0.966 0.967 0.981 0.733 1.021 0.977 1.072 EN (0.7)
4 0.801 0.707 0.949 0.966  0.954 0.976 1.062 0.800 1.169 1.210 1.224 EN (0.7)
5 0.833 0.768 0.920  0.937 0.934 0.933 1.269 0.864 1.368 1.347 1.293 EN (0.3)
6 0917 0.874 0911 0.927 0.921 0.896 1.347 0966 1.419 1.384 1.389 EN (0.3)
7 0.868 0.921 0.950  0.949 0.940 0.864 1.449 1.010 1.436 1.480 1.468 EN (0.5)
8 1.188 1.034 1.095 0970  0.960 0.882 1.447 1.082 1.393 1.336 1.433 RIDGE
9 1.080 1.044 1.108 0.970  0.965 0.904 1.397 1.077 1.357 1.392 1.344 RIDGE
10 1.141 1.109 1.132 0.978 0.973 0.927 1.497 1.143 1.453 1.522 1.466 EN (0.5)
11 1.031 1.144 1.124  0.975 0.968 0.931 1.409 1.180 1.364 1.370 1.352 RIDGE
12 1.092 1.188 1.127 1.002 0.999 0.983 1.520 1.216 1.478 1.457 1.499 RIDGE

2 1 0.517 0.388 0.858 0.978 0.932 0.966 0.652 0.509 0.749 0.754 0.746 RW
2 0.585 0.409 0.822 0.998 0.998 0.943 0.828 0.599 0.919 0.921 0.895 RW
3 0.706 0.416 0.893 0.961 0.853 0.925 0.981 0.733 1.021 0.977 1.072 EN (0.7)
4 0.745 0.386 0.930  0.948 0.831 0.860 1.062 0.800 1.169 1.210 1.224 EN (0.7)
5 0.814 0.522 0.918 0.933 0.917 0.915 1.269 0.864 1.368 1.347 1.293 EN (0.3)
6 0.912 0.625 0.893 0911 0.943 0.877 1.347 0.966 1419 1.384 1.389 EN (0.3)

Continued on next page
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PLS RW PLSRW . . .
Factor  Factor Elastic Net  Elastic Net Elastic Net

Pure PLS PLS Model RW w/o Lagged w/Lagged Ridge Lasso (@=03) (@=05) (@=07) Best
DV DV

7 1.005 0.670 0920  0.924 1.026 0.955 1.449 1.010 1.436 1.480 1.468 EN (0.5)

1.205 0.962 1.094  0.957 1.189 0.995 1.447 1.082 1.393 1.336 1.433 RIDGE
9 1.039 0.953 1.085  0.951 1.038 0.902 1.397 1.077 1.357 1.392 1.344 RIDGE
10 1.160 1.074 1.155  0.984 1.085 0.978 1.497 1.143  1.453 1.522 1.466 EN (0.5)
11 1.083 1.089 1.099  0.950 1.023 0.920 1.409 1.180 1.364 1.370 1.352 RIDGE
12 1.221 1.249 1.160 1.009 1.086 1.022 1.520 1.216 1.478 1.457 1.499 RIDGE

3 1 0.528 0.382  0.851 0973  0.935 0.961 0.652  0.509 0.749 0.754 0.746 RW

2 0.589 0.409  0.813  0.987 1.036 0.958 0.828  0.599 0.919 0.921 0.895 PLSRWw/oLag
3 0.735 0.433 0.870  0.938  0.895 0916 0.981 0.733 1.021 0.977 1.072 EN (0.7)
4 0.797 0.408 0918 0933  0.867 0.897 1.062  0.800 1.169 1.210 1.224 EN (0.7)
5 0.811 0.563 0925 0933 0921 0.851 1.269  0.864 1.368 1.347 1.293 EN (0.3)
6 0.944 0.719 0916  0.906 1.057 0.877 1.347 0966 1.419 1.384 1.389 EN (0.3)
7 1.035 0.775 1.008  0.951 1.138 0.945 1.449 1.010 1.436 1.480 1.468 EN (0.5)
8 1.192 0.991 1.159  0.966 1.243 0.919 1.447 1.082 1.393 1.336 1.433 RIDGE
9 1.005 1.005 1.117  0.949 1.117 0.839 1.397 1.077 1.357 1.392 1.344 RIDGE
10 1.117 1.062 1.164 0978 1.088 0.931 1.497 1.143  1.453 1.522 1.466 EN (0.5)
11 1.022 1.091 1.098  0.945 1.071 0.906 1.409 1.180 1.364 1.370 1.352 RIDGE
12 1.083 1.139 1.161 1.008 1.063 0.975 1.520 1.216 1.478 1.457 1.499 RIDGE

Note: RRMSPE refers to the ratio of the root mean squared prediction error. We calculate RRMSPE based on the root mean squared prediction error (RMSPE) from the
RW model (benchmark model) divided by the RMSPE from the corresponding competing model. Note that the competing model outperforms the benchmark model
when RRMSPE is greater than 1. We implement a fixed-sized rolling window method and use the first 50% observations as a training set to evaluate out-of-sample
forecasting performance.
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In addition to comparing the performance of the different forecasting models, it is useful to
examine the relative importance of the various predictor variables for the model that most accurate
forecast. In particular, beyond a few quarters, one of the best models for forecasting the net
charge-off rates is the ridge regression model. We may therefore assess the rankings of the three
groups of predictors in terms of their importance in obtaining the most accurate forecast as well as
the rankings of the predictors with each of the groups. Although there are four banks, we only do this
exercise for two of the banks, one of the two biggest and one of the two smallest, since the results are
quite similar in terms of corresponding size for the other two banks.

Starting with Citi, Figure 3 shows the relative importance of all 364 predictor variables used in
forecasting the net charge-off rate. It is clear that the bank predictors dominate all of the national and
state predictors, as shown by the magnitude of their coefficients. Of the 27 bank predictors, moreover,
only the net charge-off rates on the various types of loans and the loan ratios matter, not the levels of
the types of loans, as shown in Figure 4. When the charge-off rates for the different types of loans
are omitted, moreover, the results remain unchanged. Furthermore, the two predictors having the
biggest impact are real estate loans backed by construction loans and loan loss reserves, and in that
order of importance. Decreases in the former variable are associated with a lower net charge-off rate,
while the opposite is the case for loan loss reserves. As regards the national predictors, Figure 5
shows that the two most important predictors are the unemployment rate and industrial capacity, with
former having a positive relationship and the latter a negative relationship. Interestingly, almost all
the interest-related predictors have some impact and negative relationships with the net charge-off
rate. The impact in all these cases, however, tends to be de minimas. Lastly, Figure 5 shows the
relative importance of the state predictors. Clearly, the only predictors that matter are the state
unemployment rates, although their relative importance overall is also relatively minor. Yet, the
impact of the state predictors generally dominates that of the national predictors.

. Bank National State

Rl e R R R e R T R R R R R R R E R R ]

Figure 3. Citi—ridge coefficients for all predictor variables based on four-quarter forecasting horizon.
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Figure 4. Citi—ridge coefficients for bank predictor variables based on four-quarter forecasting horizon.

0.00010

0.00005

0.00000

-0.00005

-0.00010

-0.00015

Group 2 Group 3 Group 4 Group 5 Group 6
>
- - o
- T - - - - -
283032343638@41444648mISS65860626&66687072747678808284 88 10 112
Variable 1Ds /| i
',‘ H
Unemployment rate .

Industry capacity

Interest rate related

Figure 5. Citi—ridge coefficients for national predictor variables based on four-quarter forecasting horizon.
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Figure 6. Citi—ridge coefficients for state predictor variables based on four-quarter forecasting horizon.

As regards Busey, Figure 7 shows the relative importance of the same 364-predictor variables
used in forecasting the net charge-off rate. As is the case with Citi, the bank predictors dominate all
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of the national and state predictors, as shown by the magnitude of coefficients. Of the 27 bank
predictors, in contrast to Citi, not all of the net charge-off rates on the various types of loans matter,
as shown in Figure 8. In addition, once again, the levels of the types of loans do not have a
meaningful impact. Furthermore, as with Citi, the two predictors having the biggest impact and the
same association with the net charge-off rate are real estate loans backed by construction loans and
loan loss reserves, and in that order of importance. As regards the national predictors, Figure 9 shows
that the findings for Busey contrast fairly sharply with those for Citi. The two most important
predictors are the unemployment rate and industrial capacity, with former having a positive
relationship and the latter a negative relationship. Interestingly, almost all the interest-related
predictors have some impact, albeit relatively minor, and negative relationships with the net
charge-off rate. Lastly, Figure 5 shows the relative importance of the state predictors. Clearly, the
only predictors that matter are the state unemployment rates, although their relative importance
overall is de minimas as compared to the bank predictors. The state unemployment rates, however,
are more important than all the national variables.

0.04 |

| Bamk | Natlonal State
0.02 —————»ie — b«
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N A N P R N R N R R T

Figure 7. Busey (IL)—ridge coefficients for all predictor variables based on four-quarter
forecasting horizon.
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Figure 8. Busey (IL)—ridge coefficients for bank predictor variables based on four-quarter
forecasting horizon.
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Figure 10. Busey (IL)—ridge coefficients for state predictor variables based on four-quarter
forecasting horizon.

5. Conclusions

As discussed, recent regulatory and other developments in the banking sector underscore the
need for banks to devote more effort to obtaining accurate forecasts of net charge-off rates, among
other important banking variables. We have discussed several important regression models that are
used for forecasting purposes, including some models that allow for situations in which the number
of predictor variables exceeds the number of observations, and use these models to forecast net
charge-off rates for four banks. Two of the banks are among the biggest banks in the country,
while the other two banks are among the smallest banks. Based upon our empirical findings
regarding the forecast accuracy of the different regression models, we find that the ridge regression
model or the elastic net model outperform the other models over forecast horizons of four and
more quarters. The other models examined, however, outperform a benchmark random walk model
over various forecast horizons.

As far as we know, no other study has used as many forecasting models to examine which
model performs best in terms of forecasting accuracy over various horizons in the banking literature
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focusing on an extremely important banking variable, the net charge-off rate. In future research, one
might consider using the types of forecasting models employed here for forecasting other banking
variables. This would include such variables as the return on assets (ROA), return on equity (ROE),
z-score (the return on assets plus the capital asset ratio divided by the standard deviation of return on
assets—the z-score measures the distance from insolvency (Roy, 1952)), stock return or price,
volatility of stock return, bank earnings, price-earnings (P/E) ratio, nonperforming loans, and loan
loss provision.

Our findings have important policy implications. In particular, bank regulatory authorities
are able to assess the forecast models used by individual banks and the associated results to assist
them in evaluating the expected future performance of banks. Depending upon the forecast
models and results as well as their own independent assessment, the regulators will be in a better
position to decide upon any actions that might be appropriate to promote safer and sounder banks.
This might include requiring modifications in or better explanations for the models used. But it
might even include supervisory actions to the extent that the forecast results coupled with the
regulators’ own assessment suggest the likelihood of emerging problems at a particular bank or a
set of banks more generally.
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Appendix

Appendix A. Variable ID description.

GroupID  Variable ID  Data description

#1 1 Sum(CO-RE-multifamily, CO-IPRE, CO-construction)/sum(RE-multifamily, IPRE,
construction)
2 CO-CI/CI
3 Sum(CO-credit card, CO-other consumer)/sum(credit card other consumer)
4 Income producing real estate
5 CO-construction/construction
6 CO-Open-end residential loans/Open-end residential loans
7 CO-multifamily/multifamily
8 CO-close-end residential loans/close-end residential loans
9 Total loans (net of unearned income)
10 Total assets
11 Loans backed by real estate
12 Sum (multifamily, construction, IPRE)
13 Real estate loans backed by income producing real estate
14 Real estate loans backed by construction loans
15 Real estate loans backed by residential properties (open-end)
16 Real estate loans backed by multifamily loans
17 Real estate loans backed by residential properties (close-end)
18 Commercial and Industrial Loans
19 Loans to consumers: Sum (credit card, other consumer)
20 Ratio: Loans to consumers: Sum (credit card, other consumer)

Continued on next page
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Group ID  Variable ID

Data description

21
2
23
24
25
26
27
# 28
29
30
31
32
33
34
35
36
37
38
39
40
#3 41
42
43
44
45
46
47
48
#4 49
50
51
52
53
54
55
45 56
57
58
59
60
61
62
63
64

Ratio: Real estate loans backed by residential properties (close-end)
Ratio: Sum(multifamily, construction, IPRE)

Ratio: Real estate loans backed by construction loans

Ratio: Commercial and Industrial Loans

Ratio: Credit card

Total Loans/Total Assets

Loss Reserves/Total loans

All Employees: Private Service-Providing

All Employees: Government: Federal

All Employees: Manufacturing

All Employees: Construction

All Employees: Education and Health Services

All Employees: Goods-Producing Industries

All Employees: Government

All Employees: Leisure and Hospitality

All Employees: Mining and logging

All Employees: Total Private Industries

All Employees: Other Services

All Employees: Trade, Transportation and Utilities

Civilian Unemployment Rate

New Privately-Owned Housing Units Completed: 1-Unit Structures
New Privately-Owned Housing Units Completed: Total

Housing Starts: Total: New Privately Owned Housing Units Started
Privately Owned Housing Starts: 1-Unit Structures

New Private Housing Units Authorized by Building Permits

New Private Housing Units Authorized by Building Permits—in Structures with 1 Unit
All-Transactions House Price Index for the United States
Commercial Real Estate Price Index (Level)

Industrial Production Index

Industrial Capacity: Total index

Capacity Utilization: Total Industry

Motor Vehicle Retail Sales: Light Weight Trucks

Light Weight Vehicle Sales: Autos and Light Trucks, Seasonally Adjusted Annual Rate
Producer Price Index by Commodity for Final Demand: Finished Goods
Real Final Sales to Private Domestic Purchasers

Compensation of employees: Wages and salaries: Private industries
Compensation of employees: Wages and salaries: Government
Compensation of Employees: Wages and Salary Accruals

Real Exports of Goods and Services

Real imports of goods and services

Real Exports of services

Real Exports of Goods

Real Imports of Goods

Real Imports of Services

Continued on next page
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Group ID  Variable ID

Data description

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#6 82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

99

100
101
102
103
104
105
106
107

Real Net Exports of Goods and Services

Real Private Nonresidential Fixed Investment

Real Private Residential Fixed Investment

Real Fixed Private Investment

Change in Real Private Inventories

Real Gross Private Domestic Investment

Real Personal Consumption Expenditures: Durable Goods

real Personal Consumption Expenditures: Services

Real Personal Consumption Expenditures: Nondurable Goods

Real Federal Consumption Expenditures and Gross Investment

Real State and Local Consumption Expenditures & Gross Investment
Real Gross Domestic Product

Real Final Sales to Private Domestic Purchasers

Real Personal Income

Corporate Profits After Tax (without IVA and CCAdj)

Real Disposable Personal Income

Real Disposable Personal Income: Per Capita

Consumer Price Index for All Urban Consumers: All Items

Consumer Price Index for All Urban Consumers: Energy

Consumer Price Index for All Urban Consumers: Food and Beverages
Consumer Price Index for All Urban Consumers: All Items Less Food and Energy
Effective Federal Funds Rate

Moody’s Seasoned Aaa Corporate Bond Yield

Moody’s Seasoned Baa Corporate Bond Yield

3-month Treasury Constant Maturity Rate

6-month Treasury Constant Maturity Rate

1-Year Treasury Constant Maturity Rate

2-Year Treasury Constant Maturity Rate

3-Year Treasury Constant Maturity Rate

5-Year Treasury Constant Maturity Rate

7-Year Treasury Constant Maturity Rate

10-Year Treasury Constant Maturity Rate

Bank Prime Loan Rate

30-Year Fixed Rate Mortgage Average in the United States, Percent, Quarterly, Not
Seasonally Adjusted

3-Month Treasury Bill: Secondary Market Rate

6-Month Treasury Bill: Secondary Market Rate

3-Month London Interbank Offered Rate (LIBOR), based on U.S. Dollar
6-Month London Interbank Offered Rate (LIBOR), based on U.S. Dollar
12-Month London Interbank Offered Rate (LIBOR), based on U.S. Dollar
2-year swap

3-year swap

4 year swap

5-year swap

Continued on next page
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Group ID  Variable ID

Data description

108
109
110
111
112
#7 113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

7-year swap

10-year swap

U.S Market Volatiliry Index
Dow Jones Total Stock Market

S & P 500 Index

Unemployment Rate in Alaska
Unemployment Rate in Alabama
Unemployment Rate in Arkansas
Unemployment Rate in Arizona
Unemployment Rate in California
Unemployment Rate in Colorado

Unemployment Rate in Connecticut

Unemployment Rate in the District of Columbia

Unemployment Rate in Delaware
Unemployment Rate in Florida
Unemployment Rate in Georgia
Unemployment Rate in Hawaii
Unemployment Rate in lowa
Unemployment Rate in Idaho
Unemployment Rate in Illinois
Unemployment Rate in Indiana
Unemployment Rate in Kansas
Unemployment Rate in Kentucky
Unemployment Rate in Louisiana
Unemployment Rate in Massachusetts
Unemployment Rate in Maryland
Unemployment Rate in Maine
Unemployment Rate in Michigan
Unemployment Rate in Minnesota
Unemployment Rate in Missouri
Unemployment Rate in Mississippi
Unemployment Rate in Montana
Unemployment Rate in North Carolina
Unemployment Rate in North Dakota
Unemployment Rate in Nebraska
Unemployment Rate in New Hampshire
Unemployment Rate in New Jersey
Unemployment Rate in New Mexico
Unemployment Rate in Nevada
Unemployment Rate in New York
Unemployment Rate in Ohio
Unemployment Rate in Oklahoma
Unemployment Rate in Oregon

Unemployment Rate in Pennsylvania

Quantitative Finance and Economics

Continued on next page
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Group ID  Variable ID

Data description

152
153
154
155
156
157
158
159
160
161
162
#8 163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

Unemployment Rate in Rhode Island

Unemployment Rate in South Carolina
Unemployment Rate in South Dakota
Unemployment Rate in Tennessee

Unemployment Rate in Texas

Unemployment Rate in Utah

Unemployment Rate in Virginia

Unemployment Rate in Washington

Unemployment Rate in Wisconsin

Unemployment Rate in West Virginia
Unemployment Rate in Wyoming

All-Transactions House Price Index for California
All-Transactions House Price Index for Florida
All-Transactions House Price Index for New York
All-Transactions House Price Index for New Jersey
All-Transactions House Price Index for Hawaii
All-Transactions House Price Index for Massachusetts
All-Transactions House Price Index for Texas
All-Transactions House Price Index for Utah
All-Transactions House Price Index for Colorado
All-Transactions House Price Index for Michigan
All-Transactions House Price Index for Connecticut
All-Transactions House Price Index for Illinois
All-Transactions House Price Index for Wisconsin
All-Transactions House Price Index for Alabama
All-Transactions House Price Index for Pennsylvania
All-Transactions House Price Index for Arizona
All-Transactions House Price Index for North Carolina
All-Transactions House Price Index for Minnesota
All-Transactions House Price Index for Georgia
All-Transactions House Price Index for Rhode Island
All-Transactions House Price Index for Nevada
All-Transactions House Price Index for New Hampshire
All-Transactions House Price Index for Maine
All-Transactions House Price Index for Maryland
All-Transactions House Price Index for Idaho
All-Transactions House Price Index for Ohio
All-Transactions House Price Index for Missouri
All-Transactions House Price Index for Oregon
All-Transactions House Price Index for Washington
All-Transactions House Price Index for North Dakota
All-Transactions House Price Index for South Carolina
All-Transactions House Price Index for Louisiana

All-Transactions House Price Index for Virginia

Continued on next page
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Group ID  Variable ID  Data description

196 All-Transactions House Price Index for Oklahoma

197 All-Transactions House Price Index for Alaska

198 All-Transactions House Price Index for New Mexico

199 All-Transactions House Price Index for lowa

200 All-Transactions House Price Index for Indiana

201 All-Transactions House Price Index for Delaware

202 All-Transactions House Price Index for Tennessee

203 All-Transactions House Price Index for Vermont

204 All-Transactions House Price Index for Kansas

205 All-Transactions House Price Index for Kentucky

206 All-Transactions House Price Index for West Virginia

207 All-Transactions House Price Index for Nebraska

208 All-Transactions House Price Index for South Dakota

209 All-Transactions House Price Index for Montana

210 All-Transactions House Price Index for Wyoming

211 All-Transactions House Price Index for Arkansas

212 All-Transactions House Price Index for Mississippi

213 All-Transactions House Price Index for the District of Columbia

214 New Private Housing Units Authorized by Building Permits for Alaska
215 New Private Housing Units Authorized by Building Permits for Alabama
216 New Private Housing Units Authorized by Building Permits for Arkansas
217 New Private Housing Units Authorized by Building Permits for Arizona
218 New Private Housing Units Authorized by Building Permits for California
219 New Private Housing Units Authorized by Building Permits for Colorado
220 New Private Housing Units Authorized by Building Permits for Connecticut
221 New Private Housing Units Authorized by Building Permits for Delaware
222 New Private Housing Units Authorized by Building Permits for Florida
223 New Private Housing Units Authorized by Building Permits for Georgia
224 New Private Housing Units Authorized by Building Permits for Hawaii
225 New Private Housing Units Authorized by Building Permits for lowa

226 New Private Housing Units Authorized by Building Permits for Idaho

227 New Private Housing Units Authorized by Building Permits for Illinois
228 New Private Housing Units Authorized by Building Permits for Indiana
229 New Private Housing Units Authorized by Building Permits for Kansas
230 New Private Housing Units Authorized by Building Permits for Kentucky
231 New Private Housing Units Authorized by Building Permits for Louisiana
232 New Private Housing Units Authorized by Building Permits for Massachusetts
233 New Private Housing Units Authorized by Building Permits for Maryland
234 New Private Housing Units Authorized by Building Permits for Maine
235 New Private Housing Units Authorized by Building Permits for Michigan
236 New Private Housing Units Authorized by Building Permits for Minnesota
237 New Private Housing Units Authorized by Building Permits for Missouri
238 New Private Housing Units Authorized by Building Permits for Mississippi
239 New Private Housing Units Authorized by Building Permits for Montana

Continued on next page
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Group ID  Variable ID

Data description

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

New Private Housing Units Authorized by Building Permits for North Carolina

New Private Housing Units Authorized by Building Permits for North Dakota

New Private Housing Units Authorized by Building Permits for Nebraska

New Private Housing Units Authorized by Building Permits for New Hampshire

New Private Housing Units Authorized by Building Permits for New Jersey

New Private Housing Units Authorized by Building Permits for New Mexico

New Private Housing Units Authorized by Building Permits for Nevada

New Private Housing Units Authorized by Building Permits for New York

New Private Housing Units Authorized by Building Permits for Ohio

New Private Housing Units Authorized by Building Permits for Oklahoma

New Private Housing Units Authorized by Building Permits for Oregon

New Private Housing Units Authorized by Building Permits for Pennsylvania

New Private Housing Units Authorized by Building Permits for Rhode Island

New Private Housing Units Authorized by Building Permits for South Carolina

New Private Housing Units Authorized by Building Permits for South Dakota

New Private Housing Units Authorized by Building Permits for Tennessee

New Private Housing Units Authorized by Building Permits for Texas

New Private Housing Units Authorized by Building Permits for Utah

New Private Housing Units Authorized by Building Permits for Virginia

New Private Housing Units Authorized by Building Permits for Vermont

New Private Housing Units Authorized by Building Permits for Washington

New Private Housing Units Authorized by Building Permits for Wisconsin

New Private Housing Units Authorized by Building Permits for West Virginia

New Private Housing Units Authorized by Building Permits for Wyoming

New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Alaska
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Alabama
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Arkansas
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Arizona
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for California
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Colorado
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Connecticut
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Delaware
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Florida
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Georgia
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Hawaii
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for lowa
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Idaho
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Illinois
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Indiana
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Kansas
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Kentucky
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Louisiana
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Massachusetts
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Maryland

Continued on next page
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Group ID  Variable ID

Data description

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
#9 314
315
316
317
318
319
320
321
322
323
324
325
326
327

New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Maine
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Michigan
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Minnesota
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Missouri
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Mississippi
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Montana
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for North Carolina
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for North Dakota
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Nebraska
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for New Hampshire
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for New Jersey
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for New Mexico
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Nevada
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for New York
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Ohio
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Oklahoma
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Oregon
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Pennsylvania
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Rhode Island
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for South Carolina
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for South Dakota
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Tennessee
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Texas
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Utah
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Virginia
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Vermont
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Washington
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Wisconsin
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for West Virginia
New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Wyoming
Total Personal Income in Alaska

Total Personal Income in Alabama

Total Personal Income in Arkansas

Total Personal Income in Arizona

Total Personal Income in California

Total Personal Income in Colorado

Total Personal Income in Connecticut

Total Personal Income in Delaware

Total Personal Income in Florida

Total Personal Income in Georgia

Total Personal Income in Hawaii

Total Personal Income in lowa

Total Personal Income in Idaho

Total Personal Income in Illinois
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Group ID  Variable ID

Data description

328
329
330
331
332
333
334
335
336
337
338
339
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341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

Total Personal Income in Indiana

Total Personal Income in Kansas

Total Personal Income in Kentucky
Total Personal Income in Louisiana
Total Personal Income in Massachusetts
Total Personal Income in Maryland
Total Personal Income in Maine

Total Personal Income in Michigan
Total Personal Income in Minnesota
Total Personal Income in Missouri

Total Personal Income in Mississippi
Total Personal Income in Montana

Total Personal Income in North Carolina
Total Personal Income in North Dakota
Total Personal Income in Nebraska
Total Personal Income in New Hampshire
Total Personal Income in New Jersey
Total Personal Income in New Mexico
Total Personal Income in Nevada

Total Personal Income in New York
Total Personal Income in Ohio

Total Personal Income in Oklahoma
Total Personal Income in Oregon

Total Personal Income in Pennsylvania
Total Personal Income in Rhode Island
Total Personal Income in South Carolina
Total Personal Income in South Dakota
Total Personal Income in Tennessee
Total Personal Income in Texas

Total Personal Income in Utah

Total Personal Income in Virginia

Total Personal Income in Vermont

Total Personal Income in Washington
Total Personal Income in Wisconsin
Total Personal Income in West Virginia
Total Personal Income in Wyoming
Total Personal Income in the District of Columbia
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Appendix B. The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm.

In contrast to the two stages factor model’, for the partial least squares regression, the latent
component variables are obtained iteratively. In other words, to identify the second component PLSR
direction we first adjust each of the variables for AF,, by regressing each variable on AF; and taking
residuals. We believe these residuals contain the remaining information and can be explained by
introducing another component in the model.

The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm is shown below. It starts with
scaled and centered data.

e The x-weights, wyyq:
W1 = XnsrUrxt/UrxTUtx: (Getting a starting vector of u, usually u = y) (B1)

e (alculate X-scores, AFryq:

AFrx1 = XTxNWnx1 (B2)
e The y-weights, c: , ,
¢ = Y1x1) OF 1 /AF 15 1AF 5 (B3)
e Update set of Y-scores, u:
Urx1 = CYTx1 (B4)

lugia—unewll

e (onvergence is tested on the change inu, i.e., < 1078.If the convergence hast

lupewll
not reached, return to step 2, otherwise continue with step 5.

e Remove the present component from X and y use these deflated matrices as X and y in the
next cornponent6:

XrxN = X1xN — AFTxlpixNa where pyx; = Xi\IxTAFTxl/(AF’leAFTxl) (BS)

Yrx1 = Y1x1 — CAFryq (B6)

e (Continue with next component (i.e., back to step 1 with the deflated y and X) until we think
that there is no more significant information in X about y.

i © 2018 the Author(s), licensee AIMS Press. This is an open access
ATMS AIMS PI‘eSS article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

> It is well known that two-stage approach the first component always captures most of the variance, the second
component most and so on until all the variance is accounted for. Since the first capture most of the variance, they are
typically of focus.

8 It is important to note that after each component, , the design matrix Xy is deflated by subtracting AFyy;p;xy from
Xrxn- Hence, the weights, wyy, is referred to the residuals after previous dimension, e;; 51, instead of relating to the X-
variables themselves. Therefore, the equation, AF;, = Y., w;.X,;, becomes AF, = Y w e q 1, Where €41 =
erig-2 — AFiq_1Pq—1;- Whena =1, e;; o = X;. However, the weights, w, can be transformed to w*, which directly
related to X, given the equation AF,, = ¥, w;.X,;. Manne (1987) showed that the relationship between above two is
expressed by Wy,g = WNXR(PI'RXNWNXR)_l-
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