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Abstract: The purpose of this paper is to focus on the losses of two very big banks, Citigroup (Citi) 
and Wells Fargo & Company (Wells Fargo), and two very small banks, First Busey Corporation 
(Busey) and Capital City Bank Group (Capital), over the period 1991–2016. The federal government 
actually bailed out the two big banks, as measured by total assets, whereas neither of the two small 
banks required a bail out. Clearly, if one is able to use a variety of predictor variables to forecast 
accurately the losses of banks of various sizes, in different geographical locations, and operating a 
variety of business models, this may help identify potential causes of future banking problems and 
thereby lessen, if not eliminate, the need for future bailouts. This is important for both the banks and 
the bank regulatory authorities. In particular, those banks expected to suffer significant losses on 
loans may be in a position to increase their provisioning and thus loan loss allowances. If such banks 
are unable to take this type of action or other corrective action to address expected losses, regulatory 
action may become necessary in response to this situation. The motivation for our paper is this very 
issue: can one obtain accurate forecasts of losses, or the net charge-off rates, of banks? We provide 
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an answer to this question by examining the four banks mentioned using several hundred predictor 
variables and several different forecast techniques. 
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1. Introduction 

The US housing boom and bust in the first decade of this century led to the worst financial crisis 
and severe recession since the Great Depression. The estimated cost of this dire situation is $6 
trillion to $14 trillion, which translates into $50,000 to $120,000 for every household. At the same 
time, household net worth plunged $19 trillion. Beyond these monetary costs are the psychological 
consequences of the high and extended unemployment associated with the crisis and recession 
(Luttrell et al., 2013). 

The federal government responded to the downturn in financial and economic activity in the fall 
of 2008 by providing extraordinary assistance, including bailouts to hundreds of financial institutions. 
The estimated direct government support for the financial sector totaled approximately $12.6 trillion 
(Luttrell et al., 2013). These and other efforts by both the government and private sector prevented 
a complete collapse and contributed to the subsequent growth in the economy and the 
improvement in the health of financial institutions. 

In an attempt to prevent similar episodes from occurring in the future, the government enacted 
the Dodd-Frank Wall Street Reform Act (Dodd-Frank Act) in July 2010. The new law, which is the 
most comprehensive financial reform since the 1930s, aims to promote a safer and sounder financial 
system. If successful, the Dodd-Frank Act—through the implementation of stricter regulations and 
supervisory practices—will help prevent another system-wide banking crisis. Of course, banks will 
always incur some losses insofar as such institutions are by their very nature engaged in risky 
activities. However, the goal of banks and their regulators is to allow for losses that will inevitably 
occur but not so large and/or widespread that the entire banking sector finds itself so deeply in 
trouble that government bailouts are deemed necessary. 

The purpose of this paper is to focus on the losses of two very big banks, Citigroup (Citi) and 
Wells Fargo & Company (Wells Fargo), and two very small banks, First Busey Corporation (Busey) 
and Capital City Bank Group (Capital), over the period 1991–2016. The federal government actually 
bailed out the two big banks, as measured by total assets, whereas neither of the two small banks 
required a bail out. Clearly, if one is able to use a variety of predictor variables to accurately forecast 
the losses of banks which have various sizes and operate in different geographical location with a 
variety of business models, this may help identify potential causes of future banking problems and 
thereby lessen, if not eliminate, the need for future bailouts. This is important for both the banks and 
the bank regulatory authorities. In particular, those banks expected to suffer significant losses on 
loans may be in a position to increase their provisioning and thus loan loss allowances. If such banks 
are unable to take this type of action or other corrective action to address expected losses, regulatory 
action may become necessary in response to this situation. The motivation for our paper is this very 
issue: Can one obtain accurate forecasts of losses, or the net charge-off rates, of banks? We provide 
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an answer to this question by examining the four banks mentioned using several hundred predictor 
variables and several different forecast techniques. 

The remainder of the paper proceeds as follows. In the next section, we discuss the 
importance of recent regulatory and other developments in the banking sector that underscore the 
need for banks to devote more effort to obtaining accurate forecasts of net charge-off rates, among 
other on- and off-balance sheet items as well as income statement items. In Section 3, we describe 
and discuss several important regression models that are used for forecasting purposes, including 
some models that allow for situations in which the number of predictor variables exceeds the number 
of observations. Section 4 follows with a presentation and discussion of our empirical findings 
regarding forecast accuracy based on the different regression models. As discussed in more detail 
later, we find that the ridge regression model and elastic net model outperform the other models over 
forecast horizons of four or more quarters. The other models examined, however, outperform a 
benchmark random walk model over various forecast horizons. This section also identifies the best 
model as well as the explanation for its choice. The last section contains the conclusions. 

2. Pressure for improved bank forecast accuracy grows 

A variety of factors in recent years have led to an increase in the pressure on a bank to improve 
the accuracy of its forecasts for the key variables that ultimately determine whether it will remain 
profitable or be forced to merge with a healthier bank, if not seized by a bank regulatory agency. 
Clearly, the more accurate the forecasts the better positioned will be a bank to compete in an 
increasingly competitive financial marketplace. Banks not only compete with one another but also 
compete in various ways with financial firms. For example, they compete with firms in the so-called 
shadow banking sector, where shadow banks are similar to traditional banks, but are not subject to 
traditional bank regulations and do not have traditional depositors whose funds are covered by 
insurance, they are in the “shadow” (Adrian and Ashcraft, 2016). Banks also compete with the more 
recently established and growing FinTech companies, which also are involved in the financial sector 
by facilitating payments and loans. Banks are facing increasing competition from FinTech start-ups 
such as Stripe and Square as well as established IT companies such as PayPal, Facebook, Apple, 
Google, and Amazon that are offering some traditional banking services (Jakšič and Marinč, 2017). 
For example, Stripe utilizes its business software to help companies take and track digital payments, 
and has been valued at $9.2 billion (Fitzpatrick et al., 2017). Numerous other startups such as SoFi 
and GreenSky are also altering the financial services industry by providing personal loans through new 
technology platforms. Moreover, Facebook, as an established IT company, supports money transfers, 
and Apple, Samsung, and Google provide for mobile payments in the form of Apple Pay, Samsung 
Pay, and Google Wallet. 

Competition necessarily provides the incentive for banks to operate more efficiently and to 
undertake actions that enable them to remain profitable on an ongoing basis. This requires a 
balancing of risk and return over time. Too much risk can lead to excessive losses, but too little risk 
can lead to inadequate profitability. It is for this reason that forecasting losses or net charge-offs is 
important. Since there will always be loans that must be charged off, obtaining accurate forecasts is 
not only to assess the magnitude of expected future losses, but also identify some of the key factors 
that contribute to those losses. 
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As already noted, the Dodd-Frank Act increased the restrictions imposed on various activities 
and operations of banks. The Act also mandated an annual assessment by the Federal Reserve of 
banks with $50 billion or more in total assets in terms of their ability to absorb losses. In particular, 
the Comprehensive Capital Analysis and Review (CCAR) and Dodd-Frank Act Stress Testing 
(DFAST) programs were established to determine whether such big banks have effective capital 
adequacy processes and sufficient capital to absorb losses under stressful conditions. CCAR and 
DFAST are complementary exercises. In the case of CCAR, the Federal Reserve evaluates 
institutions’ capital adequacy, their internal capital adequacy assessment processes, and their 
individual plans to make capital distributions, such as dividend payments or stock repurchases. As 
regards, DFAST is a forward-looking quantitative evaluation of the effect of stressful economic and 
financial market conditions on a bank’s capital (Barth and Miller, 2017). 

In 2012, the Federal Reserve finalized the rules that implement the stress test requirements 
under the Dodd-Frank Act. Banks with $10 billion or less are exempt from CCAR and DFAST. 
However, all banks with $10 billion or more in total assets are required to conduct an annual 
firm-run stress test. Banks with assets greater than $50 billion, moreover, must conduct semiannual 
firm-run stress tests and are subject to stress tests conducted by the Federal Reserve (i.e., CCAR and 
DFAST). The estimated losses resulting from these tests are subtracted from a bank’s capital to 
determine the financial buffer that a bank has to insulate itself from losses. A bank effectively fails 
the tests if its capital falls below a required minimum level after the theoretical losses (Barth and 
Miller, 2017). 

The goal of stress tests conducted under the Dodd-Frank Act is to provide forward-looking 
information to banks supervisory authorities to assist in their overall assessments of a bank’s capital 
adequacy and to aid in identifying downside risks and the potential impact of adverse outcomes on 
the bank. Furthermore, these stress tests support ongoing improvement in a bank’s internal 
assessments of capital adequacy and overall capital planning. 

It is clear that CCAR and DFAST put additional pressure on large financial institutions subject 
to such stress tests to obtain forward-looking information on potential losses or net charge-off rate to 
determine whether there will be sufficient capital to meet the minimum requirements. Since it is 
costly for banks to hold excess capital, accurate predictions of net charge-offs of loan portfolios 
enable banks to assess whether they will satisfy, for instance, the minimum required tier 1 common 
regulatory capital ratio (Covas et al., 2014). More generally, even those banks not subject to CCAR 
and DFAST would want to obtain accurate forward-looking information to help ensure their 
profitability and even ongoing survivability in the financial marketplace. 

In the next section, the different models that are used to forecast the net charge-off rates over 
three-year horizons for our four banks mentioned are discussed. 

3. Forecasting models 

3.1. Factor model 

Assume information is available for a large number of predictor variables as follows, 
ݔ ൌ ሾݔଵ, ,ଶݔ … , ேሿݔ , where ݔ௜ ൌ ,௜,ଵݔൣ ,௜,ଶݔ … , ௜,்൧ݔ

′
, ݅ ൌ 1, 2, … ,ܰ , and ݐ ൌ 1, 2, … , ܶ . Assume 

further that y is the corresponding vector for the target variable and that: 
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௧ା௛ݕ ൌ ߙ ′ ௧݂ ൅ ௧ݕߚ ൅  ௧ା௛                                                      (1)ߝ

In this equation, ݄ ൒ 0 indicates the forecast horizon for the target variable using the predictor 
variables. We estimate a vector of the latent common factors, ௧݂ , and the associated loading 
coefficients, ߣ௜, via the principal component method. In particular, as suggested by Bai and Ng (2004), 
since ߝ௜௧ may be an integrated process, first-differences of the predictors are used. Assuming 
that Δݔ௜௧ contains information about Δ ௧݂, this relationship can be expressed as: 

Δݔ௜௧ ൌ ௜ߣ
′Δ ௧݂ ൅ ݁௜௧                                                             (2) 

This is the factor representation of the data, where Δ ௧݂ ൌ ሾΔ ௧݂ଵ,Δ ௧݂ଶ, … ,Δ ௧݂ோሿ′ is a ܴ ൈ 1 vector 

of the common factors, ߣ௜ ൌ ,௜,ଵߣൣ ,௜,ଶߣ … , ௜,௥൧ߣ
′
 is the corresponding vector of factor loadings, and ݁௜௧ 

is an idiosyncratic error term. We treat ௧݂ as the common shocks that cause co-movements in the 

predictors. Using a principal component estimator, ݕ௧ା௛ is regressed on ௧݂ to yield estimates of ߙ′ 
and ߚ in Equation 1. The factor model assumes the target variable follows a random walk when 

ߚ ൌ 1. In this particular case, we refer to the model as a factor-model random walk, in contrast to 

simply a factor model. 

3.2. Partial least squares 

Similar to the factor model, the linear partial least square (PLS) regression approach is used to 
extract factors from the vector of predictor variables, or x matrix, that are used in predicting ݕ௧ା௛ 
Referring to Equation 1, let ∆ ௧݂ଵ, ∆ ௧݂ଶ, … , ∆ ௧݂ோ, ݄ݐ݅ݓ	ܴ ൏ ܰ, represent a linear combination of the 
original predictor variables. That is: 

∆ ௧݂௥ ൌ ∑ ௜௥ݓ
∗ ܺ௧௜

ே
௜ୀଵ                                                               (3) 

Where ݐ ൌ 1, 2, … , ܶ  and ∆ ௧݂௥  ( ݎ ൌ 1,… , ܴ ). The estimated latent common factors are 
referred to as x-scores1 and constants. They are estimated as linear combinations of the original 
predictors ܺ௧௜, with weights ݓ௧௥∗ . The x-scores have the following two properties: 

● The matrix x can be expressed as x = ∆۴۾′ ൅ ۳, where ∆۴ is a matrix whose columns are x-scores, 
 is a matrix whose columns are called x-loadings, and E is a matrix of idiosyncratic error ۾
terms. In other words, x-scores are multiplied by the loadings ݌௥௜, which provides sufficient 
summaries of x, so that the residuals of X, ݁௧௜, are minimized in the following equation: 

ܺ௧௜ ൌ ∑ ∆ ௧݂௥
ோ
௥ ௥௜݌ ൅ ݁௧௜                                                          (4) 

௧ା௛ݕ ●  is modeled as a linear regression on the x-scores2. Then the x-scores are used as 
predictors of ݕ௧ା௛ based on the following equation: 

௧ା௛ݕ ൌ ∑ ܿ௥∆ ௧݂௥
ோ
௥ ൅ ௧ݕߚ ൅  ௧ା௝                                                   (5)ߦ

Where ݄ ൌ 1, 2, ܪ… , ܿ௥ ’s are y-weights, and the y-residuals, ߦ௧ , represent the deviations 
between the observed values and estimated model values. It is important to note that nonlinear 

                                                              
1 The x-scores are orthogonal predictors of both y and x. 
2 In many cases, the goal is to model x and y with a small number of factors, so that the matrix x is never 

fully decomposed. 
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iterative partial least squares (NIPALS) does not estimate all the principal components at once. Since 
the y-residuals may contain information that is not captured from previous components, ∆ ௥݂ିଵ݌௥ିଵ

′ , 
we use the residuals to calculate ∆ ௧݂௥  and ݌௥′  (see the appendix for more detail regarding the 
algorithm used in the estimation). The factor model assumes a random walk process for the target 
variable, ݕ௧, when ߚ ൌ 1. In this particular case, we refer to model as a PLS random walk model. 
This model may also be estimated with and without a lagged target variable. When ݕ௧ is included as 
a common factor in the estimation, we refer to this model as a Pure PLS model, whereas when it is 
included as a separate explanatory variable we refer to the model as a PLS model. 

Based on the above equations, we can now express our regression model as the following 
multiple-variable regression model: 

௧ା௛ݕ ൌ ∑ ܿ௥ோ
௥ୀଵ ∑ ∗௧௥ݓ ௧௜ݔ

ே
௜ୀଵ ൅ ௧ݕߚ ൅  ௧ା௝                                           (6)ߦ

If the constants ݓ௧௥′s are chosen judiciously, then partial least squares regression approaches 
can often outperform a two-stage factor model approach, as discussed in the previous section, as well 
as a least squares regression approach (Geladi and Kowalski, 1986 and Barth et al., 2018). 

3.3. Ridge regression, LASSO regression, and elastic net 

Ridge regression. A basic linear regression model can be used to predict a target variable over h 
horizons, y, with a large number of predictors, ݔ, as follows: 

௧ା௛ݕ ൌ ߤ ൅ ߚݔ ൅  ௧                                                              (7)ߝ

Where ߚ is the vector of the regression coefficients of the predictors and ߝ௜ is a random error 
term. However, a ridge regression model is ideal when there are many predictors and all have 
non-zero coefficients. Moreover, such a model performs well with many predictors and a relatively 
high degree of multicollinearity among them. Furthermore, a ridge regression model does not force any 
of the coefficients to equal zero, thereby avoiding including only the most relevant subset of predictors. 

The estimation of a ridge regression model relies on the following penalized least squares approach: 

መ୰୧ୢ୥ୣߚ ൌ argmin
ఉ
ݕ‖ െ ଶ‖ߚݔ ൅  ଶ                                            (8)‖ߚ‖ߣ

Where ‖ݕ െ ଶ‖ߚݔ ൌ ∑ ሺݕ௜ െ ሻଶߚ௜ݔ
௡
௜ୀଵ  is a quadratic loss function, ݔ௜  is the ݅ -th row of ݔ , 

‖ߚ‖ ൌ ∑ ൫ߚ௝	൯
ଶ௡

௝ୀଵ  is the quadratic penalty imposed on ߚ, and ߣ ൒ 0 is the penalty parameter which 

determines the degree of the linear shrinkage in the coefficients. The higher the value of ߣ, the 
greater is the amount of shrinkage. The regularization parameter lambda is chosen based on the data 
in order to minimize the residual sum of squares. In this setting, if lambda is set to 0, one simply 
obtains the least squares solution. 

LASSO regression. As with ridge regression, the LASSO (Least Absolute Shrinkage Selection 
Operator) shrinks some coefficient estimates towards zero, while setting others exactly to zero 
(Tibshirani, 1996). The LASSO attempts to balance the benefit of dimension reduction against the 
cost of including all predictors. For some values of ߣ, the norm penalty function of the LASSO has 
the effect of forcing some of the coefficient estimates to be set exactly to zero. Therefore, models 
estimated by LASSO include only a subset of predictors and thereby naturally performs feature 
selection, or variable selection (Zou and Hastie, 2010). It is clear that the lasso has an edge over 
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ridge regression, in that it yields simpler and more interpretable models than those estimated by ridge 
regression. Unlike the LASSO, ridge regression does not perform feature selection. In other words, 
ridge regression will include all predictors in the final model and will not set any of predictors 
exactly to zero. Such a characteristic may not be a problem for prediction accuracy but can make it 
difficult to interpret models in settings in which the number of predictors is large. However, the 
LASSO regression approach is not robust to a high degree of correlation among a large number of 
predictors. The result is that some predictors are included, while others may be arbitrarily omitted. 

A basic linear regression model can be used to predict a target variable with a large number of 
predictors, ݔ, as follows: 

௧ା௛ݕ ൌ ߤ ൅ ߚݔ ൅  ௧                                                              (9)ߝ

Where ߚ  is the vector of the regression coefficients of the predictors. Similar to the ridge 
regression approach a LASSO regression model also relies on a penalized least squares approach. In 
particular, the estimation of a LASSO regression relies on the following penalized least squares equation: 

መ୐୅ୗୗ୓ߚ ൌ argmin
ఉ
ݕ‖ െ ଶ‖ߚݔ ൅  (10)                                              ‖ߚ‖ߣ

Where ‖ߚ‖ ൌ ∑ หߚ௝ห
௣
௝ୀଵ  is the norm penalty function on ߚ , which induces sparsity in the 

optimization procedure, and ߣ ൒ 0 is a penalty parameter. The penalty term in the LASSO regulates 

the degree of the linear shrinkage in the least squares fit and sets some components of ߚመ୐୅ୗୗ୓ to zero 

for some arbitrarily chosen value of ߣ. The particular value is chosen based on a data-driven method, 

such as cross-validation. 

Elastic net. As with ridge and LASSO, the elastic net simultaneously does automatic variable 
selection and continuous shrinkage, and it can select groups of correlated variables (Zou and Hastie, 
2010). Ridge and LASSO work on the same principle. Both methods penalize the beta coefficients 
so that one can identify the important variables. Ridge and LASSO shrink the beta coefficient 
towards zero for meaningless variables. As noted in the previous sections, these methods are 
commonly used when one has more predictors than observations. The only difference between these 
two techniques is whether alpha is set equal to one or zero. Based on the generalized formula in Eq 
11, the importance of alpha becomes clear. When alpha is equal to one, Lasso is the result, whereas 
when it is equal to zero, ridge is the result. For values of alpha between zero and one, elastic net is 
the result. 

minఉబ,ఉ
ଵ

ே
∑ ,௜ݕ௜݈ሺݓ ଴ߚ ൅ ௜ሻݔ்ߚ ൅ ሾሺ1ߣ െ ଶ‖ߚ‖ሻߙ

ଶ/2	 ൅ ,ଵሿ‖ߚ‖ߙ
ே
௜ୀଵ                         (11) 

Where ߣ is the penalty parameter. Thus, when ߙ ൌ 0, it will become Ridge and when ߙ ൌ 1, it 
will become LASSO. The elastic net with ߙ ൌ 	1	 െ 	ε for some small ε ൐ 0 performs much like the 
LASSO. More generally, the elastic net compromises between ridge and LASSO. 

3.4. Random walk model as a benchmark 

We use the random walk model as a benchmark by which to assess the forecast accuracy of the 
models discussed in the previous sections. According to this model, the best forecast of the next 
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quarter charge-off rate is this quarter’s observed charge-off rate. The random walk model can be 
expressed as follows: 

௧ା௛ݕ ൌ ௧ݕ ൅  ௧                                                            (12)ߝ

A random walk is a common benchmark model used to compare the forecast accuracy of 
competing forecast models (Hyndman and Koehler, 2006). 

4. Empirical findings 

This section presents and discusses our empirical findings regarding forecasting the net charge-off 
rates for four banks (Citi, Wells Fargo, Busey, and Capital) using the techniques described in the 
previous sections. Figure 1 shows the charge-off rates for each of these banks. As may be seen, there 
is substantial variation in the rates over the nearly 30-year period. All four banks tend to experience 
relatively high charge-off rates for several quarters following the banking crisis of 2007–2008 and 
the severe recession from late 2007 to the summer of 2009. With a few quarterly exceptions, Citi 
tended to have the highest rates over the entire period. 

 

Figure 1. Net charge-off rates for selected banks. 

We begin with a description of the predictor variables used in our analysis to forecast the net 
charge-off rates for the four banks. This is followed by a discussion of the basis for choosing the best 
forecasting model that is obtained when using nine different empirical techniques. This section also 
compares and contrasts the forecasting performance of the different techniques, which enables us to 
identify the best forecasting model. The last section presents the out-of-sample forecasts for the 
selected banks as well as discusses the relative importance of the various predictor variables used in 
obtaining the forecasts. 
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The important advantage of the techniques employed is that they allow for more predictors than 
observations through a dimension reduction approach. Although we are interested in prediction 
accuracy, we are choosing predictor variables based upon their importance to understanding 
banking-sector performance. This enables us to not only interpret the relationship of the predictors to 
the target variable, but also to discuss the importance of the relationship for specific predictor variables. 

Of course, there are other studies in which various forecast techniques are used to gauge the 
way in which selected factors are expected to influence future bank performance. Some of these 
studies include the following: (1) Covas et al. (2014) estimate capital shortfalls of banks during 
periods of financial stress using a fixed effects quantile autoregressive model with exogenous 
macroeconomic covariates; (2) Bernoth and Pick (2011) use unobserved common factors in addition 
to macroeconomic variables to forecast the fragility of banks and insurance companies based on the 
CCE estimator of Pesaran (2006); (3) Drehmann and Juselius (2014) assess the performance of 
different early warning indicators in terms of the accuracy of their forecast regarding the likelihood 
that a banking crisis will occur, given a set of covariates, from the sector of macroprudential policy; 
(4) Guerrieri and Welch (2012) examine the forecast accuracy of combination models (i.e., an 
equal-weighted average of simple models) as compared to a random walk model for three classes of 
bank variables, credit measures, revenue measures, and capital measures; (5) Hirtle et al. (2016) 
examine the impact of macroeconomic conditions on banks using a “top-down” model of the 
banking industry that generates projections of bank income and capital based on regression models 
of components of bank income, expense and loan performance, combined with assumptions about 
provisioning, dividends, asset growth and other factors; (6) Crook and Banasik (2012) model 
aggregate consumer default rates over a twenty year period using a cointegration technique and 
compare the forecasting performance of this econometric technique with ARIMA models; (7) 
Bastos (2010) evaluates the performance of a fractional response regressions and a nonparametric 
and nonlinear regression tree model in forecasting recovery rates of bank loans; and (8) Kupiec (2018) 
uses the 2008 financial crisis to assess the forecast accuracy of competing stress test models for an 
average or representative bank from March 1993 through June 2008. 

As just discussed, there are these and other studies that focus on forecasting various measures 
of bank performance as well as examining the forecast accuracy of different forecasting models. 
Our contribution to this literature is to examine the forecasting performance using nine different 
models based on two big banks and two small banks. To our knowledge, no study has conducted 
such an examination. 

4.1. Data description 

As Table1 shows, there are 364 predictors employed in our analysis. They are grouped into 
bank, national, and state categories. The reason for choosing these three categories is that we have 
selected four banks that differ substantially in asset size. In the case of the two biggest banks, Citi 
and Wells Fargo, that operate across many geographical areas we expect that the national variables 
might be more important for improving forecast accuracy than the state variables. Conversely, for the 
two smaller banks, Busey and Capital, that mainly operate in single states we expect that the state 
variables might be more important. 
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The empirical analysis is based on quarterly data for the period 1991 to 2016 obtained from 
FRY-9C reports.3 We used R to estimate all models presented in our paper. We also did the coding 
of the models, except for ridge, LASSO, and elastic net. Specifically, we used the glmnet package 
available in R to estimate the ridge, LASSO, and elastic net models. A detailed description of each of 
the predictor variables is provided in Appendix A. 

Table 1. Categories of bank, national, and state predictor variables. 

Group 
ID 

Variable 
ID 

Categories 

#1 127 Bank variables 

#2 2840 National variables—Employment 

#3 4148 National variables—Housing 

#4 4955 National variables—Industrial 

#5 5681 National variables—GDP and personal income 

#6 82112 
National variables—Consumer prices indices, interest rates, and financial 

markets 

#7 113162 State variables—Unemployment rate 

#8 163313 State variables—Housing 

#9 314364 State variables—Personal income 

4.2. Choosing the best forecasting model 

The basis for choosing the best forecasting model over the 12-quarter horizons employed here is 
to compare the nine techniques to two benchmark models (BM), the autoregressive (AR) model and 
the random walk (RW) model. In particular, we calculate the ratio of the root mean squared 
prediction errors (RMSE) for both the AR and RW models divided by the RMSE for each model 
(CM) using the nine techniques discussed earlier in Section 3. The actual equation is as follows: 

ሺ݆ሻ	ܧܲܵܯܴܴ ൌ
ඨ భ
೅ష೅బష಻

∑ ቀఌ೟శೕ|೟
ಳಾ ቁ

మ೅
೟శ೅బశೕ

ඨ భ
೅ష೅బష಻

∑ ቀఌ೟శೕ|೟
಴ಾ ቁ

మ೅
೟శ೅బశೕ

                                              (13) 

                                                              
3 The FRY-9C reports provide basic financial information for banks. The reports are prepared by 
the Federal Reserve based on information required of banks and then made publicly available on a 
quarterly basis. The FRY-9C is a primary analytical tool used by the Federal Reserve to monitor 
financial institutions between on-site inspections. For more detail on these reports, see 
https://www.federalreserve.gov/apps/reportforms/reportdetail.aspx?sOoYJ+5BzDal8cbqnRxZRg==. 
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Where ߝ௧ା௝|௧
஻ெ ൌ ௧ା௝ݕ	 െ	ݕො௝|௧

஻ெ ௧ା௝|௧ߝ ,
஼ெ ൌ ௧ା௝ݕ	 െ	ݕො௝|௧

஼ெ , BM = AR or RW, CM = Factor model, 

Factor RW, Pure PLS, PLS, PLS RW without lagged target variable, PLS RW with lagged target 

variable, Ridge, LASSO, or Elastic Net with 0.5 ,0.3 = ߙ, and 0.7.4 

Table 2. Net charge-off rates for selected banks: Comparison of AR/RW to ridge and elastic net (α = 0.5). 

Citi Bank RRMSPE   Wells Fargo RRMSPE   

h AR/RW RW/Ridge 
RW/Elastic Net 

(α = 0.5) 
h AR/RW RW/Ridge 

RW/Elastic Net 

(α = 0.5) 
1 1.672 0.435 0.596 1 3.395 0.409 0.418 
2 1.445 0.689 0.912 2 2.435 0.625 0.671 
3 1.290 0.944 1.215 3 2.062 0.819 0.780 
4 1.174 1.296 1.496 4 1.721 1.047 1.015 
5 1.208 1.563 1.832 5 1.662 1.120 1.194 
6 1.219 1.879 1.950 6 1.600 1.202 1.286 
7 1.248 1.857 1.942 7 1.500 1.568 1.661 
8 1.269 1.926 1.948 8 1.354 1.837 1.896 
9 1.335 1.943 1.831 9 1.429 1.675 1.610 
10 1.403 1.903 1.828 10 1.420 1.594 1.522 
11 1.455 1.968 1.990 11 1.389 1.721 1.725 
12 1.486 1.860 1.878 12 1.360 1.784 1.929 

First Busey 

(IL) 
RRMSPE   

Capital City 

(FL) 
RRMSPE   

h AR/RW RW/Ridge 
RW/Elastic Net 

(α = 0.5) 
h AR/RW RW/Ridge 

RW/Elastic Net 

(α = 0.5) 

1 1.714 0.846 0.557 1 1.221 0.652 0.754 

2 1.620 1.243 1.035 2 1.273 0.828 0.921 

3 1.536 1.356 1.094 3 1.204 0.981 0.977 

4 1.290 1.303 1.143 4 1.148 1.062 1.210 

5 1.230 1.387 1.293 5 1.140 1.269 1.347 

6 1.044 1.477 1.227 6 1.128 1.347 1.384 

7 1.071 1.388 1.254 7 1.116 1.449 1.480 

8 0.912 1.423 1.200 8 1.012 1.447 1.336 

9 0.802 1.422 1.356 9 1.079 1.397 1.392 

10 0.793 1.422 1.302 10 1.113 1.497 1.522 

11 0.789 1.465 1.295 11 1.169 1.409 1.370 

12 0.782 1.575 1.648 12 1.180 1.520 1.457 

Note: RRMSPE refers to the ratio of the root mean squared prediction error. We calculate RRMSPE based on the 

mean squared prediction error (RMSPE) from the RW model (benchmark model) divided by the RMSPE from the 

ridge regression model and elastic net model (competing models), respectively. Note that the ridge regression 

model or the elastic net model outperform the benchmark model when RRMSPE is greater than 1. We implement a 

fixed-sized rolling window method and use the first 50% observations as a training set to evaluate out-of-sample 

forecasting performance. 

                                                              
4 Alternatively, one can, through numerous iterations, allow alpha to be determined as that value which produces the best 

forecast. Here, we simply wish to choose values that are close to the ridge model, the LASSO model, and the midpoint 

between the two models. 
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Using this equation, we are able to determine which of the two benchmark models, AR or RW, 
provides the best forecast of the net charge-off rate for each of the four selected banks. Table 2 
indicates that for each of the banks the RW model outperforms the AR model, since the ratio of AR 
to RW is greater than one for all 12 quarters of the forecast horizon. This means that the RMSE for 
the RW model is lower than the RMSE for the AR model. The table also indicates that the ridge and 
elastic net models outperform the RW model in terms of forecast accuracy after two or four quarters, 
depending upon the bank. More specifically, the elastic net regression, in general, is the best for Citi, 
Wells Fargo, and Capital in the fourth quarter and thereafter. Interestingly enough in the case of 
Busey, the ridge estimator produces the best forecast accuracy of the net charge-off rate as compared 
to the RW model in the second quarter and thereafter. The RW model provides the best forecast for 
the shorter horizons in the case of all four banks. 

Figure 2 shows the forecast accuracy for each of the four banks based on the ridge and the 
elastic net (α = 0.5) regression models as compared to the random walk model. As may be seen, no 
one bank dominates over all 12 forecast horizons. When the elastic net is used, the forecast accuracy 
is greatest for Wells Fargo after four quarters, followed by Citi. Yet, when the ridge regression is 
implemented, the forecast accuracy is greatest for Citi after four quarters, while Wells Fargo is 
second after seven quarters. The two quite small banks rank about equally after seven quarters. 

 

Figure 2. Net charge-off rates for selected banks: Forecast comparisons for best model 
(elastic net when α = 0.5). 

We now discuss in more detail in the next section how the ridge and the elastic net regressions 
compare in terms of forecast accuracy to the other seven regression techniques used in our analysis. 
The comparison is based on the out-of-sample forecasting accuracy for each of the four banks. 
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4.3. Out-of-sample forecasting 

In the case of Citi and the other banks, the RRMSPE is calculated for each of the nine models. 
As Table 3 shows, the best models in terms forecasting accuracy for Citi are the ridge and the elastic 
net models, but only after three quarters. Except for nine and ten quarters, the elastic net model 
outperforms the ridge regression. However, it is important to note that every other model provides 
more accurate forecasts over some horizons than the RW benchmark model. The ranking of the other 
models in terms RRMSPE is as follows: The Factor model with one factor performs best over 
horizons of four to seven quarters; the LASSO model performs best over horizons of eight to eleven 
quarters; and the Pure PLS model with one factor performs best over a horizon of twelve quarters. 

Turning to Wells Fargo, the best models are the ridge and the elastic net models, but only after 
two quarters. As in the case of Citi, the elastic net outperforms the ridge regression over most 
forecast horizons, except for four and ten quarters. However, as in the case of Citi, every other model 
provides more accurate forecast over some horizons than the RW benchmark model. The ranking of 
the other models in terms RRMSPE is as follows: The Factor model with one factor performs best 
over horizons of four to seven quarters; the LASSO model performs best over horizons of eight to 
eleven quarters; and the Pure PLS with one factor performs best over a horizon of twelve quarter. 

As shown in Table 5 for Busey, the best models are the ridge and the elastic net models, but in 
this case it does so after the very first quarter. Unlike the previous two big banks, the ridge regression 
outperforms the elastic net model over most forecast horizons, except for nine and twelve quarters. 
However, as is the case for the two biggest banks, every other model provides more accurate forecast 
over some horizons than the RW benchmark model. In particular, the ranking of the other models is 
as follows: The Pure PLS model with one factor performs best over a horizon of three quarters and 
the LASSO model performs best after the first quarter, as is the case of the ridge model. 

As shown in Table 6 for Capital, the RRMSPE is calculated for each of the nine models. The 
best model for Capital, as shown in Table 6, is the PLS RW model with lagged dependent variable in 
the second quarter when one and three factors are extracted. The ridge and the elastic net models are 
the best models only after two quarters. In general, the elastic net regression outperforms the ridge 
regression over shorter forecast horizons. Once again, every other model provides more accurate 
forecast over some horizons than the RW benchmark model. The ranking of the other models is as 
follows: (1) the Factor RW model with one factor performs best over horizons of three and five 
quarters; (2) PLS RW with lagged target variable and one factor performs best over a horizon of four 
quarter; (3) the LASSO model performs best over horizons of six, seven, ten, eleven, and twelve 
quarters; (4) the Pure PLS model with one factor performs best over a horizon of eight quarters; and 
(5) the Factor model with one factor performs best over a horizon of nine quarters. 
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Table 3. Citi—best forecasting model based on RW benchmark. 

 

 Pure PLS PLS 
Factor 

Model 

Factor  

RW 

PLS RW 

w/o Lagged 

DV 

PLS RW 

w/Lagged 

DV 

Ridge Lasso 
Elastic Net 

(α = 0.3) 

Elastic Net 

(α = 0.5) 

Elastic Net 

(α = 0.7) 
Best 

No. of 

Factors 

Forecasting 

Horizon RRMSPE 

 

j h  

1 1 0.301 0.323 0.873 0.977 0.971 0.959 0.435 0.294 0.559 0.596 0.555 RW 

 2 0.442 0.477 0.931 0.974 0.956 0.941 0.689 0.434 0.867 0.912 0.925 RW 

 3 0.597 0.605 0.993 0.977 0.969 0.993 0.944 0.580 1.220 1.215 1.262 EN (0.7) 
 4 0.738 0.765 1.024 0.970 0.964 0.995 1.296 0.723 1.385 1.496 1.469 EN (0.5) 
 5 0.888 0.891 1.070 0.966 0.964 0.982 1.563 0.860 1.895 1.832 1.939 EN (0.7) 
 6 0.991 0.989 1.102 0.958 0.958 0.908 1.879 0.986 1.944 1.950 1.932 EN (0.5) 
 7 1.071 1.060 1.143 0.964 0.963 0.887 1.857 1.105 1.995 1.942 1.804 EN (0.3) 
 8 1.146 1.125 1.160 0.974 0.969 0.971 1.926 1.202 1.924 1.948 1.880 EN (0.5) 
 9 1.237 1.205 1.243 0.981 0.980 0.979 1.943 1.286 1.846 1.831 1.839 RIDGE 
 10 1.316 1.286 1.304 0.999 1.001 0.994 1.903 1.357 1.863 1.828 1.805 RIDGE 
 11 1.374 1.303 1.341 1.007 1.014 1.005 1.968 1.398 1.973 1.990 2.030 EN (0.7) 
 12 1.393 1.335 1.352 1.032 1.046 1.055 1.860 1.388 1.878 1.878 1.827 EN (0.3) 
2 1 0.287 0.322 0.841 0.940 0.944 0.876 0.435 0.294 0.559 0.596 0.555 RW 

 2 0.423 0.471 0.863 0.905 0.946 0.883 0.689 0.434 0.867 0.912 0.925 RW 
 3 0.552 0.591 0.914 0.889 0.904 0.857 0.944 0.580 1.220 1.215 1.262 EN (0.7) 
 4 0.661 0.759 0.958 0.903 0.933 0.878 1.296 0.723 1.385 1.496 1.469 EN (0.5) 
 5 0.790 0.889 1.019 0.917 0.941 0.845 1.563 0.860 1.895 1.832 1.939 EN (0.7) 
 6 0.879 0.992 1.056 0.924 0.944 0.808 1.879 0.986 1.944 1.950 1.932 EN (0.5) 
 7 0.959 1.062 1.093 0.927 0.935 0.777 1.857 1.105 1.995 1.942 1.804 EN (0.3) 
 8 1.043 1.121 1.133 0.943 0.955 0.831 1.926 1.202 1.924 1.948 1.880 EN (0.5) 

Continued on next page 
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Pure 
PLS 

PLS 
Factor 
Model 

Factor  
RW 

PLS RW 
w/o Lagged 
DV 

PLS RW 
w/Lagged 
DV 

Ridge Lasso 
Elastic 
Net (α = 
0.3) 

Elastic Net 
(α = 0.5) 

Elastic Net 
(α = 0.7) 

Best 

 9 1.104 1.191 1.203 0.956 0.949 0.858 1.943 1.286 1.846 1.831 1.839 RIDGE 

 10 1.162 1.262 1.263 0.982 0.961 0.904 1.903 1.357 1.863 1.828 1.805 RIDGE 

 11 1.170 1.258 1.300 1.001 0.955 0.923 1.968 1.398 1.973 1.990 2.030 EN (0.7) 

 12 1.247 1.244 1.321 1.056 0.994 1.005 1.860 1.388 1.878 1.878 1.827 EN (0.3) 

3 1 0.285 0.254 0.805 0.878 0.886 0.822 0.435 0.294 0.559 0.596 0.555 RW 

 2 0.429 0.377 0.831 0.891 0.941 0.847 0.689 0.434 0.867 0.912 0.925 RW 

 3 0.529 0.472 0.883 0.861 0.896 0.769 0.944 0.580 1.220 1.215 1.262 EN (0.7) 

 4 0.701 0.624 0.937 0.894 0.945 0.832 1.296 0.723 1.385 1.496 1.469 EN (0.5) 

 5 0.847 0.743 1.000 0.901 0.940 0.822 1.563 0.860 1.895 1.832 1.939 EN (0.7) 

 6 0.915 0.811 1.020 0.900 0.918 0.801 1.879 0.986 1.944 1.950 1.932 EN (0.5) 

 7 1.000 0.883 1.064 0.899 0.899 0.820 1.857 1.105 1.995 1.942 1.804 EN (0.3) 

 8 1.045 1.134 1.100 0.904 0.948 0.866 1.926 1.202 1.924 1.948 1.880 EN (0.5) 

 9 1.170 1.188 1.168 0.915 0.921 0.897 1.943 1.286 1.846 1.831 1.839 RIDGE 

 10 1.261 1.246 1.223 0.938 0.929 0.914 1.903 1.357 1.863 1.828 1.805 RIDGE 

 11 1.274 1.236 1.266 0.944 0.907 0.961 1.968 1.398 1.973 1.990 2.030 EN (0.7) 

 12 1.320 1.225 1.292 1.010 0.940 1.057 1.860 1.388 1.878 1.878 1.827 EN (0.3) 

Note: RRMSPE refers to the ratio of the root mean squared prediction error. We calculate RRMSPE based on the root mean squared prediction error (RMSPE) from 
the RW model (benchmark model) divided by the RMSPE from the corresponding competing model. Note that the competing model outperforms the benchmark 
model when RRMSPE is greater than 1. We implement a fixed-sized rolling window method and use the first 50% observations as a training set to evaluate out-of-
sample forecasting performance. 
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Table 4. Wells Fargo—best forecasting model based on RW benchmark. 

 

 Pure PLS PLS 
Factor 

Model 

Factor 

RW 

PLS RW 

w/o Lagged 

DV 

PLS RW 

w/Lagged 

DV 

Ridge Lasso 
Elastic Net 

(α = 0.3) 

Elastic Net 

(α = 0.5) 

Elastic Net 

(α = 0.7) 
Best 

No. of 
Factor
s 

Forecasting 
Horizon RRMSPE 

 

j h  

1 1 0.276 0.305 0.505 0.418 0.466 0.107 0.409 0.308 0.419 0.418 0.418 RW 

 2 0.367 0.443 0.547 0.445 0.511 0.146 0.625 0.480 0.653 0.671 0.675 RW 

 3 0.543 0.562 0.764 0.657 0.722 0.194 0.819 0.619 0.824 0.780 0.791 RW 

 4 0.719 0.685 0.801 0.671 0.739 0.224 1.047 0.745 1.024 1.015 1.018 RIDGE 

 5 0.634 0.770 0.853 0.712 0.791 0.244 1.120 0.856 1.216 1.194 1.189 EN (0.3) 

 6 0.400 0.897 0.920 0.751 0.854 0.249 1.202 0.967 1.319 1.286 1.298 EN (0.3) 

 7 0.511 1.041 1.105 0.874 0.962 0.267 1.568 1.091 1.655 1.661 1.626 EN (0.5) 

 8 0.921 1.161 1.213 0.934 0.968 0.346 1.837 1.198 1.878 1.896 1.906 EN (0.7) 

 9 1.045 1.240 1.257 0.921 0.953 0.364 1.675 1.300 1.748 1.610 1.621 EN (0.3) 

 10 1.198 1.213 1.155 0.936 0.946 0.388 1.594 1.385 1.548 1.522 1.350 RIDGE 

 11 1.407 1.325 1.241 0.946 0.958 0.387 1.721 1.447 1.709 1.725 1.772 EN (0.7) 

 12 1.459 1.380 1.254 0.934 0.936 0.388 1.784 1.485 1.975 1.929 2.018 EN (0.7) 

2 1 0.278 0.263 0.214 0.113 0.133 0.102 0.409 0.308 0.419 0.418 0.418 RW 

 2 0.487 0.302 0.249 0.149 0.187 0.145 0.625 0.480 0.653 0.671 0.675 RW 

 3 0.481 0.464 0.390 0.206 0.219 0.183 0.819 0.619 0.824 0.780 0.791 RW 

 4 0.579 0.475 0.313 0.230 0.290 0.221 1.047 0.745 1.024 1.015 1.018 RIDGE 

 5 0.809 0.468 0.335 0.253 0.292 0.241 1.120 0.856 1.216 1.194 1.189 EN (0.3) 

Continued on next page 
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 Pure PLS PLS 
Factor 

Model 

Factor 

RW 

PLS RW 

w/o Lagged 

DV 

PLS RW 

w/Lagged 

DV 

Ridge Lasso 
Elastic Net 

(α = 0.3) 

Elastic Net 

(α = 0.5) 

Elastic Net 

(α = 0.7) 
Best 

 6 0.747 0.432 0.318 0.264 0.260 0.250 1.202 0.967 1.319 1.286 1.298 EN (0.3) 

 7 0.885 0.446 0.358 0.293 0.271 0.292 1.568 1.091 1.655 1.661 1.626 EN (0.5) 

 8 0.977 0.660 0.583 0.385 0.423 0.393 1.837 1.198 1.878 1.896 1.906 EN (0.7) 

 9 1.077 0.716 0.921 0.405 0.445 0.418 1.675 1.300 1.748 1.610 1.621 EN (0.3) 

 10 1.276 0.982 1.199 0.439 0.465 0.485 1.594 1.385 1.548 1.522 1.350 RIDGE 

 11 1.237 1.077 1.208 0.428 0.448 0.468 1.721 1.447 1.709 1.725 1.772 EN (0.7) 

 12 1.182 1.078 1.196 0.425 0.446 0.468 1.784 1.485 1.975 1.929 2.018 EN (0.7) 

3 1 0.275 0.182 0.199 0.108 0.082 0.100 0.409 0.308 0.419 0.418 0.418 RW 

 2 0.397 0.361 0.294 0.149 0.126 0.149 0.625 0.480 0.653 0.671 0.675 RW 

 3 0.427 0.246 0.375 0.198 0.163 0.174 0.819 0.619 0.824 0.780 0.791 RW 

 4 0.632 0.485 0.342 0.229 0.185 0.212 1.047 0.745 1.024 1.015 1.018 RIDGE 

 5 0.544 0.501 0.398 0.256 0.216 0.231 1.120 0.856 1.216 1.194 1.189 EN (0.3) 

 6 0.525 0.444 0.369 0.267 0.258 0.239 1.202 0.967 1.319 1.286 1.298 EN (0.3) 

 7 0.679 0.467 0.479 0.303 0.306 0.266 1.568 1.091 1.655 1.661 1.626 EN (0.5) 

 8 1.169 0.670 0.867 0.397 0.352 0.346 1.837 1.198 1.878 1.896 1.906 EN (0.7) 

 9 1.178 0.694 1.094 0.422 0.375 0.368 1.675 1.300 1.748 1.610 1.621 EN (0.3) 

 10 1.040 0.590 1.007 0.450 0.419 0.411 1.594 1.385 1.548 1.522 1.350 RIDGE 

 11 1.004 0.484 1.138 0.436 0.417 0.408 1.721 1.447 1.709 1.725 1.772 EN (0.7) 

 12 1.317 0.533 1.196 0.435 0.413 0.432 1.784 1.485 1.975 1.929 2.018 EN (0.7) 

Note: RRMSPE refers to the ratio of the root mean squared prediction error. We calculate RRMSPE based on the root mean squared prediction error (RMSPE) from the 

RW model (benchmark model) divided by the RMSPE from the corresponding competing model. Note that the competing model outperforms the benchmark model 

when RRMSPE is greater than 1. We implement a fixed-sized rolling window method and use the first 50% observations as a training set to evaluate out-of-sample 

forecasting performance. 
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Table 5. Busey (IL)—best forecasting model based on RW benchmark. 

 

 Pure PLS PLS 
Factor 

Model

Factor 

RW 

PLS RW 

w/o Lagged 

DV 

PLS RW 

w/Lagged 

DV 

Ridge Lasso 
Elastic Net 

(α = 0.3) 

Elastic Net 

(α = 0.5) 

Elastic Net 

(α = 0.7) 
Best 

No. of 

Factors 

Forecasting 

Horizon RRMSPE 

 

j h  

1 1 0.677 0.666 0.565 0.975 0.968 0.967 0.846 0.675 0.568 0.557 0.535 RW 

 2 1.023 0.875 0.676 0.944 0.910 0.946 1.243 1.033 1.068 1.035 0.752 RIDGE 

 3 1.123 0.933 0.732 0.961 0.936 0.962 1.356 1.117 1.115 1.094 1.027 RIDGE 

 4 1.054 0.998 0.773 0.920 0.898 0.907 1.303 1.151 1.079 1.143 1.129 RIDGE 

 5 1.083 1.103 0.759 0.927 0.929 0.932 1.387 1.233 1.312 1.293 1.265 RIDGE 

 6 1.189 1.180 0.893 0.974 0.976 1.033 1.477 1.293 1.257 1.227 1.260 RIDGE 

 7 1.172 1.197 0.878 0.984 0.978 0.989 1.388 1.293 1.228 1.254 1.253 RIDGE 

 8 1.210 1.291 1.075 0.984 0.987 0.941 1.423 1.309 1.188 1.200 1.164 RIDGE 

 9 1.188 1.321 1.295 0.986 0.986 0.934 1.422 1.338 1.462 1.356 1.356 EN (0.3) 

 10 1.233 1.330 1.297 0.999 0.994 0.981 1.422 1.354 1.366 1.302 1.346 RIDGE 

 11 1.281 1.352 1.297 0.999 0.996 0.992 1.465 1.375 1.283 1.295 1.405 RIDGE 

 12 1.366 1.385 1.347 1.010 1.010 1.010 1.575 1.393 1.634 1.648 1.651 EN (0.7) 

2 1 0.658 0.470 0.563 0.966 0.794 0.950 0.846 0.675 0.568 0.557 0.535 RW 

 2 0.965 0.798 0.650 0.941 0.678 0.927 1.243 1.033 1.068 1.035 0.752 RIDGE 

 3 1.060 1.035 0.721 0.953 0.853 0.925 1.356 1.117 1.115 1.094 1.027 RIDGE 

 4 1.040 0.757 0.764 0.913 0.887 0.895 1.303 1.151 1.079 1.143 1.129 RIDGE 

 5 1.111 0.756 0.748 0.918 0.852 0.938 1.387 1.233 1.312 1.293 1.265 RIDGE 

 6 1.333 0.760 0.884 0.946 0.829 1.036 1.477 1.293 1.257 1.227 1.260 RIDGE 

Continued on next page 
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 Pure PLS PLS 
Factor 

Model

Factor 

RW 

PLS RW 

w/o Lagged 

DV 

PLS RW 

w/Lagged 

DV 

Ridge Lasso 
Elastic Net 

(α = 0.3) 

Elastic Net 

(α = 0.5) 

Elastic Net 

(α = 0.7) 
Best 

 7 1.335 0.903 0.874 0.960 0.947 1.004 1.388 1.293 1.228 1.254 1.253 RIDGE 

 8 1.183 1.136 1.079 0.972 0.960 0.905 1.423 1.309 1.188 1.200 1.164 RIDGE 

 9 1.165 1.138 1.266 0.967 0.947 0.896 1.422 1.338 1.462 1.356 1.356 EN (0.3) 

 10 1.240 1.227 1.245 0.967 0.966 0.939 1.422 1.354 1.366 1.302 1.346 RIDGE 

 11 1.353 1.375 1.282 0.982 0.994 0.976 1.465 1.375 1.283 1.295 1.405 RIDGE 

 12 1.413 1.382 1.345 1.004 0.997 0.991 1.575 1.393 1.634 1.648 1.651 EN (0.7) 

3 1 0.654 0.524 0.568 0.965 0.855 0.889 0.846 0.675 0.568 0.557 0.535 RW 

 2 0.993 0.764 0.650 0.936 0.646 0.919 1.243 1.033 1.068 1.035 0.752 RIDGE 

 3 1.089 0.926 0.713 0.946 0.788 0.927 1.356 1.117 1.115 1.094 1.027 RIDGE 

 4 1.003 0.852 0.766 0.914 0.908 0.846 1.303 1.151 1.079 1.143 1.129 RIDGE 

 5 1.038 0.829 0.779 0.941 0.871 0.864 1.387 1.233 1.312 1.293 1.265 RIDGE 

 6 1.372 0.851 0.946 0.989 0.872 1.003 1.477 1.293 1.257 1.227 1.260 RIDGE 

 7 1.266 0.996 0.900 0.976 0.978 0.941 1.388 1.293 1.228 1.254 1.253 RIDGE 

 8 1.165 1.165 1.099 0.975 0.969 0.897 1.423 1.309 1.188 1.200 1.164 RIDGE 

 9 1.096 1.188 1.257 0.961 0.978 0.898 1.422 1.338 1.462 1.356 1.356 EN (0.3) 

 10 1.040 1.193 1.235 0.962 0.975 0.850 1.422 1.354 1.366 1.302 1.346 RIDGE 

 11 1.176 1.294 1.269 0.979 0.988 0.901 1.465 1.375 1.283 1.295 1.405 RIDGE 

 12 1.366 1.240 1.330 0.997 1.003 0.987 1.575 1.393 1.634 1.648 1.651 EN (0.7) 

Note: RRMSPE refers to the ratio of the root mean squared prediction error. We calculate RRMSPE based on the root mean squared prediction error (RMSPE) from the 

RW model (benchmark model) divided by the RMSPE from the corresponding competing model. Note that the competing model outperforms the benchmark model 

when RRMSPE is greater than 1. We implement a fixed-sized rolling window method and use the first 50% observations as a training set to evaluate out-of-sample 

forecasting performance. 
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Table 6. Capital (IL)—best forecasting model based on RW benchmark. 

 

 Pure PLS PLS 
Factor 

Model 

Factor 

RW 

PLS RW 

w/o Lagged 

DV 

PLS RW 

w/Lagged 

DV 

Ridge Lasso
Elastic Net 

(α = 0.3) 

Elastic Net 

(α = 0.5) 

Elastic Net 

(α = 0.7) 
Best 

No. of 

Factors 

Forecasting 

Horizon RRMSPE 

 

j h  

1 1 0.502 0.481 0.847 0.972 0.964 0.970 0.652 0.509 0.749 0.754 0.746 RW 

 2 0.601 0.574 0.825 1.008 1.001 1.012 0.828 0.599 0.919 0.921 0.895 PLSRWw/Lag 

 3 0.722 0.663 0.894 0.975 0.966 0.967 0.981 0.733 1.021 0.977 1.072 EN (0.7) 

 4 0.801 0.707 0.949 0.966 0.954 0.976 1.062 0.800 1.169 1.210 1.224 EN (0.7) 

 5 0.833 0.768 0.920 0.937 0.934 0.933 1.269 0.864 1.368 1.347 1.293 EN (0.3) 

 6 0.917 0.874 0.911 0.927 0.921 0.896 1.347 0.966 1.419 1.384 1.389 EN (0.3) 

 7 0.868 0.921 0.950 0.949 0.940 0.864 1.449 1.010 1.436 1.480 1.468 EN (0.5) 

 8 1.188 1.034 1.095 0.970 0.960 0.882 1.447 1.082 1.393 1.336 1.433 RIDGE 

 9 1.080 1.044 1.108 0.970 0.965 0.904 1.397 1.077 1.357 1.392 1.344 RIDGE 

 10 1.141 1.109 1.132 0.978 0.973 0.927 1.497 1.143 1.453 1.522 1.466 EN (0.5) 

 11 1.031 1.144 1.124 0.975 0.968 0.931 1.409 1.180 1.364 1.370 1.352 RIDGE 

 12 1.092 1.188 1.127 1.002 0.999 0.983 1.520 1.216 1.478 1.457 1.499 RIDGE 

2 1 0.517 0.388 0.858 0.978 0.932 0.966 0.652 0.509 0.749 0.754 0.746 RW 

 2 0.585 0.409 0.822 0.998 0.998 0.943 0.828 0.599 0.919 0.921 0.895 RW 

 3 0.706 0.416 0.893 0.961 0.853 0.925 0.981 0.733 1.021 0.977 1.072 EN (0.7) 

 4 0.745 0.386 0.930 0.948 0.831 0.860 1.062 0.800 1.169 1.210 1.224 EN (0.7) 

 5 0.814 0.522 0.918 0.933 0.917 0.915 1.269 0.864 1.368 1.347 1.293 EN (0.3) 

 6 0.912 0.625 0.893 0.911 0.943 0.877 1.347 0.966 1.419 1.384 1.389 EN (0.3) 

Continued on next page 
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 Pure PLS PLS 
Factor 

Model 

Factor 

RW 

PLS RW 

w/o Lagged 

DV 

PLS RW 

w/Lagged 

DV 

Ridge Lasso
Elastic Net 

(α = 0.3) 

Elastic Net 

(α = 0.5) 

Elastic Net 

(α = 0.7) 
Best 

 7 1.005 0.670 0.920 0.924 1.026 0.955 1.449 1.010 1.436 1.480 1.468 EN (0.5) 

 8 1.205 0.962 1.094 0.957 1.189 0.995 1.447 1.082 1.393 1.336 1.433 RIDGE 

 9 1.039 0.953 1.085 0.951 1.038 0.902 1.397 1.077 1.357 1.392 1.344 RIDGE 

 10 1.160 1.074 1.155 0.984 1.085 0.978 1.497 1.143 1.453 1.522 1.466 EN (0.5) 

 11 1.083 1.089 1.099 0.950 1.023 0.920 1.409 1.180 1.364 1.370 1.352 RIDGE 

 12 1.221 1.249 1.160 1.009 1.086 1.022 1.520 1.216 1.478 1.457 1.499 RIDGE 

3 1 0.528 0.382 0.851 0.973 0.935 0.961 0.652 0.509 0.749 0.754 0.746 RW 

 2 0.589 0.409 0.813 0.987 1.036 0.958 0.828 0.599 0.919 0.921 0.895 PLSRWw/oLag 

 3 0.735 0.433 0.870 0.938 0.895 0.916 0.981 0.733 1.021 0.977 1.072 EN (0.7) 

 4 0.797 0.408 0.918 0.933 0.867 0.897 1.062 0.800 1.169 1.210 1.224 EN (0.7) 

 5 0.811 0.563 0.925 0.933 0.921 0.851 1.269 0.864 1.368 1.347 1.293 EN (0.3) 

 6 0.944 0.719 0.916 0.906 1.057 0.877 1.347 0.966 1.419 1.384 1.389 EN (0.3) 

 7 1.035 0.775 1.008 0.951 1.138 0.945 1.449 1.010 1.436 1.480 1.468 EN (0.5) 

 8 1.192 0.991 1.159 0.966 1.243 0.919 1.447 1.082 1.393 1.336 1.433 RIDGE 

 9 1.005 1.005 1.117 0.949 1.117 0.839 1.397 1.077 1.357 1.392 1.344 RIDGE 

 10 1.117 1.062 1.164 0.978 1.088 0.931 1.497 1.143 1.453 1.522 1.466 EN (0.5) 

 11 1.022 1.091 1.098 0.945 1.071 0.906 1.409 1.180 1.364 1.370 1.352 RIDGE 

 12 1.083 1.139 1.161 1.008 1.063 0.975 1.520 1.216 1.478 1.457 1.499 RIDGE 

Note: RRMSPE refers to the ratio of the root mean squared prediction error. We calculate RRMSPE based on the root mean squared prediction error (RMSPE) from the 

RW model (benchmark model) divided by the RMSPE from the corresponding competing model. Note that the competing model outperforms the benchmark model 

when RRMSPE is greater than 1. We implement a fixed-sized rolling window method and use the first 50% observations as a training set to evaluate out-of-sample 

forecasting performance. 
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In addition to comparing the performance of the different forecasting models, it is useful to 
examine the relative importance of the various predictor variables for the model that most accurate 
forecast. In particular, beyond a few quarters, one of the best models for forecasting the net 
charge-off rates is the ridge regression model. We may therefore assess the rankings of the three 
groups of predictors in terms of their importance in obtaining the most accurate forecast as well as 
the rankings of the predictors with each of the groups. Although there are four banks, we only do this 
exercise for two of the banks, one of the two biggest and one of the two smallest, since the results are 
quite similar in terms of corresponding size for the other two banks. 

Starting with Citi, Figure 3 shows the relative importance of all 364 predictor variables used in 
forecasting the net charge-off rate. It is clear that the bank predictors dominate all of the national and 
state predictors, as shown by the magnitude of their coefficients. Of the 27 bank predictors, moreover, 
only the net charge-off rates on the various types of loans and the loan ratios matter, not the levels of 
the types of loans, as shown in Figure 4. When the charge-off rates for the different types of loans 
are omitted, moreover, the results remain unchanged. Furthermore, the two predictors having the 
biggest impact are real estate loans backed by construction loans and loan loss reserves, and in that 
order of importance. Decreases in the former variable are associated with a lower net charge-off rate, 
while the opposite is the case for loan loss reserves. As regards the national predictors, Figure 5 
shows that the two most important predictors are the unemployment rate and industrial capacity, with 
former having a positive relationship and the latter a negative relationship. Interestingly, almost all 
the interest-related predictors have some impact and negative relationships with the net charge-off 
rate. The impact in all these cases, however, tends to be de minimas. Lastly, Figure 5 shows the 
relative importance of the state predictors. Clearly, the only predictors that matter are the state 
unemployment rates, although their relative importance overall is also relatively minor. Yet, the 
impact of the state predictors generally dominates that of the national predictors. 

 

Figure 3. Citi—ridge coefficients for all predictor variables based on four-quarter forecasting horizon. 
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Figure 4. Citi—ridge coefficients for bank predictor variables based on four-quarter forecasting horizon. 

 

Figure 5. Citi—ridge coefficients for national predictor variables based on four-quarter forecasting horizon. 

 

Figure 6. Citi—ridge coefficients for state predictor variables based on four-quarter forecasting horizon. 

As regards Busey, Figure 7 shows the relative importance of the same 364-predictor variables 
used in forecasting the net charge-off rate. As is the case with Citi, the bank predictors dominate all 
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of the national and state predictors, as shown by the magnitude of coefficients. Of the 27 bank 
predictors, in contrast to Citi, not all of the net charge-off rates on the various types of loans matter, 
as shown in Figure 8. In addition, once again, the levels of the types of loans do not have a 
meaningful impact. Furthermore, as with Citi, the two predictors having the biggest impact and the 
same association with the net charge-off rate are real estate loans backed by construction loans and 
loan loss reserves, and in that order of importance. As regards the national predictors, Figure 9 shows 
that the findings for Busey contrast fairly sharply with those for Citi. The two most important 
predictors are the unemployment rate and industrial capacity, with former having a positive 
relationship and the latter a negative relationship. Interestingly, almost all the interest-related 
predictors have some impact, albeit relatively minor, and negative relationships with the net 
charge-off rate. Lastly, Figure 5 shows the relative importance of the state predictors. Clearly, the 
only predictors that matter are the state unemployment rates, although their relative importance 
overall is de minimas as compared to the bank predictors. The state unemployment rates, however, 
are more important than all the national variables. 

 

Figure 7. Busey (IL)—ridge coefficients for all predictor variables based on four-quarter 
forecasting horizon. 

 

Figure 8. Busey (IL)—ridge coefficients for bank predictor variables based on four-quarter 
forecasting horizon. 
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Figure 9. Busey (IL)—ridge coefficients for national predictor variables based on 
four-quarter forecasting horizon. 

 

Figure 10. Busey (IL)—ridge coefficients for state predictor variables based on four-quarter 
forecasting horizon. 

5. Conclusions 

As discussed, recent regulatory and other developments in the banking sector underscore the 
need for banks to devote more effort to obtaining accurate forecasts of net charge-off rates, among 
other important banking variables. We have discussed several important regression models that are 
used for forecasting purposes, including some models that allow for situations in which the number 
of predictor variables exceeds the number of observations, and use these models to forecast net 
charge-off rates for four banks. Two of the banks are among the biggest banks in the country, 
while the other two banks are among the smallest banks. Based upon our empirical findings 
regarding the forecast accuracy of the different regression models, we find that the ridge regression 
model or the elastic net model outperform the other models over forecast horizons of four and 
more quarters. The other models examined, however, outperform a benchmark random walk model 
over various forecast horizons. 

As far as we know, no other study has used as many forecasting models to examine which 
model performs best in terms of forecasting accuracy over various horizons in the banking literature 
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focusing on an extremely important banking variable, the net charge-off rate. In future research, one 
might consider using the types of forecasting models employed here for forecasting other banking 
variables. This would include such variables as the return on assets (ROA), return on equity (ROE), 
z-score (the return on assets plus the capital asset ratio divided by the standard deviation of return on 
assets—the z-score measures the distance from insolvency (Roy, 1952)), stock return or price, 
volatility of stock return, bank earnings, price-earnings (P/E) ratio, nonperforming loans, and loan 
loss provision. 

Our findings have important policy implications. In particular, bank regulatory authorities 
are able to assess the forecast models used by individual banks and the associated results to assist 
them in evaluating the expected future performance of banks. Depending upon the forecast 
models and results as well as their own independent assessment, the regulators will be in a better 
position to decide upon any actions that might be appropriate to promote safer and sounder banks. 
This might include requiring modifications in or better explanations for the models used. But it 
might even include supervisory actions to the extent that the forecast results coupled with the 
regulators’ own assessment suggest the likelihood of emerging problems at a particular bank or a 
set of banks more generally. 

Conflict of interest 

The authors declare no conflict of interest. 

References 

Adrian T, Ashcraft AB (2016) Shadow banking: A review of the literature. Staff Rep 6: 282–315. 
Barth J, Joo S, Kim H, et al. (2018) Forecasting net charge-off rates of banks: A PLS approach. 

Unpublished Manuscript. 
Barth JR, Miller SM (2017) A primer on the evolution and complexity of bank regulatory capital 

standards. Unpublished Manuscript. 
Bastos JA (2010) Forecasting bank loans loss-given-default. J Banking Finance 34: 2510–2517. 
Bernoth K, Pick A (2011) Forecasting the fragility of the banking and insurance sectors. J 

Banking Finance 35: 807–818. 
Covas FB, Rump B, Zakrajšek E (2014) Stress-testing US bank holding companies: A dynamic 

panel quantile regression approach. Int J Forecasting 30: 691–713. 
Crook J, Banasik J (2012) Forecasting and explaining aggregate consumer credit delinquency 

behaviour. Int J Forecasting 28: 145–160. 
Drehmann M, Juselius M (2014) Evaluating early warning indicators of banking crises: 

Satisfying policy requirements. Int J Forecasting 30: 759–780. 
Fitzpatrick BD, Reichmeier J, Dowell J (2017) Back to the future: The Landscape of the 

Financial Services Industry 2020 and Beyond. J Adv Econ Finance 2: 40–53. 
Geladi P, Kowalski BR (1986) Partial least-squares regression: A tutorial. Anal Chim Acta 185: 1–17. 
Guerrieri L, Welch M (2012) Can macro variables used in stress testing forecast the performance 

of banks? Unpublished Manuscript. 
Hirtle B, Kovner A, Vickery J, et al. (2016) Assessing financial stability: The capital and loss 

assessment under stress scenarios (CLASS) model. J Banking Finance 69: S35–S55. 



580 

Quantitative Finance and Economics  Volume 2, Issue 3, 554–589. 

Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J 
Forecasting 22: 679–688. 

Jakšič M, Marinč M (2017) Relationship banking and information technology: The role of 
artificial intelligence and FinTech. Risk Manage 2017: 1–18. 

Kupiec P (2018) Inside the black box: The accuracy of alternative stress test models. 
Unpublished Manuscript. 

Luttrell D, Atkinson T, Rosenblum H (2013) Assessing the costs and consequences of the 2007–
2009 financial crisis and its aftermath. Econ Lett 8: 1–4. 

Pesaran MH (2006) Estimation and inference in large heterogeneous panels with a multifactor 
error structure. Econometrica 74: 967–1012. 

Roy AD (1952) Safety first and the holding of assets. Econometrica 20: 431–449. 
Tibshirani JR (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc 58: 267–288. 
Zou H, Hastie T (2010) Regularization and variable selection via the elastic net. J R Stat Soc 67: 

301–320. 
 

Appendix 

Appendix A. Variable ID description. 

Group ID Variable ID Data description 

#1 

 

1 Sum(CO-RE-multifamily, CO-IPRE, CO-construction)/sum(RE-multifamily, IPRE, 

construction) 

 2 CO-CI/CI 

 3 Sum(CO-credit card, CO-other consumer)/sum(credit card other consumer) 

 4 Income producing real estate 

 5 CO-construction/construction 

 6 CO-Open-end residential loans/Open-end residential loans 

 7 CO-multifamily/multifamily 

 8 CO-close-end residential loans/close-end residential loans 

 9 Total loans (net of unearned income) 

 10 Total assets 

 11 Loans backed by real estate 

 12 Sum (multifamily, construction, IPRE) 

 13 Real estate loans backed by income producing real estate 

 14 Real estate loans backed by construction loans 

 15 Real estate loans backed by residential properties (open-end) 

 16 Real estate loans backed by multifamily loans 

 17 Real estate loans backed by residential properties (close-end) 

 18 Commercial and Industrial Loans 

 19 Loans to consumers: Sum (credit card, other consumer) 

 20 Ratio: Loans to consumers: Sum (credit card, other consumer) 

Continued on next page
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Group ID Variable ID Data description 

 21 Ratio: Real estate loans backed by residential properties (close-end) 

 22 Ratio: Sum(multifamily, construction, IPRE) 

 23 Ratio: Real estate loans backed by construction loans 

 24 Ratio: Commercial and Industrial Loans 

 25 Ratio: Credit card 

 26 Total Loans/Total Assets 

 27 Loss Reserves/Total loans 

#2 28 All Employees: Private Service-Providing 

 29 All Employees: Government: Federal 

 30 All Employees: Manufacturing 

 31 All Employees: Construction 

 32 All Employees: Education and Health Services 

 33 All Employees: Goods-Producing Industries 

 34 All Employees: Government 

 35 All Employees: Leisure and Hospitality 

 36 All Employees: Mining and logging 

 37 All Employees: Total Private Industries 

 38 All Employees: Other Services 

 39 All Employees: Trade, Transportation and Utilities 

 40 Civilian Unemployment Rate 

#3 41 New Privately-Owned Housing Units Completed: 1-Unit Structures 

 42 New Privately-Owned Housing Units Completed: Total 

 43 Housing Starts: Total: New Privately Owned Housing Units Started 

 44 Privately Owned Housing Starts: 1-Unit Structures 

 45 New Private Housing Units Authorized by Building Permits 

 46 New Private Housing Units Authorized by Building Permits—in Structures with 1 Unit 

 47 All-Transactions House Price Index for the United States 

 48 Commercial Real Estate Price Index (Level) 

#4 49 Industrial Production Index 

 50 Industrial Capacity: Total index 

 51 Capacity Utilization: Total Industry 

 52 Motor Vehicle Retail Sales: Light Weight Trucks 

 53 Light Weight Vehicle Sales: Autos and Light Trucks, Seasonally Adjusted Annual Rate 

 54 Producer Price Index by Commodity for Final Demand: Finished Goods 

 55 Real Final Sales to Private Domestic Purchasers 

#5 56 Compensation of employees: Wages and salaries: Private industries 

 57 Compensation of employees: Wages and salaries: Government 

 58 Compensation of Employees: Wages and Salary Accruals 

 59 Real Exports of Goods and Services 

 60 Real imports of goods and services 

 61 Real Exports of services 

 62 Real Exports of Goods 

 63 Real Imports of Goods 

 64 Real Imports of Services 

Continued on next page
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Group ID Variable ID Data description 

 65 Real Net Exports of Goods and Services 

 66 Real Private Nonresidential Fixed Investment 

 67 Real Private Residential Fixed Investment 

 68 Real Fixed Private Investment 

 69 Change in Real Private Inventories 

 70 Real Gross Private Domestic Investment 

 71 Real Personal Consumption Expenditures: Durable Goods 

 72 real Personal Consumption Expenditures: Services 

 73 Real Personal Consumption Expenditures: Nondurable Goods 

 74 Real Federal Consumption Expenditures and Gross Investment 

 75 Real State and Local Consumption Expenditures & Gross Investment 

 76 Real Gross Domestic Product 

 77 Real Final Sales to Private Domestic Purchasers 

 78 Real Personal Income 

 79 Corporate Profits After Tax (without IVA and CCAdj) 

 80 Real Disposable Personal Income 

 81 Real Disposable Personal Income: Per Capita 

#6 82 Consumer Price Index for All Urban Consumers: All Items 

 83 Consumer Price Index for All Urban Consumers: Energy 

 84 Consumer Price Index for All Urban Consumers: Food and Beverages 

 85 Consumer Price Index for All Urban Consumers: All Items Less Food and Energy 

 86 Effective Federal Funds Rate 

 87 Moody’s Seasoned Aaa Corporate Bond Yield 

 88 Moody’s Seasoned Baa Corporate Bond Yield 

 89 3-month Treasury Constant Maturity Rate 

 90 6-month Treasury Constant Maturity Rate 

 91 1-Year Treasury Constant Maturity Rate 

 92 2-Year Treasury Constant Maturity Rate 

 93 3-Year Treasury Constant Maturity Rate 

 94 5-Year Treasury Constant Maturity Rate 

 95 7-Year Treasury Constant Maturity Rate 

 96 10-Year Treasury Constant Maturity Rate 

 97 Bank Prime Loan Rate 

 
98 30-Year Fixed Rate Mortgage Average in the United States, Percent, Quarterly, Not 

Seasonally Adjusted 

 99 3-Month Treasury Bill: Secondary Market Rate 

 100 6-Month Treasury Bill: Secondary Market Rate 

 101 3-Month London Interbank Offered Rate (LIBOR), based on U.S. Dollar 

 102 6-Month London Interbank Offered Rate (LIBOR), based on U.S. Dollar 

 103 12-Month London Interbank Offered Rate (LIBOR), based on U.S. Dollar 

 104 2-year swap 

 105 3-year swap 

 106 4 year swap 

 107 5-year swap 

Continued on next page
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Group ID Variable ID Data description 

 108 7-year swap 

 109 10-year swap 

 110 U.S Market Volatiliry Index 

 111 Dow Jones Total Stock Market 

 112 S & P 500 Index 

#7 113 Unemployment Rate in Alaska 

 114 Unemployment Rate in Alabama 

 115 Unemployment Rate in Arkansas 

 116 Unemployment Rate in Arizona 

 117 Unemployment Rate in California 

 118 Unemployment Rate in Colorado 

 119 Unemployment Rate in Connecticut 

 120 Unemployment Rate in the District of Columbia 

 121 Unemployment Rate in Delaware 

 122 Unemployment Rate in Florida 

 123 Unemployment Rate in Georgia 

 124 Unemployment Rate in Hawaii 

 125 Unemployment Rate in Iowa 

 126 Unemployment Rate in Idaho 

 127 Unemployment Rate in Illinois 

 128 Unemployment Rate in Indiana 

 129 Unemployment Rate in Kansas 

 130 Unemployment Rate in Kentucky 

 131 Unemployment Rate in Louisiana 

 132 Unemployment Rate in Massachusetts 

 133 Unemployment Rate in Maryland 

 134 Unemployment Rate in Maine 

 135 Unemployment Rate in Michigan 

 136 Unemployment Rate in Minnesota 

 137 Unemployment Rate in Missouri 

 138 Unemployment Rate in Mississippi 

 139 Unemployment Rate in Montana 

 140 Unemployment Rate in North Carolina 

 141 Unemployment Rate in North Dakota 

 142 Unemployment Rate in Nebraska 

 143 Unemployment Rate in New Hampshire 

 144 Unemployment Rate in New Jersey 

 145 Unemployment Rate in New Mexico 

 146 Unemployment Rate in Nevada 

 147 Unemployment Rate in New York 

 148 Unemployment Rate in Ohio 

 149 Unemployment Rate in Oklahoma 

 150 Unemployment Rate in Oregon 

 151 Unemployment Rate in Pennsylvania 

Continued on next page
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Group ID Variable ID Data description 

 152 Unemployment Rate in Rhode Island 

 153 Unemployment Rate in South Carolina 

 154 Unemployment Rate in South Dakota 

 155 Unemployment Rate in Tennessee 

 156 Unemployment Rate in Texas 

 157 Unemployment Rate in Utah 

 158 Unemployment Rate in Virginia 

 159 Unemployment Rate in Washington 

 160 Unemployment Rate in Wisconsin 

 161 Unemployment Rate in West Virginia 

 162 Unemployment Rate in Wyoming 

#8 163 All-Transactions House Price Index for California 

 164 All-Transactions House Price Index for Florida 

 165 All-Transactions House Price Index for New York 

 166 All-Transactions House Price Index for New Jersey 

 167 All-Transactions House Price Index for Hawaii 

 168 All-Transactions House Price Index for Massachusetts 

 169 All-Transactions House Price Index for Texas 

 170 All-Transactions House Price Index for Utah 

 171 All-Transactions House Price Index for Colorado 

 172 All-Transactions House Price Index for Michigan 

 173 All-Transactions House Price Index for Connecticut 

 174 All-Transactions House Price Index for Illinois 

 175 All-Transactions House Price Index for Wisconsin 

 176 All-Transactions House Price Index for Alabama 

 177 All-Transactions House Price Index for Pennsylvania 

 178 All-Transactions House Price Index for Arizona 

 179 All-Transactions House Price Index for North Carolina 

 180 All-Transactions House Price Index for Minnesota 

 181 All-Transactions House Price Index for Georgia 

 182 All-Transactions House Price Index for Rhode Island 

 183 All-Transactions House Price Index for Nevada 

 184 All-Transactions House Price Index for New Hampshire 

 185 All-Transactions House Price Index for Maine 

 186 All-Transactions House Price Index for Maryland 

 187 All-Transactions House Price Index for Idaho 

 188 All-Transactions House Price Index for Ohio 

 189 All-Transactions House Price Index for Missouri 

 190 All-Transactions House Price Index for Oregon 

 191 All-Transactions House Price Index for Washington 

 192 All-Transactions House Price Index for North Dakota 

 193 All-Transactions House Price Index for South Carolina 

 194 All-Transactions House Price Index for Louisiana 

 195 All-Transactions House Price Index for Virginia 

Continued on next page
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Group ID Variable ID Data description 

 196 All-Transactions House Price Index for Oklahoma 

 197 All-Transactions House Price Index for Alaska 

 198 All-Transactions House Price Index for New Mexico 

 199 All-Transactions House Price Index for Iowa 

 200 All-Transactions House Price Index for Indiana 

 201 All-Transactions House Price Index for Delaware 

 202 All-Transactions House Price Index for Tennessee 

 203 All-Transactions House Price Index for Vermont 

 204 All-Transactions House Price Index for Kansas 

 205 All-Transactions House Price Index for Kentucky 

 206 All-Transactions House Price Index for West Virginia 

 207 All-Transactions House Price Index for Nebraska 

 208 All-Transactions House Price Index for South Dakota 

 209 All-Transactions House Price Index for Montana 

 210 All-Transactions House Price Index for Wyoming 

 211 All-Transactions House Price Index for Arkansas 

 212 All-Transactions House Price Index for Mississippi 

 213 All-Transactions House Price Index for the District of Columbia 

 214 New Private Housing Units Authorized by Building Permits for Alaska 

 215 New Private Housing Units Authorized by Building Permits for Alabama 

 216 New Private Housing Units Authorized by Building Permits for Arkansas 

 217 New Private Housing Units Authorized by Building Permits for Arizona 

 218 New Private Housing Units Authorized by Building Permits for California 

 219 New Private Housing Units Authorized by Building Permits for Colorado 

 220 New Private Housing Units Authorized by Building Permits for Connecticut 

 221 New Private Housing Units Authorized by Building Permits for Delaware 

 222 New Private Housing Units Authorized by Building Permits for Florida 

 223 New Private Housing Units Authorized by Building Permits for Georgia 

 224 New Private Housing Units Authorized by Building Permits for Hawaii 

 225 New Private Housing Units Authorized by Building Permits for Iowa 

 226 New Private Housing Units Authorized by Building Permits for Idaho 

 227 New Private Housing Units Authorized by Building Permits for Illinois 

 228 New Private Housing Units Authorized by Building Permits for Indiana 

 229 New Private Housing Units Authorized by Building Permits for Kansas 

 230 New Private Housing Units Authorized by Building Permits for Kentucky 

 231 New Private Housing Units Authorized by Building Permits for Louisiana 

 232 New Private Housing Units Authorized by Building Permits for Massachusetts 

 233 New Private Housing Units Authorized by Building Permits for Maryland 

 234 New Private Housing Units Authorized by Building Permits for Maine 

 235 New Private Housing Units Authorized by Building Permits for Michigan 

 236 New Private Housing Units Authorized by Building Permits for Minnesota 

 237 New Private Housing Units Authorized by Building Permits for Missouri 

 238 New Private Housing Units Authorized by Building Permits for Mississippi 

 239 New Private Housing Units Authorized by Building Permits for Montana 

Continued on next page
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Group ID Variable ID Data description 

 240 New Private Housing Units Authorized by Building Permits for North Carolina 

 241 New Private Housing Units Authorized by Building Permits for North Dakota 

 242 New Private Housing Units Authorized by Building Permits for Nebraska 

 243 New Private Housing Units Authorized by Building Permits for New Hampshire 

 244 New Private Housing Units Authorized by Building Permits for New Jersey 

 245 New Private Housing Units Authorized by Building Permits for New Mexico 

 246 New Private Housing Units Authorized by Building Permits for Nevada 

 247 New Private Housing Units Authorized by Building Permits for New York 

 248 New Private Housing Units Authorized by Building Permits for Ohio 

 249 New Private Housing Units Authorized by Building Permits for Oklahoma 

 250 New Private Housing Units Authorized by Building Permits for Oregon 

 251 New Private Housing Units Authorized by Building Permits for Pennsylvania 

 252 New Private Housing Units Authorized by Building Permits for Rhode Island 

 253 New Private Housing Units Authorized by Building Permits for South Carolina 

 254 New Private Housing Units Authorized by Building Permits for South Dakota 

 255 New Private Housing Units Authorized by Building Permits for Tennessee 

 256 New Private Housing Units Authorized by Building Permits for Texas 

 257 New Private Housing Units Authorized by Building Permits for Utah 

 258 New Private Housing Units Authorized by Building Permits for Virginia 

 259 New Private Housing Units Authorized by Building Permits for Vermont 

 260 New Private Housing Units Authorized by Building Permits for Washington 

 261 New Private Housing Units Authorized by Building Permits for Wisconsin 

 262 New Private Housing Units Authorized by Building Permits for West Virginia 

 263 New Private Housing Units Authorized by Building Permits for Wyoming 

 264 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Alaska 

 265 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Alabama

 266 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Arkansas 

 267 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Arizona 

 268 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for California 

 269 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Colorado 

 270 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Connecticut 

 271 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Delaware 

 272 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Florida 

 273 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Georgia 

 274 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Hawaii 

 275 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Iowa 

 276 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Idaho 

 277 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Illinois 

 278 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Indiana 

 279 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Kansas 

 280 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Kentucky 

 281 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Louisiana 

 282 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Massachusetts 

 283 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Maryland 
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Group ID Variable ID Data description 

 284 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Maine 

 285 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Michigan 

 286 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Minnesota

 287 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Missouri

 288 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Mississippi

 289 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Montana

 290 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for North Carolina 

 291 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for North Dakota

 292 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Nebraska 

 293 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for New Hampshire 

 294 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for New Jersey 

 295 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for New Mexico

 296 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Nevada 

 297 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for New York

 298 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Ohio 

 299 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Oklahoma 

 300 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Oregon 

 301 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Pennsylvania

 302 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Rhode Island

 303 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for South Carolina 

 304 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for South Dakota

 305 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Tennessee 

 306 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Texas 

 307 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Utah 

 308 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Virginia

 309 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Vermont

 310 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Washington 

 311 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Wisconsin 

 312 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for West Virginia 

 313 New Private Housing Units Authorized by Building Permits: 1-Unit Structures for Wyoming 

#9 314 Total Personal Income in Alaska 

 315 Total Personal Income in Alabama 

 316 Total Personal Income in Arkansas 

 317 Total Personal Income in Arizona 

 318 Total Personal Income in California 

 319 Total Personal Income in Colorado 

 320 Total Personal Income in Connecticut 

 321 Total Personal Income in Delaware 

 322 Total Personal Income in Florida 

 323 Total Personal Income in Georgia 

 324 Total Personal Income in Hawaii 

 325 Total Personal Income in Iowa 

 326 Total Personal Income in Idaho 

 327 Total Personal Income in Illinois 
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Group ID Variable ID Data description 

 328 Total Personal Income in Indiana 

 329 Total Personal Income in Kansas 

 330 Total Personal Income in Kentucky 

 331 Total Personal Income in Louisiana 

 332 Total Personal Income in Massachusetts 

 333 Total Personal Income in Maryland 

 334 Total Personal Income in Maine 

 335 Total Personal Income in Michigan 

 336 Total Personal Income in Minnesota 

 337 Total Personal Income in Missouri 

 338 Total Personal Income in Mississippi 

 339 Total Personal Income in Montana 

 340 Total Personal Income in North Carolina 

 341 Total Personal Income in North Dakota 

 342 Total Personal Income in Nebraska 

 343 Total Personal Income in New Hampshire 

 344 Total Personal Income in New Jersey 

 345 Total Personal Income in New Mexico 

 346 Total Personal Income in Nevada 

 347 Total Personal Income in New York 

 348 Total Personal Income in Ohio 

 349 Total Personal Income in Oklahoma 

 350 Total Personal Income in Oregon 

 351 Total Personal Income in Pennsylvania 

 352 Total Personal Income in Rhode Island 

 353 Total Personal Income in South Carolina 

 354 Total Personal Income in South Dakota 

 355 Total Personal Income in Tennessee 

 356 Total Personal Income in Texas 

 357 Total Personal Income in Utah 

 358 Total Personal Income in Virginia 

 359 Total Personal Income in Vermont 

 360 Total Personal Income in Washington 

 361 Total Personal Income in Wisconsin 

 362 Total Personal Income in West Virginia 

 363 Total Personal Income in Wyoming 

 364 Total Personal Income in the District of Columbia 
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Appendix B. The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm. 

In contrast to the two stages factor model5, for the partial least squares regression, the latent 
component variables are obtained iteratively. In other words, to identify the second component PLSR 
direction we first adjust each of the variables for ∆Fଵ, by regressing each variable on ∆Fଵ and taking 
residuals. We believe these residuals contain the remaining information and can be explained by 
introducing another component in the model. 

The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm is shown below. It starts with 
scaled and centered data. 

● The x-weights, ݓ୒ൈଵ:  
୒ൈଵݓ ൌ ୒ൈ୘܆

′ ଵൈ୘ݑ/୘ൈଵݑ
′ ݑ usually ,ݑ ୘ൈଵ (Getting a starting vector ofݑ ൌ  (B1)          (ݕ

● Calculate X-scores,	∆F୘ൈଵ: 

∆F୘ൈଵ ൌ  ୒ൈଵ                                                            (B2)ݓ୘ൈ୒܆

● The y-weights, ܿ: 
ܿ ൌ ଵൈ୘ݕ

′ , ∆F୘ൈଵ/∆Fଵൈ୘
′ ∆F୘ൈଵ                                                   (B3) 

● Update set of Y-scores, ݑ: 
୘ൈଵݑ ൌ  ୘ൈଵ                                                      (B4)ݕܿ

● Convergence is tested on the change in ࢛, i.e., 
‖౤౛౭ܝ౥ౢౚିܝ‖

‖౤౛౭ܝ‖
൏ 10ି଼. If the convergence hast 

not reached, return to step 2, otherwise continue with step 5. 
● Remove the present component from X and y use these deflated matrices as X and y in the 

next component6:  
୘ൈ୒܆ ൌ ୘ൈ୒܆ െ ∆F୘ൈଵ݌ଵൈ୒

′ , where ݌୒ൈଵ ൌ ୒ൈ୘܆
′ ∆F୘ൈଵ/ሺ∆Fଵൈ୘

′ ∆F୘ൈଵሻ          (B5) 

୘ൈଵݕ ൌ ୘ൈଵݕ െ ܿ∆F୘ൈଵ                                                           (B6) 

● Continue with next component (i.e., back to step 1 with the deflated ݕ and ܆) until we think 
that there is no more significant information in ܆ about ݕ. 
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5 It is well known that two-stage approach the first component always captures most of the variance, the second 

component most and so on until all the variance is accounted for. Since the first capture most of the variance, they are 

typically of focus. 
6 It is important to note that after each component, ݎ, the design matrix ܆୘ൈ୒ is deflated by subtracting ∆F୘ൈଵ݌ଵൈ୒

′  from 

-୒ൈଵ, is referred to the residuals after previous dimension, ݁௧௜,௔ିଵ, instead of relating to the Xݓ ,୘ൈ୒. Hence, the weights܆

variables themselves. Therefore, the equation, ∆ܨ௧௥ ൌ ∑ ௜௥ݓ
∗ ܺ௧௜

ே
௜ୀଵ , becomes ∆ܨ௧௥ ൌ ∑ ௜௥݁௧௜,௔ିଵݓ

ே
௜ୀଵ , where ݁௧௜,௔ିଵ ൌ

݁௧௜,௔ିଶ െ ௔ିଵ,௜݌௧,௔ିଵܨ∆ . When ܽ ൌ 1, ݁௧௜,଴ ൌ ܺ௧௜ . However, the weights, ݓ, can be transformed to ݓ∗, which directly 

related to ܆, given the equation ∆ܨ௧௥ ൌ ∑ ௜௥ݓ
∗ ܺ௧௜

ே
௜ୀଵ . Manne (1987) showed that the relationship between above two is 

expressed by ܅୒ൈୖ
∗ ൌ ൈ୒ୖ۾୒ൈୖ൫܅

′ ୒ൈୖ൯܅
ିଵ

. 


