
http://www.aimspress.com/journal/QFE

QFE, 2(2): 413–467.
DOI:10.3934/QFE.2018.2.413
Received: 28 November 2017
Accepted: 22 April 2018
Published: 11 June 2018

Research article

Applications of random-matrix theory and nonparametric change-point
analysis to three notable systemic crises

David Melkuev1, Danqiao Guo2 and Tony S. Wirjanto2,3,∗

1 Canada Pension Plan Investment Board, One Queen Street East, Suite 2500, Toronto, ON M5C
2W5, Canada

2 Department of Statistics & Actuarial Science, University of Waterloo, 200 University Avenue West,
Waterloo, ON N2L 3G1, Canada

3 School of Accounting & Finance, University of Waterloo, 200 University Avenue West, Waterloo,
ON N2L 3G1, Canada

* Correspondence: Email: twirjant@uwaterloo.ca; Tel: +15198884567 ext. 35210;
Fax: +15197461875.

Abstract: This paper studies association between changes in absorption ratio and aggregate market
returns in three systemic crises across a broad class of assets. Time series of normalized eigenvalue
estimates reveal that crises are characterized by a general breakdown of correlation structure. The
structure of return correlations is nonlinear and nonstationary across different asset groups. So we
introduce a nonparametric technique to monitor divergence in distributions underlying successive
observations of normalized dominant eigenvalue of the returns. Periods of high divergence imply a
change in the correlation structure of asset returns. They are found to either precede or coincide with
systemic shocks. An additional parametric analysis is provided as an informal check on the results
obtained in the paper.

Keywords: global financial crisis; Eurozone sovereign debt crisis; Asian financial crisis; equities;
bonds; CDS; contract; principal component analysis; random matrix theory; nonparametric change
point analysis
JEL classification numbers: C1, F4, G1

1. Introduction

This paper explores changes in the strength of correlation (or equivalently comovement) between
financial asset returns over time. What can perhaps be most reliably said about this phenomenon is
that correlations between asset returns tend to increase during epsiodes of downturns in the financial

http://www.aimspress.com/journal/QFE
http://dx.doi.org/10.3934/QFE.2018.2.413


414

markets. There is plenty empirical evidence in support of this claim, for example in Ang and Chen
(2002); Bouchaud and Potters (2001); Cizeau et al. (2001); Longin and Solnik (2001); Meric et
al. (2001); Solnik et al. (1996) and the references therein. In this paper we focus our investigation
on return correlations between asset returns in reference to more circumstantial market drawdowns.
Specifically we are interested in correlation dynamics of asset returns in relation to systemic shocks
which occur in financial markets.

Systemic events have a special characteristic of causing drawdowns that are contagious in that they
ultimately propagate to a large number of assets relative to the number of assets immediately affected.
In other words, under certain market conditions, devaluation of some assets can cause devaluation
of some other assets in the financial system. The notion of financial contagion is not new and is
recognized in historic accounts of financial crises dating back several centuries ago. See Reinhart
and Rogoff (2011). Viewed from the perspective of a purely systemic crisis it is intuitive to explain
correlation asymmetry in asset returns simply as a manifestation of financial contagion itself. However
the risk of systemic shocks tends to change over time as the conditions that facilitate contagion are
created. Therefore an important research question posed in this paper is whether an increased systemic
risk is reflected in rising correlations between asset returns be f ore the onset of a systemic crisis.

To measure the strength of comovement of asset returns we take an approach based on spectral
analysis. The idea underlying this approach is to transform coordinates of the original multivariate
return data by means of a principle component analysis (PCA), such that the variance along each axis
of the new system is maximized. The values along each axis represent linearly uncorrelated factors,
and have successively decreasing variance (See Appendix A). Recently this PCA has been used to
study changes in correlation between asset returns (Billio et al., 2012; Conlon et al., 2009; Drożdż et
al., 2000; Kritzman et al., 2011; Meng et al., 2014; Pan and Sinha, 2007; Zhang et al., 2015). Since
each eigenvalue equals the variance of the Principle Component (PC) found through its associated
eigenvector, we can define the total risk in the system as the sum of these eigenvalues. Then the
proportion of total variance attributed to a small number of PCs indicates the degree of commonality
between returns on the assets in question. We estimate the proportion of variance explained by a
fixed small number of factors through time and study its fluctuations. A similar statistic is coined an
absorption ratio (AR) in Kawahara et al. (2007), which is in reference to the proportion of variance
absorbed by a few factors. Studies that have taken this approach commonly find that severe downturns
coincide with and are sometimes preceded by increases in the strength of comovement between asset
returns. The explanation provided for this phenomenon is that a higher degree of integration among
financial institutions allows for a ripple effect that characterizes systemic financial crises. However the
literature drawing such a conclusion is mostly based on investigations that are limited to certain asset
classes and over certain time periods. Specifically the Global Financial Crisis of 2008 is by far the
most common case study for this stream of literature and equities are the most common asset class
examined in this regard. The current paper expands the analysis in two important directions : (i) we
examine three episodes of crises of systemic nature: the Global Financial Crisis of 2008 (or simply
the Financial Crisis), the Eurozone Sovereign Debt Crisis of 2009/2010 (or simply the European Debt
Crisis) and the Asian Financial Crisis of 1997 (or simply the Asian Financial Crisis); and (ii) we study
a broad class of assets in this paper including equities, which have been much studied, and bonds,
credit default swaps and currencies,which have been relatively less studied so far.

Strictly speaking sample eigenvalues are random variables. For this reason we are interested in
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distributional aspects of eigenvalue-based statistics (see Appendix B). Results from multivariate
statistical analysis include exact expressions about both joint and marginal eigenvalue distributions of
Wishart matrices (see Muirhead (1982) for examples.) Although Wishart matrices are useful models
of correlation matrices, there are issues in practical applications of exact density representations.
Firstly the true covariance matrix is a required parameter that is usually unknown to investigators.
Secondly for a non-null covariance structure the expressions are usually difficult to evaluate,
especially in a high-dimensional setting. Yet results from random matrix theory (RMT) point to a
convergence of the density of sample eigenvalues to a nonrandom density as matrix dimensions go to
infinity at a fixed aspect ratio. The main result for Wishart matrices has been known since 1967 as the
Marčenko-Pastur law (Marčenko and Pastur, 1967) (See Appendix B.3.). Since then, the limiting
eigenvalue density has been shown to exist for many different matrix structures, including covariance
matrices of time series with temporal dependence (Jin et al., 2009; Yao et al., 2012) or cross-sectional
dependence (Silverstein, 1995). Knowledge that the limiting eigenvalue density exists implies that
second-order stationarity in a series of eigenvalue observations can be a reasonable assumption under
some conditions and this is a desirable property to have for the purpose of statistical inference.
Furthermore the discrepancy between empirical and theoretical eigenvalues points to a deviation of
the actual system covariance structure from what is postulated in theory. For example, if the empirical
largest eigenvalue exceeds the upper support of the Marčenko-Pastur density, then this can serve as
evidence that there is more structure to the data than if the data were generated by a purely
multivariate white-noise process.

Recognizing potential drawbacks of assuming linearity for asset returns relationships in general,
and given evidence of nonstationarity of the correlation structure of asset returns documented in this
paper in particular, we introduce a nonparametric method to gain some insight into change-points in
the correlation of asset returns. The problem of detecting changes in the underlying distribution of a
stochastic process is commonly known as a change-point detection. Its origin can be traced back to as
early as the 1930s in the work on the problem of monitoring the quality of manufacturing processes
(Wetherhill and Brown, 1991). More recently this problem has been studied in a wide array of fields
including econometrics (Andersson et al., 2004, 2006; Andrews, 1996; Berkes et al., 2004; Broemling
and Tsurumi, 1987) and finance (Beibel and Lerche, 2000; Chen and Gupta, 1997; Shiryaev, 2002).
There are many detection procedures, which differ mainly in being offline or online. Offline algorithms
are algorithms that are applied on a sample of historical observations. The purpose of the offline
algorithms is to detect changes in an a posteriori fashion within the sample with the lowest probability
of error. On the other hand online algorithms are designed for real-time monitoring for changes in
a stochastic process. Online detection procedures aim to minimize both the false alarm rate and the
detection delay, as each new sample is assumed to incur a cost. In this paper we take an online approach
to monitor the strength of asset comovements. However, instead of searching for an algorithm with
a decision function on whether change has occurred, we propose to track a measure of divergence
between the distributions of successive observations. This addresses the robustness issues that often
arise in financial applications due to financial data being inherently noisy.

This paper contributes to the literature on financial systemic crises in a number of ways. Firstly we
conduct an empirical investigation into the connection between changes in correlation and systemic
risk in three notable financial crises: the Financial Crisis, the European Debt Crisis, and the Asian
Financial Crisis. It is important to stress from the outset that, in this paper, we do not explore any
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potential linkages that may exist among the three crises, in particular between the Financial Crisis and
the European Debt Crisis.

To measure correlation between asset returns, we adapt a variant of the AR, which is computed
from the eigenvalues of the sample return correlation matrix. Such a spectral analysis of correlation
has been previously used in studies of equities during the Financial Crisis. We expand this analysis by
investigating three episodes of systemic crises using a broad class of assets. We find that the
relationship between correlation in asset returns and extreme drawdowns is more general than what
has been reported so far in the extant literature. In particular, whereas extreme drawdowns have been
linked to an increasing comovement in asset returns in the Financial Crisis, consistent with the
findings reported in the literature, we find that, in other episodes of systemic crisis studied in this
paper, a systemic shock actually results in a decoupling of asset returns, so that systemic crises are
associated more with a general breakdown of the correlation structure of asset returns. In addition,
given evidence of nonlinearity and nonstationarity in correlation structure of asset returns, we also
conduct a change-point analysis on the correlation structure of asset returns by using a nonparametric
technique. By estimating the divergence in the distributions of successive groups of samples through
time, we identify time periods that are associated with shifts in the correlation structure of asset
returns. We find that the divergence score increases either before or coincidentally with systemic
financial shocks.

The organization of the remaining parts of this paper is as follows. Section 2 discusses systemic
risk and its connection with correlation of asset returns, and provides a selected literature review most
relevant to our study. Section 3 describes the data used in our study and performs an exploratory data
analysis of the correlation dynamics in reference to three financial crises of systemic nature across a
broad range of asset classes. In Sections 4–7 we introduce and use a nonparametric approach based on
statistical change-point detection techniques to study the nonlinearity and nonstationarity of correlation
structure of asset returns. Section 8 provides an additional parametric analysis as a simple and informal
check on the results obtained by using the RMT and the nonparametric approach. Section 9 concludes
the paper. Appendix A provides a brief review on spectral analysis of correlation essential to the
analysis conducted in this paper. Appendix B presents discussion on the distribution of eigenvalues,
focussing on results from the RMT, and, lastly, Appendix C lists stylized properties of eigenvalue-based
time series.

2. Selected literature review

There is a number of studies in the literature that are related to our paper in the use of the spectral
analysis and the RMT to study the level of correlation between asset returns and its implications on
risk management. In particular a recursive PCA scheme has been implemented to gain insight into the
temporal evolution of the interconnectedness of asset returns and its relationship with systemic shocks
(see Billio et al., 2012; Kritzman et al., 2011; Meng et al., 2014, for examples). However, so far,
such an analysis has only been made to illustrate a relationship qualitatively. In this paper we expand
this approach by systematically studying the properties of correlation matrix eigenvalues in empirical
asset-return data, and determining what, if any, can be statistically inferred from the eigenvalue series
of these return data about the systemic risk.

Financial systemic risk is inherently difficult to define and there is no clear consensus in the
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literature on a precise definition of it to this date. However proposed definitions in the literature (e.g.
International Monetary Fund, 2009; Billio et al., 2012; Bijlsma et al., 2010; De Brandt and Hartmann,
2000) tend to share one common thread that, when realized, systemic risk results in a severe
disruption to the financial system. The outcome of the event tends to propagate from local to
system-wide shocks through some amplification mechanism, also known as “contagion”. Systemic
risk is then defined as the probability of such an event occurring. The best recent example of this is
the Financial Crisis, in which defaults by a small initial number of financial institutions cascaded
throughout the entire U.S. financial industry. In this case the amplification mechanism was due to a
high degree of interdependence of institutions’ solvency because of contingent-claims like default
insurance. Vastly common dependence on catalytic factors like the health of the housing market also
played a role (Lewis, 2010) in this crisis. In general it is much easier to recognize systemic risk in an
ex-post sense than to define it an ex-ante sense. Unfortunately its recognition often comes only after
the risk has been realized, imposing a substantial economic cost to the affected financial system
(International Monetary Fund, 2009). Policy makers therefore have a keen interest in detecting an
elevation of systemic risk as early as possible in order to take necessary preventive measures.

The connection between systemic risk and correlation is rooted in a wellknown stylized fact of
financial returns, which asserts that times of crisis are associated with increased asset return
correlations. This relationship has been investigated in a relatively large volume of studies in the
literature, such as (Ang and Chen, 2002; Bouchaud and Potters, 2001; Cizeau et al., 2001; Longin and
Solnik, 2001; Meric et al., 2001; Solnik et al., 1996). In particular the authors in Ang and Chen
(2002) find that, conditional on the negativity of returns in the U.S. equity market, correlations are
11.6% higher than implied by a normal distribution. This is contrasted with correlations that, when
conditioned on positive returns, cannot be statistically distinguished from those implied by a normal
distribution. While it has been extensively documented that correlations increase during volatile
periods, a more interesting question for us is whether a strengthening in correlations between asset
returns precedes widespread shocks in the financial system. That is whether contagion is facilitated by
a state of high degree of interconnectedness that the system evolves to. In this case the extent to which
we can make inference on asset returns and volatility following states of high correlation is of some
interest.

To measure the strength of comovement in returns on a class of assets we apply the PCA to the
sample correlation matrix and obtain the proportion of total variance explained by every PC. If a
relatively small number of PCs explain a relatively large proportion of variance, this is interpreted as a
state of high degree of interconnectedness between the assets’ returns (See Appendix A). This
approach has been used in the past in studies of asset return correlations, including some which
analyzed correlation dynamics in the context of systemic risk (Billio et al., 2012; Conlon et al., 2009;
Drożdż et al., 2000; Kritzman et al., 2011; Meng et al., 2014; Pan and Sinha, 2007). As stated in
Appendix A.4, there are a few important differences between our measure of interconnectedness
between the assets’ returns and the more commonly used Average Pearson Correlation between these
returns. Firstly, the interconnectedness measure accounts for the direction of the strongest variability
in the return co-movement, as such it accounts for the component of the asset return correlations,
which is not captured in a simple average. As a result it is possible for the average correlation of asset
return to decrease over time but for the interconnectedness measure to display an increased value.
Another distinction between these two measures is the ability of the interconnectedness measure to
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measure the proportion of the variability in asset returns captured in specific directions as opposed to
the correlations that capture only bilateral congruence; the interconnectedness measure therefore
captures secondary links between asset returns. Thirdly, the interconnectedness measure reflects
changes arising from co-movement between the asset returns with high variance, while a simple
average correlation between these assets accounts for the levels of volatility implicit in each.

Since the variance explained by each PC is given by the associated eigenvalue, this analysis can
draw on what is known from the RMT regarding the distribution of eigenvalues (See Appendix B.2).
For example differences between the empirical density of eigenvalues and the theoretical density of
eigenvalues (in purely random data) suggest that there is a common “market” factor to the returns
(Laloux et al., 2000). A useful procedure is to compute the proportion of variance explained by a
fixed number of PCs through time using the PCA on a rolling window of sample returns. This results
in a time series of the correlation measure and reveals the temporal dynamics of the degree of
interconnectedness between the assets. Notably (Kritzman et al., 2011) calculate the AR for returns
on the MSCI USA equity index. They find that, between January 1998 and October 2010, all 1%
worst monthly drawdowns are preceded by a one-standard-deviation spike in the AR. In a related
study (Pukthuanthong and Roll, 2009) use an R-square similar to the changes in the AR proposed by
(Kritzman et al., 2011) to provide a measure of integration. They point out that integration is only a
necessary but not sufficient condition for the identification of periods of heightened systemic risk. As
a result (Pukthuanthong and Berger, 2012) extend the integration analysis of (Pukthuanthong and
Roll, 2009) to obtain a time-varying measure of systemic risk within international equity markets.
They find that an increase in their measure of systemic risk leads periods in which the probabilities of
market crashes, and of joint co-exceedances across markets, increase substantially. In an
out-of-sample analysis, conditional on the AR exceeding a certain threshold, stocks with higher
contribution to the risk of the whole system suffered statistically larger losses during the Financial
Crisis (Billio et al., 2012). In Meng et al. (2014) the authors study returns on U.S. real-estate prices in
51 states and use the AR to analyze correlation dynamics. Regarding the question of whether housing
bubbles can be identified in advance the authors point to a gradual increase in the largest eigenvalue
from 1993. More recently the PCA has been applied to returns on volatilities implied from options in
order to assess the systemic importance of various underlying equities (Doris, 2014). Stocks whose
correlation matrix of option-implied volatility returns has relatively large eigenvalues are classified as
systemic and those with relatively small eigenvalues are classified as idiosyncratic. In addition the
authors apply a rolling-window PCA procedure to obtain a time series of the normalized largest
eigenvalue and number of eigenvalues exceeding the Marčenko-Pastur law (See Appendix B.3 for
discussion of this law). Since the limits of the support of the Marčenko-Pastur law are based on the a
white-noise assumption, eigenvalues that exceed the upper bound are considered significant in terms
of the content of their information about the system’s structure. The authors find that, during
high-volatility periods, the largest eigenvalue increases, whereas the number of eigenvalues beyond
the theoretical boundary decreases.

The most important conclusion that is common to studies using the AR to analyze the relationship
between return comovement and crises is that severe downturns are preceded by or, at least, coincide
with increases in the AR. The explanation provided for this phenomenon is that a higher degree of
integration among financial institutions facilitates the ripple effect that typically characterizes
financial crises. However it should be noted that these conclusions have been reached mostly based on
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investigations that are limited to certain asset classes and over certain time periods. Specifically and
as mentioned earlier, the Financial Crisis is by far the most common case study and equities are the
most commonly studied asset class. In this paper we expand the universe of asset classes to include
equities, bonds, currencies and CDS contracts. In addition to the Financial Crisis, we also study two
other crises of systemic nature, namely the European Debt Crisis and the Asian Financial Crisis.

3. Data description and exploratory data analysis

3.1. Data description

In this study we focus on three episodes of systemic crises of notable nature, namely the Financial
Crisis, the European Debt Crisis, and the Asian Financial Crisis. To investigate each crisis we collect
data for groups of assets that potentially have played an important role in its causes and consequences.
We also obtain data on at least one broad-based index to be used as a measure of distress for each crisis.
A summary of asset groups and indices used is given in Table 7.

The NYSE Financial Index (NYK) covers NYSE-listed common stocks that belong to the
Financial Sector according to the Industry Classification Benchmark. Components in the Index
represent eighteen countries globally and several industries including banking, insurance, financial
services and real estate investment. The market capitalization of NYK components represents a
significant portion of the total market capitalization of the Financial Sector in the United States and
globally (NYSE Financial Index, 2014). We obtain daily logarithmic returns between January 1, 2003
and December 31, 2013 (for a total of 2769 observations) on 248 stocks that were components of the
NYK (at the time the data were being collected for this study).

We also obtain spreads for five-year senior-debt Credit Default Swaps (CDS) contracts on major
global financial institutions for the period January 1, 2004–December 31, 2013. The list of entities for
this data set is given in Table 1.

Table 1. Institutions included in data set of Financial Sector CDS spreads.

Financial Institutions in CDS Data
ACE Limited AIG Group The Allstate Corporation
American Express Banco Santander Banco Bilbao Vizcaya Argentaria
Barclays PLC BNP Paribas SA Citigroup Inc
Commerzbank AG Credit Agricole SA Credit Suisse Group AG
Deutsche Bank AG Goldman Sachs Group Inc HSBC Holding PLC
ING Group JP Morgan Chase LCL SA
Lloyds Banking Group Mitsubishi UFJ Financial Group Morgan Stanley
Nomura Holding Inc Royal Bank of Scotland Group UBS AG

Next daily values of the S&P 500 (denoted as SP500) index are collected for the period matching
financial equity and CDS data. We also gather ten-year yields on European Sovereign Debt between
January 1, 2006 and December 31, 2013 on bonds issues by the countries in Table 2. All of these
countries had a significant exposure to the European Debt Crisis due to their mutual economic ties.
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Table 2. Countries included in data set of ten-year bond yields.

Countries Represented in Bond Yield Data
Austria Hungary Portugal
Belgium Ireland Spain
Denmark Italy Sweden
Finland Netherlands Switzerland
France Norway United Kingdom
Germany Poland

We collect five-year CDS spreads between January 1, 2006 and December 31, 2013 on on European
Sovereign Debt issued by the countries in Table 3. Again all of these countries had a significant
exposure to the European Debt Crisis due to their close economic ties.

Table 3. Countries included in data set of five-year CDS spreads for government-issued debt.

Countries Represented in CDS Spread Data
Austria Hungary Slovakia
Belgium Italy Spain
France Poland
Germany Portugal

The Bloomberg European Financial Index (BEFINC) is a cap-weighted index of the most highly
capitalized European companies that belong to the financial sector and trade on European exchanges.
We obtain daily values of the index between January 1, 2006 and December 31, 2013.

We also collect the daily spot exchange rate between the Euro and U.S. dollar (EURUSD) between
January 1, 2006 and December 31, 2013. The exchange rate was commonly viewed as efficient in
responding to events throughout the crisis due to its implications on the stability, and, hence, the
supply-demand balance, of the common currencies (Figure 1).

In addition we gather the spot exchange rate of the domestic currency of various countries/regions
in the region of the Asian Financial Crisis versus the U.S. dollar. Included countries/regions are listed
in Table 4. The data is daily, spanning from May 31, 1995 to December 31, 1999.

Table 4. Countries/regions (exchange rate tickers) represented in Asian currency data.

Countries Represented in Currency Data
Australia (AUDUSD) Philippines (PHPUSD)
Burundi (BNDUSD) Singapore (SGDUSD)
Indonesia (IDRUSD) South Korea (KRWUSD)
India (INRUSD) Taiwan (TWDUSD)
Japan (JPYUSD) Thailand (THBUSD)

For each country/region in Table 5, we obtain daily closing prices of a major domestic free-float
equity index between April 15, 1995 and December 31, 1999. The companies represented collectively
in these indices account for the vast majority of economic output in the region directly affected by the
Asian Financial Crisis.
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Figure 1. A time line of major events related to the European Debt Crisis and fluctuations in
the EURUSD rate. Source: Reuters.

Table 5. Countries/regions (equity index tickers) represented in Asian equity data.

Countries Represented in Asian Equity Data
China (SHCOMP) Philippines (PCOMP)
Hong Kong (HSI) Singapore (SGX)
Indonesia (JCI) South Korea (KOSPI)
Japan (NIKKEI) Taiwan (TWSE)
Malaysia (KLCI) Thailand (SET)

Lastly we note that the MSCI AC Asia Pacific Index (MXAS) captures large and mid cap
representation across the 13 countries/regions in the Asia Pacific region as listed in Table 6. With 989
constituents, the index covers approximately 85% of the free float-adjusted market capitalization in
each country/region. Daily closing prices between April 15, 1995 and December 31, 1999 are
collected.

3.2. Exploratory data analysis

3.2.1. Global financial crisis of 2008

The systemic nature of the Financial Crisis is due to links among financial institutions that were
established using contingent claims such as the credit default swap (CDS). The web of contractual
relationships that resulted from a proliferation of claims contingent on defaults across the financial
industry served as a mechanism by which losses would propagate. The interdependence in bank
solvency was so profound that over 270 banks collapsed within two years since September 2008,
when Washington Mutual Inc. became the biggest bank that fell down on record (Smith and Sidel,
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Table 6. Countries/regions represented in MSCI Asia Pacific Index.

Countries/regions Represented in Index for the Asian Financial Crisis
Australia China Philippines
Hong Kong India Taiwan
Japan Indonesia Thailand
New Zealand South Korea
Singapore Malaysia

Table 7. Summary of asset groups and indices used in analyzing each crisis episodes. The
AR is calculated for each asset group and its relationship with the level of distress is studied
using the relevant indices as proxies.

Crisis Assets Indices

Financial Crisis Equities SP500
CDSs

European Debt Crisis Bonds BEFINC
CDSs EURUSD

Asian Financial Crisis Currencies MXAS
Equities

2010). Since these links were formed and strengthened over time, it is plausible that the increased
economic dependence among financial institutions resulted in a stronger comovement in the value of
the assets of these institutions.

The first data set for the financial sector comprises daily logarithmic returns between January 1,
2003 and December 31, 2012 (for a total of 2769 observations) on 248 stocks that were components of
the NYK (as of the time the data were collected). We estimate the correlation matrix by using a rolling
window of 252 trading days and perform a PCA to obtain the AR measures. We plot the AR time series
using different numbers of eigenvalues in Figure 2. The resulting time series exhibit a highly nonlinear
and potentially nonstationary pattern over time. The nonstationarity of these time series is confirmed
by evidence obtained from ADF, PP and KPSS unit-root tests (See Appendix C). This is particularly
the case for the first eigenvalue, whose relative magnitude varies dramatically, with a range from 25%
to 65%. It appears that the comovement in returns has strengthened gradually in the years leading up
to the Financial Crisis and remained relatively elevated since that time. Specifically the average before
September 1, 2008 was 34% and 53% after. Apart from being richly dynamic the estimated AR time
series for the first dominant PC, φ̂1, as defined in Appendix A.3., explains a relatively large proportion
of the variance; it is, at its lowest, about 16 times larger than the upper support of the Marčenko-
Pastur distribution with a commensurate aspect ratio parameter. On average, the first PC explains
approximately 44% of the variance. The first 25 PCs, a ten-th of the number of variates, account for
approximately 70% of the variance on average and as much as 80% at the apex of the crisis.

We also analyze 2051 observations of logarithmic returns on CDS spreads for 24 major global
financial institutions. A time series of CDS spreads for some major U.S. financial institutions is plotted
in Figure 3. As with our analysis of financial equity returns we plot the AR time series for CDS data
using a 252-day rolling window in Figure 4. Again the resulting time series appear to be highly
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Figure 2. Eigenspectrum analysis for returns on components of the NYSE Financial Sector
Index (NYK).
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Figure 3. Five-year CDS spreads in basis points on selected major banks.

nonlinear and possibly nonstationary. The latter is supported by statistical evidence obtained from
the ADF, PP and KPSS unit-root tests. We also see that correlations have remained strong after the
crisis in CDS spread returns. The relative magnitude of the largest eigenvalue varies approximately
from 17% to 66% and much higher than the upper bound predicted by the RMT. There is a dramatic
spike occurring in June, 2007 that is followed by a steady increase throughout the financial crisis. On
average, φ̂1 explains 47% of the total variance.

To illustrate the relationship between SP500 and the proportion of variance explained by the first PC
in our data sets we overlay their values in Figure 5. Sharp increases in φ̂1 are visually evident before
critical events such as major bank failures. This suggests that a systemic risk monitoring scheme based
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Figure 4. Eigenspectrum analysis for returns on spreads of financial institution CDSs.

on the level of φ̂1 could potentially raise a red flag before the crisis reached its height. However, if
there is any predictive component to the information content of φ̂1, it is certainly mixed with some
coincident response to shocks. For example we observe a dramatic spike in equity correlations in the
summer of 2011, which coincides with the credit rating downgrade of U.S. sovereign debt. However
there is no apparently significant change in the correlation structure prior to this event.
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Figure 5. Proportion of variance explained by first PC in CDS and NYK component (equity)
data, compared with the level of SP500.

Our observations thus far are consistent with the existing work in the literature for the case of
the Financial Crisis; that is periods of turmoil in equity markets appear to have been preceded by or
coincide with increases in correlation of asset returns.

3.2.2. Eurozone sovereign debt crisis of 2009/2010

Importantly the European Debt Crisis is an example of a systemic shock in fixed income assets. It is
similar to the Financial Crisis in that it was characterized by financial contagion. While the cornerstone
of the crisis involved certain members of the currency union, known as peripheral countries, financial
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interlinkages meant that countries that are not necessarily in the eurozone would also be affected,
by virtue of their membership in the European Union, for example. Thus the analysis in the extant
literature and our work so far is consistent with the setting of this crisis. In this paper we extend the
analysis by studying the relationship between correlation and contagion in the European sovereign
credit market.

In particular we focus on the information contained in returns on sovereign bond yields and CDS
spreads of countries in the EU∗. The first data set is comprised of daily logarithmic returns on ten-year
yields for government debt issued by the countries listed in Table 2. The second data set consists of
daily logarithmic returns on five-year CDS spreads on sovereign debt issued by the countries in Table
3.

It should be pointed out that the variates in the system ought to be temporally homogeneous in
order to preserve comparability and the power of inferential analysis. A missing value in one variate
would require filling or else the time point would need to be discarded altogether. Therefore we have
excluded certain countries from the analysis due to limited data availability. For example Greece stands
out as the country that had endured the most significant rise in its cost of borrowing, as well as CDS
spreads reflecting expectations of near certain default. Greece indeed practically defaulted on its debt
as it had undergone restructuring, with private bondholders accepting deep haircuts, and a downgrade
of its debt to ‘Restricted Default’ rating (Fitch cuts Greeces issuer default ratings to RD, 2012). As
a result, data on bond yields and CDS spreads was not available after March 9, 2012 and September
16, 2011, respectively.† Comparing results using samples with and without data on Greek debt for
available time periods we find that, despite Greece’s prominent role in the crisis, the results are not
materially different. For this reason we exclude data on Greek debt from our analysis.

The cost of debt and its insurance would reach historically high levels for multiple countries,
particularly Greece, Ireland, Italy, Portugal and Spain. A time series plot of yields for selected
eurozone countries is presented Figure 6. A similar plot of CDS spreads is presented in Figure 7. It
can be seen both in yield and CDS spread data, which are related to sovereign creditworthiness in the
eurozone, started to rise in 2009.

In calculating the AR we again keep the size of our rolling estimation window at 252 trading days.
Figure 8 plots the temporal evolution of the AR for bonds in this system. The correlation structure
of this time series are nonlinear and nonstationary. This visual pattern of nonstationarity is further
supported by statistical evidence obtained from the ADF, PP and KPSS unit-root tests. However we
observe that the correlation dynamics in this case are very different from our results for the Financial
Crisis. There is a notable decline in the AR of a small number of eigenvectors through the crisis.
Returns on sovereign bond yields in Europe were highly correlated before the Financial Crisis, with φ̂1

explaining approximately 80% of the variance. Interestingly, near the end of 2008, when the Financial
Crisis was at its peak, the strength of comovement began to decrease steadily. There was also a sharp
shift in the structure at the start of May 2010, when the first PC decreased in dominance compared
with the rest. The aspect ratio is 0.0675 and the Marčenko-Pastur density with this parameter has an
upper support of 1.58, so that the limiting theoretical (normalized) maximum of the largest eigenvalue,
assuming white-noise data, is approximately 9.3% or about 7 times smaller than what we observe on

∗The vast majority of the countries were de jure EU members (at the time when the data are being collected for a preliminary study in
August of 2014), although we also study countries who have adopted provisions in order to participate in the EU single market without
membership.

†Greek bond yield data is missing for approximately one year.
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Figure 6. Ten-year yields on sovereign debt issued by selected eurozone member states.
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Figure 7. Five-year CDS spreads in basis points on selected eurozone member states.

2002 2004 2006 2008 2010 2012 2014
0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

E
x
p
la
in
ed

V
ar
ia
n
ce

Absorption Ratio: Sovereign Bonds Yields

φ̂17

φ̂10

φ̂5

φ̂2

φ̂1

Figure 8. Eigenspectrum analysis for returns on eurozone sovereign bond yields.
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It can also be seen that φ̂1 began to increase through the year of 2013, as yields and CDS spreads
have come down in response to improving economic conditions. Our results suggest that the
comovement in bond yields is found to be weakened during the period of the crisis due to flight to
quality. Said otherwise bond yield fluctuations have diverged as bonds of certain countries became an
alternate, safer, source of yield vis-à-vis those experiencing fiscal distress. For example, German,
French and Austrian bond yields were decreasing, while Portuguese, Italian, Irish and Spanish yields
were rising for certain periods (see Figure 6). This is interesting because decreasing yields should
reflect an improvement in the issuing entity’s creditworthiness. Analysis of the creditworthiness of
countries is beyond the scope of this work. However, when we construct ARs for the subset of
sovereign bonds of the core and peripheral countries separately,‡ we find a discernibly increasing risk
of default among core countries, due not least to uncertainties regarding the stability of the euro
currency. The mere exposure of core country governments and banks to distressed debt put, ceteris
paribus, an upward pressure on core country yields as well. Thus the divergence in yield fluctuations
is in contrast to the fundamental risk-return relationship.

Next we consider the AR for the CDS spreads, plotted in Figure 9. The correlation dynamics
for sovereign debt CDS spread fluctuations resemble their analogue for debt issued by our sample of
financial institution in Section 3.2.1. We see a gradual increase in the AR starting in the latter half
of 2008 and continuing through the year of 2009. In this shift φ̂1 rises from about 23% to near 60%.
This implies a significant increase in the strength of comovement between CDS spreads. We also find
that comovement has begun a gradual yet significant weakening starting in late 2012. Based on a
comparison with results from the RMT, as before there is evidence of non-random structure since the
largest eigenvalue is, on average, about 4 times greater than the theoretical upper bound.
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Figure 9. Eigenspectrum analysis for returns on eurozone sovereign CDS spreads.

There are notably different comovement dynamics on the sovereign CDS and the underlying bond
market during the European Debt Crisis.§ Briefly our results suggest an inverse relationship where
bond yield fluctuations diverged during market distress and converged in times of relative tranquility.
On the other hand CDS spreads returns converged in times of distress and diverged otherwise, in broad
agreement with what we have observed when analyzing correlations during the Financial Crisis. These

‡We thank one of the referees for this suggestion.
§We thank one of the anonymous referees for making this point.
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relationships are visualized in Figure 10, where the largest eigenvalue of each asset class is compared
with BEFINC, and likewise in Figure 11 for the EURUSD rate.
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Figure 10. Proportion of variance explained by first PC in CDS and bond yield data,
compared with the level of BEFINC.
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Figure 11. Proportion of variance explained by first PC in CDS and bond yield data,
compared with the level of EURUSD.

It is important to reiterate that, in this paper, we study the European Debt Crisis as a separate
crisis despite its clear connection with the events associated with the Financial Crisis. This is because
our interest in this paper is in the correlation dynamics of a basket of assets that were central to the
sovereign debt crisis and their relationship with a broader measure of the system’s economic stability.
Before a recognition of fiscal trouble in the eurozone, such measures reflect distress from the Financial
Crisis that is independent from the effects of what is now deemed as a loss of confidence in the ability of
multiple countries to make good on loans. Therefore, in studying the connection between correlations
and market turmoil as per a broad, observable indicator, our period of study for this crisis begins on
March 9, 2009.¶

¶Major equity indices in the U.S. have reached their low on this date and it has been used as a starting point for a post crisis analysis
in reference to the Financial Crisis (Daniel and Moskowitz, 2016).
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3.2.3. Asian Financial Crisis of 1997

In 1997 the global financial system experienced the ripples of a systemic shock to the economies of
a few countries in East Asia. In particular in late 1996 and early 1997 Thailand’s currency, the baht,
was subject to speculative attacks from traders. Short sellers had begun to recognize the weakness
of the baht in terms of its relatively low demand compared to the U.S. dollar, which was required to
service debt, and a diminishing ability of the government to defend it with (still depleting) foreign
currency reserves. In July 1997, when the Thai government was no longer able to defend the baht,
it was allowed to float freely. The result was an immediate sharp decrease in its value. The baht
continued to depreciate through the year, making the debt burden of Thai companies increasingly
difficult to manage to the point that many of them were forced into bankruptcy. At the same time
these events were coupled with a significant decline in the Stock Exchange of Thailand. Panic spread
to neighbouring countries as various Asian currencies experienced similar speculative attacks. Within
two months depleting foreign exchange reserves forced Malaysia, Singapore and Indonesia to drop the
peg of their currencies to the U.S. dollar. In each case the move was met with a sharp devaluation
of the local currency and equities. The shock would significantly affect South Korea, Japan, Taiwan,
Philippines, Laos. This can be seen in Figure 12 and Figure 13, where we plot the returns currencies
and equity indices of several Asian countries/regions. Other countries/regions were affected to a lesser
extent, such as China, which saw reduced growth rates following the crisis.

Figure 12. Returns on currencies of Asian countries/regions affected by the Asian Financial
Crisis.

The developments in this particular crisis make it a compelling subject of investigation in our study
due to the spectacular contagion effect. We again seek to gain insight into the correlation dynamics
of tradable assets and potential relationships with returns in times of distress. The assets that we
investigate are a basket of currencies of Asian countries/regions and a basket of major stock indices. It
is important to note that for the period that a given currency is pegged, the price discovery process is
critically altered by government intervention. This affects any conclusions drawn about the dynamics
of the AR prior to the crisis. However the returns of pegged currencies are not identically zero as can
be seen in Figure 14. The currencies fluctuate within a narrow band under normal conditions. During
an unusual trading activity, such as speculative attacks, fixed exchange rate bands can be breached.
Therefore there is still useful information content in currency returns even under a fixed exchange-rate
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Figure 13. Returns on equities of Asian countries/regions affected by the Asian Financial
Crisis.

regime.

Figure 14. Returns on currencies of select Asian countries/regions before local currency
pegs to the US dollar were dropped by affected countries.

As in the previous analysis we maintain the size of our rolling estimation window for the AR at 252
trading days. Figure 15 plots its the temporal evolution for returns on Asian currencies versus the U.S.
dollar. Importantly the correlation structure of the returns appears to be highly nonlinear and possibly
also nonstationary. The latter is further reinforced by statistical evidence obtained from ADF, PP and
KPSS unit-root tests. We observe a strengthening in correlation beginning in mid to late 1997. Similar
features are present in equity data which we use to generate the AR series In Figure 16. The aspect

ratio of the correlation matrices for both asset baskets is y =
10

252
. Nevertheless the distribution of

eigenvalues differs with equity returns being more tightly coupled as φ̂k is higher in equities for each k.
In particular φ̂1 is 31% for equities and 21% higher on average over the same period. With the aspect
ratio at hand the upper support of the Marčenko-Pastur density is 14%.

Both equities and currencies appear to have increasingly correlated returns in times of crisis. An
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Figure 15. Eigenspectrum analysis for returns on currencies of countries/regions in Asia that
were significantly affected by the Asian Financial Crisis.
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Figure 16. Eigenspectrum analysis for returns on major stock indices of countries/regions in
Asia that were significantly affected by the Asian Financial Crisis.

inverse relationship between the AR and the MXAS index can be seen in Figure 17. For equities, this
reinforces our earlier findings from Section 3.2.1. It should be pointed out that currencies have been
relatively unexplored in this type of study. Apart from the directional relationship there is the important
question of whether correlations tend to strengthen before crisis episodes and, thereby, foster the type
of contagion that characterizes systemic events. Figure 17 provides evidence to the contrary. Returns
on equities and currencies in the region had been decoupling from mid 1996 until the onset of the crisis.

Plotting a time series of the AR provides a visual summary of the strength of comovement in the
data variates. In this section we found some evidence for a relationship between the AR and the level
of distress in the system as measured by a broad index during various crises. We found that returns
on stocks and CDS spreads of financial institutions appeared to have an inverse relationship with the
NYSE Financial Sector Index during the Financial Crisis. Furthermore correlations in these assets had
been increasing before the crisis attained its peak. Returns on CDS spreads of European sovereign
debt had a similar behaviour around the Eurozone Sovereign Debt Crisis. However returns on yields
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Figure 17. Proportion of variance explained by first PC in currency and equity yield data,
compared with the level of MXAS.

of bonds issued by these countries had become less correlated. Finally higher correlation in stock
and currency returns around the Asian Financial Crisis appears to be associated with higher levels of
distress.

The AR time series are obtained through the PCA on return observations using the covariance
method in a rolling-window fashion. That the AR series is dynamic suggests that individual asset data
is not second-order stationary. This supports a known stylized fact that financial data exhibits a pattern
of nonstationarity, which greatly impedes the robustness of models fitted to historical samples using
standard methods.

4. Change-point analysis

Change-point detection is a process of identifying abrupt temporal changes in a stochastic process
(Basserville and Nikiforov, 1993). Change is determined in terms of distributional properties of an
underlying process. The problem of detecting abrupt changes in the statistical behavior of an observed
signal or time series is a classical one, whose provenance dates back at least to the work in the 1930s
on the problem of monitoring the quality of manufacturing processes (Wetherhill and Brown, 1991).
More recently this problem has been studied in a wide array of fields including econometrics
(Andersson et al., 2004, 2006; Andrews et al., 1996; Berkes et al., 2004; Broemling and Tsurumi,
1987), environmental science (Petterson, 1998), finance (Beibel and Lerche, 2000; Chen and Gupta,
1997; Shiryaev, 2002), image analysis (Trivedi and Chandramouli, 2005), medical diagnosis (Petzold
et al., 2004) and network security (Tartakovsky et al., 2006; Thottan and Ji, 2003), among others.
Change-detection serves a broad range of purposes and detection procedures are commensurately
diverse. Perhaps, at the most basic level, they differ in being offline or online. Offline algorithms are
algorithms which are applied to a sample of historical observations. The purpose of this tool is to
detect changes in an a posteriori fashion within the sample with the smallest probability of error. In
particular online algorithms are designed for real-time monitoring for changes in a stochastic process.
Online detection procedures aim to minimize both the false alarm rate and the detection delay, as each
new sample is assumed to incur a cost. We will briefly discuss the online change-detection here.
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Consider a sequence {Xt} of i.i.d. observations and an associated minimal filtration {Ft}. Suppose
that Xt obeys one of the following hypotheses:

H0 : Xt ∼ P, t = 1, 2 . . . (1)
H1 : Xt ∼ Q, t = 1, 2, . . . (2)

where P and Q are two distinct distributions with probability density functions p and q, respectively.

Let L(X) =
q(X)
p(X)

be the likelihood ratio and define

S t =

t∑
i=1

log L(Xi). (3)

Since S t = S t−1 + log L(Xt), for t > 1 we have

E
[
S t|Ft−1

]
= E

[
S t−1 + log L(Xt)|Ft−1

]
(4)

= S t−1 + E
[
log L(Xt)|Ft−1

]
(5)

= S t−1 + E
[
log L(Xt)

]
, (6)

where the second equation holds because S t−1 is Ft−1-measurable and third equation holds because
log L(Xt) is independent of Ft−1. Now, under some probability measure F with density f , we have

EF
[
log L(Xt)

]
=

∫ ∞

−∞

log
(

q(x)
p(x)

)
f (x) dx (7)

=

∫ ∞

−∞

log
(

q(x) f (x)
p(x) f (x)

)
f (x) dx (8)

=

∫ ∞

−∞

log
(

f (x)
p(x)

)
f (x) dx −

∫ ∞

−∞

log
(

f (x)
q(x)

)
f (x) dx. (9)

Under H0 we have F = P, so that the first term becomes zero and we are left with

EP
[
log L(Xt)

]
= −

∫ ∞

−∞

log
(

p(x)
q(x)

)
p (x) dx (10)

= −DKL(P ‖ Q), (11)

where DKL(P ‖ Q) denotes the Kullback-Liebler divergence between P and Q. On the other hand,
under H1, we have F = Q and

EQ
[
log L(Xt)

]
=

∫ ∞

−∞

log
(

q(x)
p(x)

)
q (x) dx (12)

= DKL(Q ‖ P). (13)

Recall that DKL(A ‖ B) ≥ 0 for any distributions A and B, with strict equality for A = B. Thus
in equation (6) we have that E

[
log L(Xt)

]
< 0 under H0 and E

[
log L(Xt)

]
> 0 under H1. It then

follows that, under H1, E
[
S k|Fl

]
≥ S l ∀ l ≤ k, so {S t,Ft} is a submartingale. Similarly under H0,
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E
[
−S k|Fl

]
≥ −S l ∀ l ≤ k, so {S t,Ft} is a supermartingale. In fact, in both cases, we have almost sure

divergence [70] with

S t
a.s.
−→

{
−∞ under H0

∞ under H1
. (14)

If we consider the situation that

Xt ∼

{
P t < k
Q t ≥ k

, (15)

i.e., there is a change-point in the distribution of Xt at time k < ∞, then this change will be reflected as a
change in the sign of the mean value of the log-likelihood ratio. In the setting described by expression
(15), a typical objective of an online monitoring scheme is to detect the change while minimizing
both the time delay in raising an alarm after the change and the rate of false alarms. Of course there
is a tradeoff between the two performance criteria and studies in the area of stochastic control have
sought to optimize it. For instance Shiryaev (1978) adopted a Bayesian approach whereby the change
point is a random variable with a prior distribution. Lorden (1971) formulated the problem with a
deterministic change point and sought to minimize the worst-case detection delay subject to a lower-
bound on the mean time between false alarms. In both cases the authors arrive at optimal solutions.
The cumulative sum (CUSUM) procedure (Page, 1954), which was originally proposed for continuous
inspection schemes, was also proved to be optimal for Lorden’s formulation by Moustakides (1986).
The CUSUM statistic is defined as

gt = max
0≤k≤t

(S t − S k) (16)

= S t − min
0≤k≤t

S k (17)

= max
(
gt−1 + log L(Xt), 0

)
, (18)

where S 0 ≡ 0 and S k is the log-likelihood ratio defined in equation (3). The stopping rule is

τ = inf
{

t ≥ 1 : S t − min
0≤ j≤n

S j ≥ b
}
, (19)

with b > 0 representing an alarm threshold. From equation (17) it becomes clear that fact that the
expectation of the log-likelihood ratio changes signs under different distributions is a key statistical
property. It guarantees the almost sure divergence of gt so that the threshold b will be crossed after the
change-point. The effectiveness of the algorithm depends on the size of that change, i.e.,

D (P ‖ Q) = EQ
[
log L(Xt)

]
− EP

[
log L(Xt)

]
(20)

= DKL(P ‖ Q) + DKL(Q ‖ P) (21)

which is noted to also be the symmetrized Kullback-Liebler divergence between P and Q. A larger
value of D indicates greater dissimilarity between the distributions. That it is symmetric implies
D (P ‖ Q) = D (Q ‖ P), so the statistic can be thought of as a distance more intuitively than the
asymmetric Kullback-Liebler divergence.
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There are a couple of challenges that are common in change-point detection procedures. Firstly
information about the distribution of the series – either before the change, after the change or both –
is assumed to be known in parametric methods. In many practical cases this is not the case and, so,
assumptions about the underlying distribution need to be made. Secondly the use of thresholds in the
decision function introduces subjectivity and threshold parameters likely need to be tuned periodically
and between different applications. When one or both of the distributions P and Q are unknown, we
can resort to nonparametric methods of change-point detections. This approach is often undertaken
due to its practicality, even when optimality cannot be established formally (see Kawahara et al., 2007;
Liu et al., 2013; Yamada et al., 2013, for examples). To alleviate robustness issues in dealing with
procedures that involve a binary decision on whether change has occurred, we suggest to monitor
the symmetrized divergence statistic D (P ‖ Q). As stated before this statistic represents the degree
of dissimilarity between two distributions. Many detection procedures rely on the change of sign of
the expected log-likelihood ratio after a change-point. This statistic, which is equal to the difference
between E

[
log L(X)

]
before and after the change, has therefore been used as a detectability index. Here

detectability can be defined in terms of the performance of change-point detection procedures. For
example the average number of samples taken before a decision can be made in some online detection
procedures is proportional to the Kullback-Liebler divergence (Basserville and Nikiforov, 1993). In
the following section we introduce a nonparametric approach for estimating D (P ‖ Q).

5. Nonparametric monitoring procedure

We adapt a nonparametric estimation method for multivariate stochastic processes in Liu et al.
(2013). Let xt ∈ R

d be a d-dimensional time-series and let Xt = [x′t , x
′
t+1, ..., x

′
t+k−1]′ ∈ Rdk be a batch

sequence of k observations of xt. Note that (·)′ indicates transposition, so xt is a time-varying vector
of length dk. In what follows, instead of using a single observation of xt as a sample instance, Xt

is treated as a sample instance in order to capture the temporal correlation that empirical data tends
to exhibit. To detect a change in the underlying distribution a measure of dissimilarity is computed
between two groups of temporally-spaced samples as follows. LetXt = {Xt,Xt+1, ...,Xt+n−1} andXt+n =

{Xt+n,Xt+n, ...,Xt+2n−1} and suppose that Xt ∼ P and Xt+n ∼ Q. Denote with DKL(P ‖ Q) the Kullback-
Liebler divergence between two distributions P and Q with densities p(X) and q(X) respectively. Then
we are interested in the quantity

D(P ‖ Q) = DKL(P ‖ Q) + DKL(Q ‖ P) (22)

with

DKL(P ‖ Q) =

∫
p(X) log

(
p(X)
q(X)

)
dX. (23)

Figure 18 illustrates the structure of the samples, where the two groups used to estimate divergence
are comprised of n samples, each of which is a batch of length k.

The densities p(X) and q(X) are unknown and must be estimated in a nonparametric fashion. A
naive approach would be to estimate each of them separately and then compute the ratio. However since
knowing p(X) and q(X) implies knowing their ratio but not vice-versa, estimating the ratio directly is
an easier task. In particular a method proposed in Sugiyama et al. (2008) to estimate the density ratio
is employed in this paper.
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Figure 18. Structure of samples used to calculate DKL(P ‖ Q).

6. Direct density-ratio estimation

Let us model the density ratio
p(X)
q(X)

by

g(X; θ) =

n∑
i=1

θiK(X,Xi), (24)

where θ = (θ1, ..., θn)′ is a scaling vector parameter and K is the Gaussian kernel

K(X,X′) = e
‖X−X′‖2

2σ2 , (25)

where the kernel width, σ > 0, is to be determined by cross-validation. The parameters θ are to be
learned from the data as those that minimize the Kullback-Liebler divergence between the distributions
with densities p(X) and g(X; θ)q(X). That is,

θ̂ = argmin
θ

∫
p(X) log

(
p(X)

g(X; θ)q(X)

)
dX (26)

= argmin
θ

{∫
p(X) log

(
p(X)
q(X)

)
dX −

∫
p(X) log (g(X; θ)) dX

}
(27)

= argmax
θ

∫
p(X) log (g(X; θ)) dX (28)

= argmax
θ

1
n

n∑
j=1

log

 n∑
i=1

θiK(X j,Xi)

 ;
1
n

n∑
j=1

n∑
i=1

θiK(X j,Xi) = 1, θ ≥ 0

 , (29)

where in (29) the integral is approximated by the empirical estimate and the constraints are added to
respect that g(X; θ)q(X) is a probability density function. Since the problem in (29) is convex, there
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exists a global optimum that can be obtained using a gradient-projection method, among others. Then
the density ratio can be estimated as

ĝ(X) =

n∑
i=1

θ̂iK(X,Xi) (30)

and an estimate of DKL(P ‖ Q) is given by

D̂KL(P ‖ Q) =
1
n

n∑
i=1

log ĝ(Xi). (31)

As a simple test of convergence we estimate DKL for two batches y1 =
[
y11, . . . , y1n

]
and

y2 =
[
y21, . . . , y2n

]
of n observations simulated independently from the processes Yit = θiYit−1 + εit with

Gaussian white noise. Table 8 shows that when θ1 = θ2 the estimate converges to zero, its true value,
as n grows large. If θ1 , θ2 then DKL > 0 and D̂KL converges to a positive constant as n grows albeit at
a slow rate (see Table 9.)

Table 8. Estimate of the divergence score between two samples of observations
y1 =

[
y11, . . . , y1n

]
and y2 =

[
y21, . . . , y2n

]
for different values of n, where Yit = 0.7Yit−1 + εit

and εit are independent Gaussian white noise series for i = 1, 2.

Convergence test for equal distributions
n D̂KL(p(Y1) ‖ q(Y2))

500 0.0286
1000 0.0189
2000 0.0076
4000 0.0051
8000 0.0008

Table 9. Estimate of the divergence score between two samples of observations y1 =[
y11, . . . , y1n

]
and y2 =

[
y21, . . . , y2n

]
for different values of n. The processes are

Yit = θiYit−1 + εit, where θ1 = 0.7, θ2 = 0.3 and εit are independent Gaussian white noise
series for i = 1, 2.

Convergence test for unequal distributions
n D̂KL(p(Y1) ‖ q(Y2))

500 0.0652
1000 0.0620
2000 0.0597
4000 0.0628
8000 0.0605

This method is completely nonparametric and has the advantage of estimating the density ratio
directly, and not the pre- and post-change densities independently. However its slow rate of
convergence may introduce some bias in the results given the finite sample size in practice. The
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kernel width and scaling vector are chosen systematically, whereas the parameters which determine
the sliding window shape, n and k, are not. These latter two parameters control the size of the rolling
windows Xt and Xt+n and, thus, act as smoothing parameters as well. The estimated statistic
D (P ‖ Q) is to be interpreted as a measure of the distance between P and Q.

7. Changes in correlation structure

In this section we relate the concept of statistical change-point detection to the structure of
correlations in asset returns. In previous sections we have described the structure of correlations in
terms of the strength of comovement as captured by the relative magnitude of the eigenvalues of the
sample correlation matrix. As discussed in Appendix A the eigenvalue density of certain models of
random matrices tends to a non-random density in the limit that the matrix dimensions grow to
infinity. If these densities are known exactly, then parametric change-detection techniques can be
applied in an online fashion, such that a trade-off between the detection delay and false alarm rate is
optimized. In practice this is most often not the case, but, assuming that a limiting density exists, we
can attempt to estimate points of high divergence in an online fashion using the nonparametric
procedure discussed in the previous section.

Let us briefly revisit the absorption ratio (AR) time series {φ1(t)} used in Section 3.2. For purely
random, independently generated Wishart matrices, we expect that observed instances of the first
(normalized) eigenvalue would form a stationary series. In fact we would expect this to be true in the
limit as the matrix dimensions grow to infinity (with a constant aspect ratio) in all cases where a
limiting spectral density exists. In testing the level of the AR for stationarity, we find repeatedly for
different assets and markets that the series is nonstationary, even over relatively short periods of time.
This is entirely consistent with the notion that financial crises are associated with a breaking
correlation structure. However nonstationarity in the level of the AR may lead change-detection
procedures to produce noisy results. On the other hand the series ∆φ1 have more desirable properties
in the sense that nonstationarity due to noise becomes less influential. Increasing divergence between
successive observations of the first-differenced series also maintains the intuitive interpretation of
emerging trends in the AR. We shall use the procedure in Sections 4-6 to investigate abrupt changes in
correlation structure associated with financial crises.

We compute ∆φ1 for each of the asset groups studied to this point. We use values of n = k = 30
in computing divergence for all cases‖ and plot ∆φ1 and the divergence score D (P ‖ Q). We also
overlay a plot of the relevant index to compare the divergence score with market conditions. The
divergence score increased sharply for financial sector equities and CDS spreads in 2007 (see Figure
19 and Figure 20). These spikes follow larger, positive values of ∆φ1, representing strengthening of
correlations which occurred well before the S&P 500 index reached its crisis lows.

During the European Debt crisis the divergence score increased sharply in response to downward
shifts in the AR. We find that these shifts are not reflected in the divergence score in bond yield data
until the crisis has reached a very developed state (see Figure 21). With CDS spreads, based on our
data, there is greater potential in detecting a changing correlation structure in an online manner before
large drawdowns. This can be observed in Figure 22 where a large drawdown in EURUSD starting in

‖Following the suggestion made by one of the referees, we also experiment with a limited range of values for n and k, and find that
the results are qualitatively unchanged as long as we stay within the range the (15, 75) interval.
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the summer of 2011 is preceded by a spike in the divergence score.
Finally estimating divergence between successive batches of observation of ∆φ1 in Asian currencies,

we find that divergence increased notably before the start of the Asian Financial Crisis (see Figure
23). This can also be seen in Figure 24, where the results for equity data in this crisis episode are
similar, except that the divergence score is noisier. Overall there is an expected lag between observable
persistent directional and magnitude changes in ∆φ1 and the divergence score because it is estimated
from historical observations. We find evidence that despite this lag a likelihood-based test for a change
in the eigenvalue distribution of the correlation matrix of a fixed asset basket between different time
intervals may provide early warning about impending crises. However financial data is inherently noisy
and this results in some robustness issues. For example results may vary depending on the sampling
parameters n and k.
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Figure 19. Divergence score for the absorption ratio series of the first principal component
in NYK constituent stocks.
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Figure 20. Divergence score for the absorption ratio series of the first principal component
in bank debt CDS spreads.
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Figure 21. Divergence score for the absorption ratio series of the first principal component
in European sovereign bond yields.
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Figure 22. Divergence score for the absorption ratio series of the first principal component
in European sovereign debt CDS spreads.
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Figure 23. Divergence score for the absorption ratio series of the first principal component
in Asian currencies.
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Figure 24. Divergence score for the absorption ratio series of the first principal component
in Asian equities.

8. Supplementary analysis through a parametric lense

The noparametric results from Section 7 suggest that the divergence scores of different asset classes
may precede or, at least, coincide with a particular crisis period. In this section we provide an additional
parametric analysis on the relationship between the AR and broad market conditions as a step towards
a formal validation check. This analysis is especially relevant since the major empirical contribution of
this paper is to investigate shifts in the comovement of a large set of asset classes for the three notable
crises.∗∗

Our specific objective in this section is to determine whether there are significant associations
between changes in the AR and the returns or volatility of a broad index. The former corresponds to a
standardized shift in the AR proposed by (Kritzman et al., 2011) and the latter serves as a proxy for
the financial condition of a system in distress. In particular we are interested in investigating whether
(i) changes in the AR Granger-cause returns or volatility of a broad index, and (ii) for a particular
asset class, changes in the AR are leading, coincidental or lagging indicators for conditions of market
fragility for a particular crisis.

Consider a bi-variate Vector Autoregression (VAR) model (Granger, 1969)

rY(t) = α0 +

k∑
i=1

αirY(t − i) +

k∑
i=1

βi∆φ̂1(t − i) + ε(t) (32)

∆φ̂1(t) = γ0 +

k∑
i=1

γi∆φ̂1(t − i) +

k∑
i=1

δirY(t − i) + η(t) (33)

where φ̂1(t) is the estimated change in the AR of the dominant PC, as defined in Appendix A.3,†† rY(t)
∗∗We thank one of the referees for this suggestion.
††Following the suggestion made by one of the referees, we also experiment with a similar measure proposed by (Kritzman et al.,

2011), which is ∆φ̂(t) = (φ̂(15day)− φ̂(1year)/σφ̂(1year), where φ̂(15day) and φ̂(1year) are the 15-day and 1-year moving averages of φ̂(t)
respectively, and σφ̂(1year) is the standard deviation in φ̂(t) over the previous year. Overall we find that the results are qualititatively very
similar to ours.
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is the return on index Y , k is the maximum number of lagged observations included in the model, ε(t)
and η(t) are rendered approximately serially uncorrelated respectively by choice of lag lengths. A null
hypothesis that ∆φ̂1 does not Granger-cause rY is rejected at a chosen significance level if any of the
coefficients of lagged rY are jointly significantly different from zero with those of lagged ∆φ̂1 in (32),
according to an F-test. Similarly a null hypothesis that rY does not Granger-cause ∆φ̂1 is rejected at a
chosen significance level if any of the coefficients of lagged ∆φ̂1 are jointly significantly different from
zero with those of lagged rY in (33) according to an F-test. A variable that Granger-causes another one
is considered to be a leading source of information for predicting it.

We fit the model with ordinary least squares and perform the tests separately for returns, rY , and
realized volatility, σY . We compute changes in the AR, returns and realized volatilities with data at
daily frequency. The maximum lag in the fitting of each VAR model is determined by the Akaike
Information Criterion (AIC) to ensure that the residuals ε̂(t) and η̂(t) are approximately serially
uncorrelated. In addition we also adjust the reported standard errors for the estimates of the
parameters in (32) and (33) for (i) potential heteroskedasticity due to the estimated dependent variable
in (32) by using White’s Heteroskedasticity Consistent Covariance Matrix Estimates proposed in
White (1980), and (ii) potential generated-regressor bias due to the estimated right-hand side variables
in (32) and (33) by using Murphy and Topel’s asymptotic covariance matrix estimates proposed by
Murphy and Topel (1985).

Components underlying the AR and the corresponding index depend on the crisis episode and are
commensurate with Section 3.2.1 - Section 3.2.3. These are also summarized in Table 7. Results of the
Granger causality tests are presented in Table 10. The table corresponds to the results for each market
index, Y . For the Financial Crisis, changes in the AR of stocks that were components of the NYK
are found to Granger-cause realized volatility of the broader market. There is also evidence to reject
the no Granger-causality null hypothesis based on CDS data. Lastly in the case of index returns we
find similar evidence in support of the Granger causation from changes in the AR of both equities and
CDSs to indexes proxing for conditions of market distress. For the European Debt Crisis, we similarly
find evidence of Granger causation from changes in the AR of both BEFINC and EURUSD to realized
volatility, consistently across bond yields and CDS spreads. There is also sufficient evidence to reach a
similar conclusion with respect to index returns for this particular crisis. Lastly for the Asian Financial
Crisis, we emphatically reject the null hypothesis that changes in the AR of currency or equity returns
do not Granger-cause the returns or volatility of the MXAS. Overall the test results support the idea
that changes in the AR Granger-cause returns or realized volatilities for each crisis episode.‡‡

Given that changes in the AR Granger-cause the conditions for market fragility, as a next step, we
investigate whether for a particular asset class, changes in the AR are leading, coincidental or lagging
the indicators for adverse conditions of the markets. That is, we examine the statistical significance of
the lead-lag effects between changes in the AR and indicator for conditions of market distress based on
the approach proposed by Dimson (1979). The Dimson regression for return of index Y is specified as

rY(t) = α0 +

k∑
i=−k

βi∆φ̂1(t − i) + ε(t), (34)

‡‡Although not reported here (to save space), we also conduct Granger-causality tests for each of the three crisis episodes using data
from weekly, monthly and quarterly frequencies. In general we find that the strength of the one-way Granger-causation reported for data
from daily frequency diminishes monotonically when data from lower frequencies are used in the analysis.

Quantitative Finance and Economics Volume 2, Issue 2, 413–467.



443

Table 10. Granger-causality test results for the Financial Crisis, the Eurozone Sovereign Debt Crisis:
BEFINC and EURUSD, and the Asian Financial Crisis.

∆φ̂1(t)→ Y ∆φ̂1(t)← Y

F-stat p-value F-stat p-value

Index: SP500
Equities

Return 3.96 0.00*** 0.34 0.79
Volatility 4.01 0.00*** 0.30 0.82

CDSs
Return 2.42 0.08* 1.13 0.32
Volatility 4.08 0.00*** 1.51 0.20

Index: BEFINC
Bonds

Return 4.02 0.00*** 1.67 0.17
Volatility 2.89 0.03** 1.31 0.26

CDSs
Return 3.59 0.01** 0.11 0.89
Volatility 2.92 0.03** 0.29 0.82

Index: EURUSD
Bonds

Return 3.82 0.00*** 1.11 0.34
Volatility 2.19 0.08* 1.36 0.25

CDSs
Return 2.70 0.04** 0.74 0.52
Volatility 2.71 0.04** 1.37 0.25

Index: MXAS
Currencies

Return 2.10 0.09* 1.26 0.28
Volatility 3.05 0.00*** 0.57 0.72

Equities
Return 3.97 0.00*** 0.97 0.40
Volatility 4.07 0.00*** 1.37 0.25

* statistically significant at 10%

** statistically significant at 5%

*** statistically significant at 1%

Note: For the Financial Crisis, each row represents a test of Granger causality between either returns or realized volatility of SP500 and
changes in the AR as derived from equity or CDS data. For the European Debt Crisis, each row represents a test of Granger causality
between either returns or realized volatility of BEFINC and EURUSD and changes in the AR as derived from bond or CDS data. For
the Asian Financial Crisis, each row represents a test of Granger causality between either returns or realized volatility of MXAS and
changes in the AR as derived from currency or equity data. The F-stat and p-value found in each test are given for both directions of
Granger causality, with ∆φ̂1(t) → Y denoting that changes in φ̂1 Granger-cause the index variable. Conversely ∆φ̂1(t) ← Y denotes that
the index variable Granger-causes changes in φ̂1.
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where ε is an independently and identically distributed error term for an appropriate choice of lead/lag
length k. For volatility we simply replace rY(t) by σ̂Y(t) as the dependent variable in (3). The
coefficients βi with negative subscripts are lag coefficients and those with positive subscripts are lead
coefficients. If any lag coefficient estimates are found to be significantly different from zero, then it
can be inferred that returns or volatility lag changes in the AR, or, equivalently, changes in the AR
lead returns or volatility. On the other hand, rejecting the null hypothesis for any of the lead
coefficient estimates would support the notion that changes in the AR lag returns or volatility. There is
also a contemporaneous coefficient, β0, the significance of which would imply that changes in the
asset class’s ARs occur simultaneously with returns or volatility in the system as captured by the
index. Finally, if, together with a rejection of the null hypothesis with the contemporaneous
coefficient estimate, we find that both lead and lag coefficient estimates are significantly different
from zero, then the relationship is considered to be informationally efficient.

We fit the model with ordinary least squares with k = 1. In addition, as in the case of the Granger
causality tests, we compute changes in the AR, returns and realized volatilities at the daily frequency.
Thus we study the effects of a one-period lead or lag over the observation window. Components
underlying the AR and the corresponding index depend on the crisis episode and are again maintained
as before. Regression results are presented in Tables 11 and 12. We correct the standard errors of the
parameter estimates in the Dimson regression for (i) potential serial correlation in the residual terms in
(34) due to insufficient leads and lags and potential heteroskedasticity in the residual terms in (34) due
to the estimated volatility as the dependent variable in the Dimson regression by using Newey-West’s
heteroskedasticity and autocorrelation consistent covariance matrix estimates (Newey and West, 1987),
and (ii) for potential generated-regressor bias due to the presence of estimated independent variables
in (34) by using Murphy and Topel’s asymptotic covariance matrix estimates proposed in Murphy and
Topel (1985).

The table corresponds to results with respect to a specific market index. It has been noted here as
well as the existing literature that return correlations among stocks seemed to have been increasing
before the Financial Crisis, leading to the conjecture that a measure like shifts in the AR could have
given an early warning signal. We are able to find a statistically significant lead relationship between
changes in the AR of components of the NYK and one-period-ahead return or volatility of the SP500
index (see Table 11). This is also true for changes in the AR of CDS spreads of major financial
institutions. In addition coefficients in CDS data are found to be statistically not significant, when
changes in the AR are either lagging or contemporaneous with indicators for conditions of market
distress. In Section 3.2.2 a qualitative inspection of comovement in yields suggested a divergence
pattern associated with the crisis. This is confirmed by the regression of realized volatility of both
BEFINC and EURUSD, as the corresponding coefficients are estimated to be negative. However we
observe overall less consistency in leading AR coefficient estimates for this crisis. Specifically, realized
volatility of BEFINC was negatively but not significantly related to coincidental changes in the bond
yield’s AR, while realized volatility of EURUSD was positively and significantly related to coincidental
changes in bond yield correlation. We also note that small p-values for lagging coefficients and large p-
values for leading or coincident coefficients in regressing realized volatility are evident from the results
for the Asian Financial Crisis. However we find that this lag relationships with equities, although
statistically significant, are much weaker than those with currencies.

Overall we find that changes in the AR lead returns or volatility for financial sector equities and
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Table 11. Regression results for the Financial Crisis and the Asian Financial Crisis.

Independent Variable Equities CDSs

Coefficient t-stat p-value Coefficient t-stat p-value

SP500 - Leading
Return 0.21 0.99 0.32 -0.11 -0.69 0.48
Volatility 0.06 0.49 0.61 -0.03 -0.42 0.66

SP500 - Coincident
Return 0.02 0.13 0.88 0.46 0.69 0.48
Volatility 0.44 0.99 0.32 -0.00 -0.01 0.99

SP500 - Lagging
Return 0.04 2.99 0.00*** -0.31 -2.30 0.02**
Volatility -0.01 -2.18 0.03** 0.17 1.98 0.04**

Independent Variable Currencies Equities

Coefficient t-stat p-value Coefficient t-stat p-value
MXAS - Leading

Return -0.20 -1.02 0.30 -0.62 -0.79 0.42
Volatility 0.02 0.16 0.86 -0.23 -1.60 0.10

MXAS - Coincident
Return 0.02 0.13 0.88 -0.51 -1.02 0.30
Volatility 0.20 1.07 0.29 -0.03 -0.21 0.82

MXAS - Lagging
Return -0.01 -2.99 0.00*** 0.31 1.76 0.08*
Volatility 0.20 2.96 0.00*** 0.16 1.69 0.09*

Note: * statistically significant at 10%

** statistically significant at 5%

*** statistically significant at 1%
Each row represents a t-test that a regression coefficient is significantly different from zero. For the Financial Crisis, either returns
or realized volatility of SP500 is regressed on lead and lag observations of ∆φ̂1 as derived from equity or CDS data. For the Asian
Financial Crisis, either returns or realized volatility of MXAS over daily frequencies is regressed on lead and lag observations of ∆φ̂1 as
derived from currency or CDS data. In the top section the independent variable leads ∆φ̂1 by one period, in the middle section they are
contemporaneous, and in the bottom section the independent variable lags ∆φ̂1 by one period.

CDS. For the European Debt Crisis, the relationship between changes in the AR and returns or realized
volatility is found to be coincidental for bond yield data and leading for CDS spreads. Lastly for the
Asian Financial Crisis, changes in the AR of both Asian currencies and its equity returns lead returns
or realized volatility, although the former relationship is much more significant than the latter.∗ Thus
these test results using a parametric approach are in broad conformity with the nonparametric results
in Section 7. The latter suggests that the divergence scores of different asset classes may precede or, at
least, coincide with a particular crisis episode.

∗Although not reported here (to save space), we also conduct the lead, coincident and lag tests for each of the three crisis episodes
using data from weekly, monthly and quarterly frequencies. In general we find that the result are qualitatively very similar to the results
obtained with data from the daily frequency.
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Table 12. Regression results for the Eurozone Sovereign Debt Crisis: BEFINC.

Independent Variable Bonds CDSs

Coefficient t-stat p-value Coefficient t-stat p-value

BEFINC - Leading
Return -0.03 -0.16 0.86 -0.03 -0.13 0.89
Volatility -0.25 -0.97 0.32 0.01 -0.19 0.84

BEFINC - Coincident
Return -0.03 -0.11 0.90 0.32 1.30 0.19
Volatility -0.20 -1.09 0.27 0.02 0.16 0.87

BEFINC - Lagging
Return 0.38 2.26 0.02* 0.06 2.12 0.03**
Volatility -0.21 -2.55 0.01** 0.31 2.17 0.03**

Independent Variable Bonds CDSs

Coefficient t-stat p-value Coefficient t-stat p-value
EURUSD - Leading

Return 0.12 1.11 0.26 0.01 0.25 0.79
Volatility -0.16 -0.94 0.35 0.02 0.54 0.58

EURUSD - Coincident
Return 0.02 2.60 0.00*** 0.01 0.14 0.88
Volatility 0.09 1.89 0.05* -0.08 -1.11 0.26

EURUSD - Lagging
Return 0.23 0.87 0.38 -0.09 -2.89 0.00***
Volatility -0.10 -1.73 0.08* 0.11 1.87 0.06*

Note: * statistically significant at 10%

** statistically significant at 5%

*** statistically significant at 1%
Each row represents a t-test that a regression coefficient is significantly different from zero. For the European Debt Crisis, either returns

or realized volatility of BEFINC and EURUSD is regressed on lead and lag observations of ∆φ̂1 as derived from bonds or CDS data. In

the top section the independent variable leads ∆φ̂1 by one period, in the middle section they are contemporaneous, and in the bottom

section the independent variable lags ∆φ̂1 by one period.

9. Conclusions

Prior studies have pointed to an increasing strength of comovement in returns on assets such as
stocks and property before the Financial Crisis. Using the proportion of variance explained by the first
principal component in a basket of assets – the Absorption Ratio (AR) – as a measure of correlation,
they have asserted that large drawdowns are associated with increasing correlations, sometimes in
advance of a financial turmoil, and that the state of higher correlations facilitates contagion.

In this paper we are able to confirm the findings in the literature for the Financial Crisis. In
applying a similar framework to two other notable crises that involved asset classes that were
previously not considered, we find that, generally, financial distress is not necessarily characterized by
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increasing correlations, but by a breakdown of the existing correlation structure that may also result in
diverging returns. For example we find evidence that bond yields of countries affected by the
European Debt Crisis had diverged. The estimated AR time series are found to exhibit a visibly
nonlinear and potentially nonstationary pattern over time than would be expected according to the
RMT if asset returns were to be purely randomly distributed. This is consistent with a long-standing
held view that financial asset returns often have nonlinear relationships with risk factors, and their
distributions are often nonstationary. Given the above finding we conduct a change-point analysis
using a nonparametric technique. By estimating the divergence in the distributions of successive
groups of samples through time we are able to identify time periods that are associated with shifts in
the correlation structure of asset returns. In particular we find that the divergence score increases
either before or coincidentally with the systemic shocks. We also provide an additional parametric
analysis to serve as an informal device to validate the results obtained by using the RMT and the
nonparametric change-point analysis.

As in most empirical studies there are a number of caveats to the results presented in this paper.
Firstly the potential for financial contagion should depend on the strength of comovement of asset
values in the system. However the use of the PCA to measure this as the relative magnitude of the
largest eigenvalue assumes that comovements are linear in nature. In practice financial asset returns
and volatility may be nonlinear, especially during periods of extreme shocks (Billio et al., 2012).
While our assumptions reflect a simplified market, they allow for a tractable analysis of a
high-dimensional problem in finance. Secondly in performing the PCA we estimate the correlation
matrix as the sample correlation matrix of the latest 252 trading days. Estimating covariances (and
correlations) is a challenging task in itself. There is a variety of approaches that impose different
degrees of structure on covariance matrices. Whereas ours is completely free of structure, risk-factor
based techniques may produce substantially different results. There are also issues with estimating the
true eigenvalues of the correlation matrix and comparing them with results from the RMT, when their
underlying assumptions are not satisfied. For example, if the matrix dimensions are too small, then
the ideal properties of estimated eigenvalues will not be compatible with theoretical limits. Thirdly
the quantitative analysis of the relationship between correlation and crises in this paper relies on
measures of financial distress. To this end we select broad indices that were believed to reflect this
information accurately and efficiently. If the chosen proxy for financial distress does not possess these
properties, then it would serve as a poor input into the analysis.

Fourthly the AR time series are obtained through the PCA on return observations using the
covariance method in a rolling-window fashion. That the AR series is richly dynamic suggests that
individual asset data may not be second-order stationary. This supports an already known stylized fact
that financial data exhibits nonstationarity, which can greatly impede the robustness of the models
fitted to historical samples. One response to this last caveat is to conduct a change-point analysis
using a nonparametric technique. By estimating divergence in the distributions of successive groups
of samples through time, we are able to identify time periods that are associated with shifts in the
correlation structure. This allows us to determine whether a certain divergence score increases either
before or coincidentally with systemic shocks in the financial markets. In addition we also have
shown in the paper that the ARs typically increase in crisis periods, indicating that spikes in the ARs
may serve as an indicator of market fragility. However, we have also found that a sharp increase in
AR would not necessarily lead to a sharp decline in asset returns. Unless we have data with a fairly
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long time period around each of the crisis episodes at our disposal, it would be difficult to detect
extreme market downturns in the markets by using spikes in the ARs. In addition we have also
witnessed that the divergence score for Asian equities increases well before the onset of the Asian
crisis. But over a longer stretch of time-series, it is possible that an increase in the divergence score
may not be associated with a substantial drop in the equity market, or sharp increases and decreases in
the ARs may occur asymmetrically. We plan to inestigate these issues† once a longer stretch of
time-series data are at our disposal. Lastly financial return distributions are known to exhibit fat tails
due to the occurence of rare but extreme shocks in financial markets. The assumption that return and
realized volatility are normally distributed underestimates the probability of such events. Therefore
hypothesis tests in the VAR and Dimsons regressions, where this assumption is implicitly made, may
lead to conclusions that may not be entirely robust.
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Liu H, Aue A, Debashis P (2015) On the Marčenko-Pastur law for linear time series. Ann Stat 43:
675–712.

Liu S, Yamada M, Collier N, et al. (2013) Change-point detection in time-series data by relative density-
ratio estimation. Neural Networks 43: 72–83.

Longin F, Solnik B (2001) Extreme correlation of international equity markets. J Financ 5: 649–676.

Lorden G (1971) Procedures for reacting to a change in distribution, Ann Math Stat 42: 1897–1908.
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Appendix

A. Spectral analysis of correlation

This section outlines the concept of correlation structure of a multivariate time series that is referred
to throughout the paper. Specifically we are interested in investigating the strength of contemporaneous
comovement between components in time series.
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A.1. Eigenspectrum analysis

Consider a d-dimensional random vector X, with

X =


X1
...

Xd

 ∼ F (35)

for some distribution F and linearly independent Xi, i = 1, . . . , d. Let Σ ∈ Rd×d be the population
covariance matrix of X. Since Σ is a square symmetric matrix, it can be diagonalized to obtain its
eigendecomposition

Σ =

d∑
i=1

λiυiυ
′
i (36)

= ΥΛΥ′. (37)

The eigendecomposition of Σ is deterministic up to a scaling factor and in reference to any eigenvectors
hereafter, we will mean the normalized scale, i.e., υ′υ = 1. It is also unique if λi , λ j ∀i, j and we will
assume this property to be true.

Computing the eigendecomposition of a covariance matrix amounts to performing a PCA, which is
one of the most frequently used techniques in multivariate statistical analysis. The population PCA is
defined as a linear transformation X 7→ Y, such that the (principal) components (PCs) of Y are linearly
uncorrelated and have successively decreasing variances. In particular the map Y = Υ′X achieves this,
if we choose to index the eigendecomposition, such that λ1 > . . . > λd. Then, an interpretation of the
eigenvectors is that υ1 is the direction in Rd of largest variance in the data; υ2 is the direction of largest
variance that is orthogonal to υ1; and each subsequent υi points in the direction of greatest variance
such that it is orthogonal to the previous eigenvector. This means that the first PC contains the most
information about the structure of the system and every subsequent PC contains less information than
the previous one.

In addition, if Yi = υ′i X is the i-th PC, then

Var[Yi] = Cov
[
υ′i X, υ

′
i X

]
(38)

= υ′iCov
[
X, X

]
υi (39)

= υ′iΣυi (40)
= υ′iυiλi (41)
= λi, (42)

so λi is the variance of the i-th PC. The eigenvalues of Σ are all positive because it is symmetric and
positive definite. Since the PCs are uncorrelated and the variance of each is given by the corresponding
eigenvalue, we can define the total variance in the system as

Ω =

d∑
i=1

λi, (43)
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and the variance accounted for by the first k PCs as

ωi =
λi

Ω
. (44)

Then the proportion of variance explained by the first k PCs is

φk =

k∑
i=1

ωi k ≤ d. (45)

This framework translates the concentration of cumulative eigenvalue magnitude, or energy, to the
strength of co-movement in the components of X. The value of φk can be interpreted as the extent
to which the variates in X move together due to some k uncorrelated factors. If a high proportion of
total variance is explained by relatively few PCs, then this would manifest in an eigenspectrum with
the few corresponding eigenvalues being much larger than the remaining bulk. Large eigenvalues are
associated with a structure in the data whereas small eigenvalues are associated with noise. Therefore
highly correlated random variables will result in high values of φk for a relatively small k.

Consider, for an illustrative purpose, an extreme case with a bivariate random vector X = [X1 X2]′

such that X1 ∼ N(0, 1) and X2 = 2X1. The population covariance matrix for this system is

Σ =

[
1 2
2 4

]
, (46)

with an eigendecomposition

Υ =

[
0.45 −0.90
0.90 0.45

]
and Λ =

[
5 0
0 0

]
. (47)

The first PC is proportional to [1, 2]′, capturing the full structure of the system, namely variance on the
line X1 = 2X2. The eigenvalues are λ1 = 5 and λ2 = 0. Therefore, for a sample of n observations, φ1

will be close to one. On the other hand, if X1 and X2 are independently distributed standard Normal
random variables, then λ1 = λ2 = 1 and, statistically, the eigenvectors of a sample covariance matrix
from this system will explain an approximately equal amount of variance.‡

A.2. Sample eigenspectrum analysis

In most practical cases the population covariance matrix is unknown, so the true eigenvectors and
eigenvalues cannot be determined with certainty. Instead the available information is a sample of n
realizations of X, which we write in matrix form as

X =
[
x1 . . . xn

]
∈ Rd×n. (48)

The analysis in Section A.1 has a sample analog. First Σ is estimated by the sample covariance matrix
S, which has an eigendecomposition

S =

d∑
i=1

liuiu
′
i (49)

‡It will be shown in Section B that the eigenvalues are systematically unequal.
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= ULU′, (50)

where the ui’s are eigenvectors with associated eigenvalues li. Unlike (37), this decomposition is
stochastic and, in fact, ui and li are observation-dependent estimates of υi and λi, respectively. Our
estimators of (43)–(45) are then given by

Ω̂ =

d∑
i=1

li, (51)

ω̂i =
li

Ω̂
, (52)

φ̂k =

k∑
i=1

ω̂i k ≤ d. (53)

Remark 1. Note that the rows of X are typically pre-processed to have zero mean. If they were also
standardized to have unit variance, then we would have S = R, where R is the sample correlation
matrix and Ω̂ = tr(R) = d.

A.3. Time series eigenspectrum analysis

Consider a d-dimensional time series {Xt} whose population covariance is Σ. We are interested in
performing a sequential analysis of the eigenspectrum of this random process by using the above
framework. Of particular interest is the quantity in (53), which indicates the strength of
contemporaneous comovement between the components of {Xt}. This can be obtained by applying the
PCA on a fixed-size rolling sample of observations from {X}t. Consider a data matrix with the most
recent n observation available at time t, which we denote by

X(n)
t =

[
xt−n+1 xt−n+2 · · · xt

]
. (54)

Following the analysis in Section A.1, at time t, the sample covariance matrix

S(n)
t =

1
n − 1

Xt

(
1n −

1
n

1n1′n

)
X′t (55)

has an eigenvalue decomposition as in equation (49). This yields an empirical eigenspectrum
lt =

[
l1t, · · · , ldt

]′ and replacing li with lit in (51)–(52) we get Ω̂t and ω̂it respectively. Finally

φ̂kt =
ω̂kt

Ω̂t

. (56)

A.4. Eigenspectrum analysis versus average Pearson correlation

For the purpose of assessing the integration between two financial assets we may naturally
question the difference between the framework above and a simple averaging of the elements of the
correlation matrix. Obviously strong correlations of opposite signs can result in a low average
correlation coefficient. However even computing the average absolute value of correlation coefficients
can be disadvantageous. The PCA approach provides a more granular view of the structure of asset
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co-movements. Specifically we can see the concentration of variance captured by eigenvalues of
different ranks and this can be meaningful information, especially when different eigenvectors have
different economic interpretations. For example the dominant eigenvector has been identified as
influence of the entire market and subsequent eigenvectors can explain clusters of stocks with similar
return dynamics, which have been interpreted as industry effects, for example (Allez and Bouchaud,
2011; Laloux et al., 1999; Pan and Sinha, 2007; Plerou et al., 2002). In addition we may also be
interested in a measure of co-movement that takes into account the different return volatilities of
assets. In this case the relative magnitude of eigenvalues of the covariance matrix will be a better
measure than the average correlation coefficient (Kritzman et al., 2011).

B. The distribution of eigenvalues

We will now discuss the distributional properties of correlation matrix spectra. Some work on the
joint distribution of the eigenvalues has been done in the multivariate statistical analysis. However
most results on the limiting behaviour of eigenvalues come from the Random Matrix Theory (RMT).
In this section we present theoretical results on the distribution of eigenvalues.

B.1. Random matrices

A random matrix is a matrix whose elements are random variables. We shall denote random
matrices by calligraphic letters to distinguish them from those with deterministic elements. Thus a
random matrix, X, has Xi j ∼ F as its (i, j)-th element, for some distribution F. The corresponding
realizations are X and xi j. Random matrices are studied as ensembles, each of which includes
matrices that usually form an algebraic group (Bejan, 2005). We list some of the most studied
ensembles and their construction (Edelman and Rao, 2005) below.

• Gaussian orthogonal ensemble: symmetric matrices that can be written as
(X + X′)

2
where X is

n × n with i.i.d. standard real Normal elements.

• Gaussian unitary ensemble: Hermitian matrices that can be written as
(X + XH)

2
whereX is n×n

with i.i.d. standard complex Normal elements. We use XH to denote the Hermitian transpose of
X.

• Gaussian symplectic ensemble: self-dual matrices that can be written as
(X + XD)

2
where X is

n× n with i.i.d. standard quaternion Normal elements. We use XD to denote the dual transpose of
X.
• Wishart ensemble: symmetric matrices that can be written as XXT , where X is d × n with i.i.d.

standard Normal elements that can be real, complex or quaternion. We let XT denote X′, XH or
X

D appropriately.

Of considerable importance to the multivariate statistical analysis is the study of Wishart matrices. Next
we will review the Wishart distribution and results relating to the eigenspectrum of Wishart matrices.
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B.2. Wishart distribution

Wishart matrices arise most prominently in the analysis of sample covariance matrices. Named after
John Wishart, who first computed its joint element density, the Wishart distribution is a generalization
of the chi-squared distribution to a higher dimension.

Definition 1 (Wishart Distribution). LetM ∈ Rd×d be a symmetric random matrix such that

M = XX′ (57)

where

X =
[
X1 · · · Xn

]
(58)

and Xi ∼ Nd(0,Σ) independently for i = 1, . . . , n. ThenM has a Wishart distribution with covariance
Σ and n degrees of freedom, which we denote by

M ∼ Wd(n,Σ). (59)

Recall that X′X is positive semi-definite and thus c′Mc ≥ 0,∀c ∈ Rd. Now a Wishart matrix is
nonsingular, if and only if n ≥ d (Muirhead, 1982). Under this conditionMc , 0, so that c′Mc > 0
for every nonzero c. In other words a Wishart matrix is positive definite, if and only if n ≥ d. Only
when this condition holds the Wishart matrix will have a density function as formalized in the following
theorem from Muirhead (1982).

Theorem 1. Assume thatM ∼ Wd(n,Σ) with n ≥ d. ThenM has the density function

fM(M; n, d,Σ) =
1

2
dn
2 Γd( n

2 ) (det Σ)
n
2

etr
(
−

1
2

Σ−1M
)

(det M)
n−d−1

2 , (60)

where Γd(·) denotes the multivariate gamma function.

Having introduced the Wishart distribution we can view the sample covariance matrix as a random
matrix S. Recall that, unlike the usual definition of the sample covariance matrix, the elements of S

are treated as random variables. Then we have that S ∼ Wd

(
n − 1,

Σ

n − 1

)
. Thus, the joint distribution

of its elements exists if and only if n ≥ d, in which case it is given by

fS(S; n, d,Σ) =

(
n
2

) dn
2

Γd( n
2 ) (det Σ)

n
2

etr
(
−

1
2

nΣ−1S
)

(det S)
n−d−1

2 . (61)

The eigenspectrum of S is of interest both in the general study of random matrices, not least due
to its importance in multivariate statistics, and, as per Section A.1, in our study of comovement in
multivariate series. Modeling the sample covariance matrix as a random matrix allows for analysis that
is based on tools from the RMT. However we shall first present what is known about the distribution of
eigenvalues from the multivariate analysis. We begin with the following theorem from James (1960).
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Theorem 2 (Joint Density of Eigenvalues). Let S be a random matrix distributed as

Wd(N,
Σ

N
), with N = n − 1 ≥ d. Define L = diag

(
l1, . . . , ld

)
to be a diagonal matrix of the eigenvalues

of S and U ∈ O(d) such that S = ULU′ . Then the joint density of the eigenvalues l1 > . . . > ld > 0
is

fL(l1 = x1, . . . , ld = xd; N, d,Σ) =

(N
2

) dN
2 π

d
2

2

(det Σ)−
N
2

Γd

(
N
2

)
Γd

(
d
2

) d∏
i=1

x
N−d−1

2
i

d∏
i< j

(
xi − x j

)
·

∫
O(d)

etr
(
−

N
2

Σ−1UXU′
)

dU,

(62)

where X = diag(x1, . . . , xd) and (dU) is the normalized invariant measure on O(d).

The integral term in (62) is in general difficult to evaluate analytically. In a null case Σ = λId, using
the facts that ∫

O(d)
dU = 1 (63)

and
tr(UXU′) = tr(X), (64)

we have ∫
O(d)

etr
(
−

N
2

Σ−1UXU′
)

dU =

∫
O(d)

etr
(
−

N
2λ

UXU′
)

dU (65)

= etr
(
−

N
2λ

X
) ∫
O(d)

dU (66)

= exp

− N
2λ

d∑
i=1

xi

 . (67)

Thus the joint density of the eigenvalues becomes

fL(l1 = x1, . . . , ld = xd; N, d, λId) =

( N
2λ

) dN
2 π

d
2

2

Γd

(
N
2

)
Γd

(
d
2

) d∏
i=1

x
N−d−1

2
i

d∏
i< j

(
xi − x j

)
· exp

− N
2λ

d∑
i=1

xi

 .
(68)

However the non-null case is much more involved. James (1960) obtains an infinite series
representation for a general Σ in terms of a hypergeometric function of matrix arguments:∫

O(d)
etr

(
−

1
2

NΣ−1UXU′
)

dU = F0 0
(d)(−

NX
2
,Σ−1). (69)

(70)

See Muirhead (1982) for a thorough introduction.
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Using similar tools an exact expression of distribution of the largest eigenvalue, l1, is (see
Constantine, 1963; Muirhead, 1982)

P(l1 ≤ x) =
Γd

(
d+1

2

)
Γd

(
d+N

2

)det
(N

2
xΣ−1

) N
2

F1 1
(d)

(
N
2

;
N + d

2
;−

N
2

xΣ−1
)
. (71)

The distribution of the largest eigenvalue is useful in various applications. For example, in the
estimation of a sparse mean vector, the maximum of d i.i.d Gaussian noise variables is of interest
(Johnstone, 2011). In addition, the PCA is often used as a dimensionality reduction tool in which
extreme eigenvalues play a role in the choice of how many PCs to retain. Most importantly for our
study the relative energy of the largest eigenvalue produced from asset returns can shed light on the
extent of interconnectedness of a financial market, and, hence, its propensity to experience systemic
shocks.

There are issues in practical applications of the density representations mentioned so far. Firstly the
true covariance matrix, Σ, is a required parameter that is usually unknown. Secondly the non-null case
of Σ results in expressions that are difficult to evaluate analytically. Hypergeometric functions involve
infinite series that converge very slowly for large d, and so even numerical solutions are typically
inefficient. We proceed with reviewing some results from random matrix theory that are more useful
in this sense.

B.3. Results from the RMT

RMT addresses the properties of large matrices whose entries are random variables. The study of
random matrices has focused on their eigenvalues as early as the 1920s with the work of Wishart
(1928). A couple of decades later, the field has become prominent in nuclear physics, where dynamic
systems were approximated by discretization, leading to matrices of very large dimensions. This
motivated interest in the limiting behaviour of the eigenvalues and, indeed, the pioneering work of
Wigner (1955) and Marčenko and Pastur (1967) is concerned with applications in physics. Significant
improvements in computing have, since, proliferated studies of high dimensional data and, nowadays,
large matrices are often seen in many fields. Results from the RMT have been used in such areas as:

1. Wireless communication: d input channels and n output channels. See Wetherhill and Brown
(1991) , for example.

2. Climate studies: d measurement locations and n time points. See Preisendorfer (1988), for
example.

3. Financial data: d is the number of securities and n is the number of return observations. Examples
are Gopikrishnan et al. (2001) and Laloux et al. (1999).

Much of the RMT is concerned with the spectral distribution of infinitely large matrices.
Specifically, as the size of the matrix grows infinitely large, the eigenvalue behaviour is described in
terms of the limiting empirical spectral distribution.

Definition 2 (Empirical Spectral Distribution). Let 1[A] be the indicator function for event A. The
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empirical spectral distribution (ESD) of a square matrix X is defined by

FX(x) =
1
d

d∑
i=1

1[li≤x]. (72)

Put otherwise, FX(x) equals the proportion of eigenvalues not greater than x.

If the ESD of a matrix converges to a non-random distribution F as its dimension increases to
infinity, then F is said to be the limiting spectral distribution (LSD). Analysis of the LSD of large
dimensional random matrices is a central theme in the RMT and is the subject of the most famous
results, such as Wigner’s semi-circle law (Wigner, 1955) and its analog for other random matrix
ensembles. Bai and Silverstein (2010) provide a recent comprehensive reference.

Suppose, for instance, that X is such that its elements are independently distributed random
variables Xi j ∼ N(0, 1). The population covariance is given by Id and we have that
λ1 = λ2 = . . . = λd = 1. However, a Monte Carlo simulation of randomly drawn X with n = d = 10
produces§ the ordered eigenvalues l1 > l2 > . . . > l10 with systematic errors, as summarized in Table
13. The implication of this argument is that we cannot expect the empirical eigenvalues to have equal
energy even if the population eigenvalues are in fact equal. This phenomenon is sometimes described
as greater spacing between sample eigenvalues than their population counterparts.

Table 13. Ordered eigenvalues of realizations of S with n = d = 10, averaged over 1000
simulations.

Statistic l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

Observed 3.05 2.25 1.67 1.21 0.84 0.53 0.29 0.13 0.03 0.00
Error 2.05 1.25 0.67 0.21 -0.16 -0.47 -0.71 -0.87 -0.97 -1.00

The next result demonstrates that the distribution of the eigenvalues as n, d → ∞ converges to a non-
random distribution. For the case when X has real elements the LSD is known as the Marčenko-Pastur
(MP) law (Marčenko and Pastur, 1967).

Theorem 3 (Marčenko-Pastur law). Let X ∈ Rd×n be a matrix whose columns are d-dimensional
random variables X j = [X1 j . . . Xd j]

′ satisfying:

1. Independence: the elements Xi j are i.i.d. ∀i, j.

2. Zero mean: E(Xi j) = 0 ∀i, j.

3. Constant and uniform variance: E(X2
i j) = σ2

∀i, j.

4. Finite fourth moment: E(|Xi j|
4) < ∞ ∀i, j.

5. Asymptotic aspect ratio: n, d → ∞ such that
d
n
→ y ≤ 1.

§After subtracting the mean and standardizing.
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Then the ESD of the sample covariance matrix, S, converges in probability to the Marčenko-Pastur
distribution with probability density function given by

fy(x) =

√
(b − x)(a − x)

2πσ2yx
1[a,b](x), (73)

where a = σ2(1 −
√

y)2 and b = σ2(1 +
√

y)2.

The assumption of independence in the Marčenko-Pastur law regards both the row-wise and column-
wise structure of X. In the case of a d-dimensional time series, {Xt}, this is called contemporaneous
and temporal structure respectively. Multivariate data without any structure, such as white noise, will
have a LSD with the probability density function given in equation (73). However in many practical
setting the dependence structure between the entries of Xt is not as trivial and the LSD in such cases
will be different. Some extensions of the Marčenko-Pastur Law have addressed contemporaneous
dependence, i.e. dependence between the components Xi, i = 1, . . . , d. Silverstein (Silverstein, 1995)
considers matrices of the form Y = T

1
2

p X where {Tp} is a sequence of Hermitian non-negative definite
matrices. A strong LSD is established and a characteristic equation for its Stieltjes transform is given

for
1
n
YY

′ under the assumption that {Tp} is bounded in spectral norm and its spectral density converges
in distribution to a non-random density. More recently Bai and Zhou (2008) extended the result to a
more general {Tp} that satisfies a mild moment condition. There have also been studies that consider
temporal dependence using linear models. Jin et al. (2009) establish the existence of a LSD for large
sample covariance matrices generated by a vector autoregressive moving average (VARMA) process.
An explicit form for the probability density function is provided for VAR(1) and VMA(1) models.
Yao (2012) studied a similar problem and determined the LSD and its Stieltjes transform assuming a
general linear process. Most recently Liu et al. (2013) extend the Marčenko-Pastur law to multivariate
MA(∞) models and find the LSD of the symmetrized lagged autocovariance matrix in terms of its
Stieltjes transform. Davis et al. (2014) also consider sample covariance matrices resulting when the
rows of Xt are copies of some time-dependent linear process. Their main result states that the joint
distribution of the first k eigenvalues converges to a Poisson point process.

The distribution of the largest eigenvalue in the Wishart ensemble is of particular importance in
applications such as hypothesis tesing and signal detection. While an exact expression for this had
been known, and is given in (71), its hypergeometric function factor renders it intractable in many
practical settings. Surveys by Pillai (1976a, b) contain additional discussions on challenges in obtaining
marginal distributions from the joint distribution of eigenvalues of Wishart matrices. In some cases
the RMT techniques have been useful in this context. Johnstone (2001) establishes that the limiting
distribution of the largest eigenvalue obeys the Tracy-Widom law in the following theorem.

Theorem 4 (Johnstone’s Theorem). Let X be a d × n random matrix with i.i.d. elements Xi j ∼ N(0, 1).
Let l1 be the largest sample eigenvalue ofM = XX′ and define the centre and scaling constants

µdn =
(√

n − 1 +
√

d
)2

(74)

σdn =
(√

n − 1 +
√

d
) ( 1
√

n − 1
+

1
√

d

) 1
3

. (75)
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If d, n→ ∞ such that
d
n
→ y ≤ 1, then

l1 − µdn

σdn

D
−→ W1 ∼ F(1)

TW (76)

where the convergence is to the Tracy-Widom law of order 1, which has the distribution function

F(1)
TW (y) = exp

(
−

1
2

∫ ∞

y
q(x) + (x − y)q2(x)dx

)
y ∈ R (77)

where q(x) solves the Painlevé II differential equation

q′′(x) = xq(x) + 2q3(x),
q(x) ∼ Ai(x) as x→ ∞,

(78)

and Ai(x) denotes the Airy function.

The distribution in (77) was obtained by Tracy and Widom (1996) as the limiting law of the largest
eigenvalue of an n×n Gaussian symmetric matrix. However Johnstone’s result states that it also applies
to Wishart matrices if l1 is standardized by the constants in (74) and (75). Evaluating the Painlevé
II differential equation, and hence the Tracy-Widom distribution, requires numerical approximation
techniques such as in Edelman and Persson (2005). Bejan (2005) provides tables with evaluations and
p-values that are analogous to the traditional tables for the Student’s t-distribution for example.

C. Stylized properties of eigenvalue-based time series

Our objective here is to expand on the notion of a spectrum-based time series as presented in
Section A.3. Ultimately we are interested in performing a sequential analysis of the strength of
contemporaneous dependence in the multivariate time series. We recap the setting: consider, at time
t ≥ n, a data matrix X(n)

t of the most recent n observations xt−n+1, . . . , xt from a d-variate time series,
{Xt}. The corresponding sample covariance matrix is S(n)

t and its eigenvalues, lt, can be used to
construct a single observation of the statistics ω̂it or φ̂kt as defined in equations (52)-(53). We can also
generate series {lt}, {ω̂it} and {φ̂kt} by applying the PCA sequentially on a fixed-size rolling window of
size n.

To clarify matters let us outline this procedure for an i.i.d series of Xt ∼ N4(0, I4). We generate n
arbitrarily ordered (index-wise) observations which we assume is information available at the start of
sampling. We compute an initial S(n)

0 and its eigenvalues, l0. Upon arrival of the next observation, we
truncate the oldest observation, leaving the most recent n points, with which S(n)

1 and l1 are computed.
Let this process continue and the series of interest will be generated. Figure 25 shows the relative
magnitude series of eigenvalues produced from a Monte Carlo simulation of 1000 sequential spectra
using n = 100. Each eigenvalue accounts for approximately a quarter of the variance. In Figure 26
we plot the cumulative explained variance. Recall that φ̂k is simply the sum of the first k eigenvalues,
normalized by the sum of all eigenvalues. If we choose to standardize the data to have unit variance
then the eigenvalues would simply be scaled down by d, the number of variates.

It is useful to compare the empirical eigenvalues to the theoretical ones. In the above experiment,
we obtain a mean value of 1.225 for l1, whereas the theoretical upper support of the Marčenko-Pastur
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Figure 25. Normalized eigenvalues of a sample covariance matrix S(n)
t of Xt ∼ N4(0, I4), with

an initial sample of n = 100 rolled over 1000 sequential observations.
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Figure 26. Cumulative normalized eigenvalues of a sample covariance matrix S(n)
t of

Xt ∼ N4(0, I4), with an initial sample of n = 100 rolled over 1000 sequential observations.

for an aspect ratio y =
4

100
is 1.44. If we increase both d and n by a factor of 100, l1 comes at a

mean value of 1.39. In fact the limits of the smallest and largest eigenvalues have been shown (see
Geman, 1980 and Silverstein, 1995) to converge to the lower and upper edges of the support of the
Marčenko-Pastur density, denoted by a and b in Theorem 3 respectively. Formally, we have

l1 → (1 +
√

y)2, a.s. (79)

ld → (1 −
√

y)2, a.s. (80)

where the almost sure convergence is to be interpreted as occurring with probability one as d, n→ ∞.
Thus comparing empirical extreme eigenvalues with their theoretical counterparts can give information
about the structure in the data. If the data is white noise, as is the case underlying the Marčenko-Pastur
law, then we would expect empirics to be close to theory. In contrast a relatively strong structure in the
data would result in a significantly larger dominant eigenvalue than predicted by the RMT.
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C.1. Autocorrelation

Clearly each {ω̂it}, i = 1, . . . , d, above is not serially independent because their values are obtained
using a rolling window of observations. In our construction the last n − 1 columns of X(n)

t are the same
as the first n − 1 columns of X(n)

t+1. The window size, n, acts as a smoothing parameter in the sense
that a larger n results in higher autocorrelations and smaller variance in the eigenvalue series. However
the window size also affects the mean values through the dependence of the eigenvalue on the aspect

ratio y =
d
n

. These dynamics are illustrated in Figure 27 where we plot {ω̂1t} and its autocorrelation
functions for simulations using windows of varying length.
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Figure 27. Top – cumulative normalized eigenvalues of a sample covariance matrix S(n)
t of

Xt ∼ N4(0, I4), with samples of varying window length. Bottom – autocorrelation functions
and confidence intervals for each series in the top panel.

It can be seen from the figure that as n increases, the autocorrelation decays slower. Of course serial
dependence could be statistically eliminated if we lagged our sampling, such that there is no overlap
between successive data matrices Xt. However a more common approach is to difference the series
such that each observation represents increments ∆ω̂1t = ω̂1t − ω̂1t−1. In Figure 28, we plot the first
difference of the resulting {ω̂1t} when n = 50. Note that the autocorrelation values now fall within the
confidence intervals around a zero autocorrelation coefficient. This is rather intuitive as this differenced
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series reflects changes in the amount of variance explained by the largest eigenvalues estimated from
successive i.i.d. observations of the data.
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Figure 28. Top – first difference of ω̂1t generated with n = 50. Bottom – Autocorrelation
function with confidence intervals for the series in the top panel.

C.2. Stationarity

Results from Section B on the distribution of eigenvalues provide justification for the claim of
eigenvalue series stationarity under certain conditions. Consider first the relative magnitude of single
eigenvalues ω̂it, i = 1, . . . , d. The stationarity of each depends on that of lit. We know that in the case
of a d-variate i.i.d. Gaussian process, the distribution of the largest eigenvalue exists and is given by
equation (71). Asymptotic distributions are given by Anderson (1963) for fixed d and n → ∞ in the
form √

n
2

(
l1

n
− 1

)
D
−→ N(0, 1), (81)

and by Johnstone (2001) as in Theorem 4. Denote this by Fl1
(l1 ≤ x; n, d,Σ) to emphasize the parameter

set of the distribution. Clearly the conditions under which {l1t} is stationary depend on the underlying
time series and the sampling procedure which produces each l1t. Specifically, if the underlying process
is at least second-order stationary, then taking disjoint samples X(n)

t will result in i.i.d realizations l1.
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Table 14. Stationarity tests for 1000 simulated series with n = 100 and d = 4.

Test ω̂i ∆ω̂i

i = 1 i = 2 i = 3 i = 4 i = 1 i = 2 i = 3 i = 4

Reject HADF
0 0% 0% 0% 0% 100% 100% 100% 100%

Reject HPP
0 0% 0% 0% 0% 100% 100% 100% 100%

Do not reject HKPS S
0 0% 0% 0% 0% 98% 100% 92% 94%

Table 15. Stationarity tests for 1000 simulated series with n = 100 and d = 4.

Test φ̂k ∆φ̂k

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

Reject HADF
0 0% 0% 0% 100% 100% 100%

Reject HPP
0 0% 0% 0% 100% 100% 100%

Do not reject HKPS S
0 0% 0% 0% 92% 100% 96%

To the best of our knowledge there are no results on non-extreme eigenvalues.
However, in empirical applications, the rolling-window fashion by which the eigenvalues are

calculated results in some dependency. Thus we conduct three tests on ω̂it and ∆ω̂it to investigate their
stationarity using the following unit-root tests: (1) Augmented Dickey-Fuller (ADF) parametric test
(Dickey and Fuller, 1979); (2) Phillips-Perron (PP) nonparametric test (Phillips and Perron, 1988) and
(3) Kwiatkowski, Phillips, Schmidt and Shin (KPSS) Lagrange multiplier test (Kwiatkowski et al.,
1992). The null hypotheses for these tests are respectively given by

HADF
0 = HPP

0 : the series has a unit root, (82)

HKPS S
0 : the series does not have a unit root. (83)

A unit root is a feature of a nonstationary time series, so that a rejection of the hypothesis in (82) for
a given time series is to be interpreted that it is second-order stationary. On the contrary the opposite
conclusion is drawn from the KPSS test if there is sufficient evidence to reject its null hypothesis,
HKPS S

0 . Results for our tests are summarized in Table 14, where the relative magnitude and changes
in relative magnitude for each eigenvalue are taken into consideration. The tests consistently conclude
that ω̂it is not stationary since, in 1000 simulations, there are no rejections of the unit root hypothesis.
However the first-differenced series is found to be stationary by all of the tests in the vast majority of
simulations. Table 3 summarizes results from similar tests for the cumulative sums φ̂kt =

∑k
i=1 ω̂it, k =

1, . . . , d − 1. As before the time series are found to be stationary only after first differencing.
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