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model is divided in two parts. The first one describes economic activities in a developed country and
the second part describes variation of economic activities in a country under development which tries to
modify its production so as to serve the needs of the developed country. The article shows that through
control of the macroeconomic model of the developed country, one can finally control the dynamics
of the economy in the country under development. The control method through which this is achieved
is the nonlinear H-infinity control. The macroeconomic model for the country under development
undergoes approximate linearization round a temporary operating point. This is defined at each time
instant by the present value of the system’s state vector and the last value of the control input vector
that was exerted on it. The linearization is based on Taylor series expansion and the computation of the
associated Jacobian matrices. For the linearized model an H-infinity feedback controller is computed.
The controller’s gain is calculated by solving an algebraic Riccati equation at each iteration of the
control method. The asymptotic stability of the control approach is proven through Lyapunov analysis.
This assures that the state variables of the macroeconomic model of the country under development
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1. Introduction

It is necessary to move progressively from ad-hoc methods and empirical knowledge about the
management of financial systems, into methods of proven performance that assure that such systems
will behave in accordance to given specifications (Rigatos, 2017; Platen and Health, 2006; Harvey and
Koopman, 2009). Stability and stabilization in financial systems and particularly in macroeconomic
models remains a primary objective of research in financial engineering (Barnett and He, 1999, 2001a,
b, 2002, 2008; Barnett and Duzhak, 2008; Zhang, 2005). With the use of systems theory approaches
and optimization methods it is possible to modify the dynamics of financial systems. Actually, one
can compute exogenous inputs that steer the financial system to a desirable final state (Barnett and He,
1998; Blueschke et al., 2013; Blueshke-Nikolaeva et al., 2012).

The present article demonstrates that it is possible to achieve control and stabilization of
macroeconomic development models, such as the Grossman-Helpman model (Mondal, 2008; Mondal
and Gupta, 2009; Barnett and Ghosh, 2013, 2014; Guarini, 2011). This is achieved through the
application of exogenous control inputs. The Grossman-Helpman model considers two interacting
business entities. The first one describes economic activities in a developed country and the second
part describes variation of economic activities in a country under development which tries to modify
its production so as to serve the needs of the developed country (Sasaki et al., 2013; Shimizu et al.,
2009; Baldwin and Robert-Nicoud, 2008; Hirose and Yamamoto, 2007; Baldwin et al., 2005). The
article shows that through control of the macroeconomic model of the developed country, one can
finally control the dynamics of the economy in the country under development.

The macroeconomic model describes the wide-gap case of the Grossman-Helpman model, that is
the case in which the wages rate at the peripheral country (South) is smaller than the wages rate of the
developed country (North) (Mondal, 2008; Mondal and Gupta, 2009). The state vector of this model
comprises three state variables.The first state variable signifies the rate of change of the number of
products developed by the two countries (North and South) divided by the total number of products.
The second state variable signifies the number of products developed in North divided by the total
number of products developed by the two countries. The third state variable signifies the rate of change
of the products developed in South over the number of products developed in North.

To solve the control and stabilization problem for this macroeconomic system, the
Grossman-Helpman undergoes linearization around a local operating point (equilibrium) which are
redefined at each iteration of the control algorithm (Rigatos and Siano, 2015; Rigatos et al., 2015).
The equilibrium consists of the present value of the development model state vector and the last value
of the control input vector that was exerted on it. The linearization procedure is based on Taylor series
expansion and on the computation of the Jacobian matrices of the macroeconomic model (Rigatos and
Tzafestas, 2007; Basseville and Nikiforov, 1993; Toussaint et al., 2000; Rigatos and Zhang, 2009).
The linearization error due to truncation of higher order terms in the Taylor series expansion is
considered to be a perturbation which is compensated by the robustness of the control algorithm.

For the approximately linearized macroeconomic model an H-infinity feedback controller is
designed. The H-infinity controller provides solution to the optimal control problem for the
considered development model under uncertainty and external disturbances. It also represents the
solution to a min-max differential game in which the control inputs they to minimize a quadratic cost
functional associated with the state vector error of the macroeconomic model, while the perturbation
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inputs try to maximize it. The computation of the H-infinity controller’s gain relies on the repetitive
solution of an algebraic Riccati equation, taking place at each iteration of the control algorithm
(Rigatos, 2011, 2013, 2015, 2017). The stability features of the control method are confirmed through
Lyapunov analysis. Under moderate conditions it is shown that the macroeconomic model is globally
asymptotically stable. This assures that if suitable control is exerted in the economy of the North then
the state variables of the macroeconomic model of the South will finally converge to the designated
reference values.

The structure of the article is as follows: in Section 2 the dynamics of the Grossman-Helpman model
is analyzed. In Section 3 an approximate linearization of the macroeconomic model is performed using
Taylor series expansion and the computation of Jacobian matrices. In Section 4 the H-infinity feedback
control problem for the macroeconomic model is formulated and the H-infinity feedback controller is
computed through the repetitive solution of an algebraic Riccari equation. In Section 5 the stability
properties of the H-infinity control loop are analyzed with the use of the Lyapunov method. Global
asymptotic stability is finally proven. In Section 6 the performance of the H-infinity control scheme in
the stabilization and control of the macroeconomic model is further demonstrated through simulation
experiments. Finally, in Section 7 concluding remarks are stated.

2. Dynamics of the Grossman-Helpman model

The Grossman-Helpman model in the wide-gap case, that is when the wages rate at the peripheral
country (South) remains lower than the wages rate at the developed country (North), is described by
the following set of differentia; equations (Mondal, 2008)

ġ = ( LN
aN
− g)[ρ̃ + m + g − 1−a

a ( LN
aN
− g) 1

ξ
] (1)

ξ̇ = g − (g + m)ξ (2)

ṁ =
1−ξ
ξ

( Ls
as
− m ξ

1−ξ )[ρ̃ + m ξ

1−ξ −
1−a

a ( Ls
as

] − m ξ

1−ξ ) −
m

ξ(1−ξ) [g − (g + m)ξ] (3)

Next, by defining the state variables x1 = g = ṅ
n which signifies the rate of change of the number of

products developed by the two countries (North and South) divided by the total number of products,
x2 = ξ = nN

n which signifies the number of products developed in North divided by the total number
of products developed by the two countries and x3 = m = ṅs

nN
which signifies the rate of change of

the products developed in South over the number of products developed in North. By considering an
exogenous control input u (control policy in North) which is included in the first row of the state-space
model

ẋ1 = ( LN
aN
− x1)[ρ̃ + x3 + x1 −

1−a
a ( LN

aN
− x1) 1

x2
] + u (4)

ẋ2 = x1 − (x1 + x3)x2 (5)

ẋ3 = 1−x2
x2

( Ls
as
− x3

x2
1−x2

)[ρ̃ + x3
x2

1−x2
− 1−a

a ( Ls
as
− x3

x2
1−x2

)]−
−

x3
x2(1−x2) [x1 − (x1 + x3)x2]

(6)
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The rest of the parameters appearing in the macroeconomic model of Equation (4) to Equation (6)
are defined as follows (Mondal, 2008): LN is the level of employment in North, aN is the labor
requirement per unit in the R&D sector in North, Ls is the level of employement in South, as is the
labor requirement per unit in the R&D sector in South, a is parameter related to the elasticity of
demand a = ε−1

ε
, and ρ̃ is the rate of time preference in North which can be interpreted as the

consistency to time deadlines in North for accomplishing payments and investments.

Next, Equation (6) and function q(x2) = 1−x2
x2

is defined. Thus, Equation (6)is written as

ẋ3 = 1
q(x2) (

Ls
as
− x3q(x2))[ρ̃ + x3q(x2) − (1−a)

a ( Ls
as
− x3q(x2))] − x2

3
1−x2

+ x3
x2

x1 (7)

or equivalently

ẋ3 = ( Ls
as

1
q(x2) − x3)[ρ̃ + x3q(x2) − (1−a)

a ( Ls
as
− x3q(x2))] − x2

3
1−x2

+ x3
x2

x1 (8)

By differentiating Equation (10) once more in time one obtains

ẍ3 = ( Ls
as
−

q
′
(x2)ẋ2
q(x2) − ẋ3)[ρ̃ + x3q(x2) − ( 1−a

a )( Ls
as
− x3q(x2)]+

( Ls
as

1
q(x2) − x2)[ẋ3q(x2) + x3q

′

(x2)ẋ2 +
(1−a

a )ẋ3q(x2) − (1−a
a )x3q

′

(x2)ẋ2]−

−
ẋ2 x2

3
(1−x2)2 −

2x3 ẋ3
(1−x2) + (− ẋ2

x2
2
x3 + 1

x2
ẋ3)x1 + ( x3

x2
)ẋ1

(9)

where q
′

=
dq(x2)

dx2
. By substituting the time derivatives ẋ1 = f1(x) + g1(x)u, ẋ2 = f2(x) and ẋ3 = f3(x),

from Equation (4) to Equation (6), into Equation (10) one gets

ẍ3 = ( Ls
as
−

q
′
(x2) f2(x)
q(x2) − f3(x))[ρ̃ + x3q(x2) − ( 1−a

a )( Ls
as
− x3q(x2)]+

( Ls
as

1
q(x2) − x2)[ f3(x)q(x2) + x3q

′

(x2) f2(x) +
(1−a

a ) f3(x)q(x2) − (1−a
a )x3q

′

(x2) f2(x)]−

−
f2(x)x2

3
(1−x2)2 −

2x3 f3(x)
(1−x2) + (− f2(x)

x2
2

x3 + 1
x2

f3(x))x1 + ( x3
x2

)[ f1(x) + g1(x)u]

(10)

By grouping terms, the previous relation is written as

ẍ3 = −
f2(x)x2

3
(1−x2)2 + v(x) (11)

where the transformed control input v(x) is given by

v(x) = ( Ls
as
−

q
′
(x2) f2(x)
q(x2) − f3(x))[ρ̃ + x3q(x2) − (1−a

a )( Ls
as
− x3q(x2)]+

( Ls
as

1
q(x2) − x2)[ f3(x)q(x2) + x3q

′

(x2) f2(x) +
(1−a

a ) f3(x)q(x2) − (1−a
a )x3q

′

(x2) f2(x)]−
−

2x3 f3(x)
(1−x2) + (− f2(x)

x2
2

x3 + 1
x2

f3(x))x1 + ( x3
x2

)[ f1(x) + g1(x)u]
(12)

By substituting the relation describing f2(x) in Equation (11) one obtains

ẍ3 = −
(x1−x1 x2−x2 x3)x2

3
(1−x2)2 + v (13)

The previous relation can be also written as

ẍ3 = − x1
(1−x1) x2

3 + x2
(1−x2)2 x3

3 + v (14)
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which equivalently can be written as

ẍ3 = fa(x)x2
3 + fb(x)x3

3 + v (15)

with fa(x) = − x1
(1−x1) and fb(x) = x2

(1−x2)2 . Next, by defining F(x3) = fa(x)x2
3 + fb(x)x3

3 and G(x3) = 1 the
macroeconomic development model is written as

ẍ3 = F(x3) + G(x)v (16)

Next, by defining the new state vector x = [x3, ẋ3] one obtains the state-space description(
ẋ1

ẋ2

)
=

(
x2

fax2
1 + fbx3

1

)
+

(
0
1

)
v (17)

where using the vector fields f (x)∈R2×1 and g(x)∈R2×1 one has

ẋ = f (x) + g(x)v (18)

3. Approximate linearization of the macroeconomic development model

The approximately linearized macroeconomic model is given by

ẋ = Ax + Bu + d̃ (19)

where d̃ is the modelling error due to truncation of higher order terms in the Taylor series expansion,
while matrices A and B are given by

A = ∇x[ f (x) + g(x)u]|(x∗ ,u∗) = [∇x f (x)]|(x∗ ,u∗) + [∇xg(x)u]|(x∗ ,u∗)

B = ∇u[ f (x) + g(x)u]|(x∗ ,u∗) = g(x)|(x∗ ,u∗)

(20)

As noted above, the Jacobians of the state-space model of the system are computed using:

∇x f (x) =

 ∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

 ∇xg(x) =

∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

 (21)

According to the above, for the state-space description of the system given in Equation (18) the
linearization procedure through Taylor series expansion leads into the Jacobian matrices

A = ∇x f =

(
0 1

2 fax1 + 3 fbx2
1 0

)
B = g(x) =

(
0
1

)
(22)

4. Design of an H-infinity nonlinear feedback controller

4.1. Equivalent linearized dynamics of the macroeconomic model

After linearization round its current operating point, the macroeconomic model is written as

ẋ = Ax + Bu + d1 (23)
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Parameter d1 stands for the linearization error in the macroeconomic model appearing in Equation
(23). The reference setpoints for the macroeconomic model’s state vector are denoted by xd = [xd

1, x
d
2].

Tracking of this trajectory is succeeded after applying the control input u∗. At every time instant the
control input u∗ is assumed to differ from the control input u appearing in Equation (23) by an amount
equal to ∆u, that is u∗ = u + ∆u

ẋd = Axd + Bu∗ + d2 (24)

The dynamics of the controlled system described in Equation (23) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (25)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (26)

By subtracting Equation (24) from Equation (26) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (27)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as d̃ = d3 − d2, the
tracking error dynamics becomes

ė = Ae + Bu + d̃ (28)

The above linearized form of the macroeconomic model can be efficiently controlled after applying
an H-infinity feedback control scheme.

4.2. The nonlinear H-infinity control

The initial nonlinear model of the macroeconomic model is in the form

ẋ = f̃ (x, u) x∈Rn, u∈Rm (29)

Linearization of the macroeconomic model is performed at each iteration of the control algorithm
round its present operating point (x∗, u∗) = (x(t), u(t − Ts)), where Ts is the sampling period. The
linearized equivalent model of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (30)

where matrices A and B are obtained from the computation of the Jacobians

A =


∂ f̃1
∂x1

∂ f̃1
∂x2

· · ·
∂ f̃1
∂xn

∂ f̃2
∂x1

∂ f̃2
∂x2

· · ·
∂ f̃2
∂xn

· · · · · · · · · · · ·
∂ f̃n
∂x1

∂ f̃n
∂x2

· · ·
∂ f̃n
∂xn

 |(x∗,u∗) B =


∂ f̃1
∂u1

∂ f̃1
∂u2

· · ·
∂ f̃1
∂um

∂ f̃2
∂u1

∂ f̃2
∂u2

· · ·
∂ f̃2
∂um

· · · · · · · · · · · ·
∂ f̃n
∂u1

∂ f̃n
∂u2

· · ·
∂ f̃n
∂um

 |(x∗,u∗) (31)

and vector d̃ denotes disturbance terms due to linearization errors. The problem of disturbance rejection
for the linearized model that is described by
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ẋ = Ax + Bu + Ld̃
y = Cx

(32)

where x∈Rn, u∈Rm, d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical LQR control scheme
is applied. This is because of the existence of the perturbation term d̃. The disturbance term d̃ apart
from modeling (parametric) uncertainty and external perturbation terms can also represent noise terms
of any distribution.

In the H∞ control approach, a feedback control scheme is designed for trajectory tracking by the
system’s state vector and simultaneous disturbance rejection, considering that the disturbance affects
the system in the worst possible manner. The disturbances’ effects are incorporated in the following
quadratic cost function:

J(t) = 1
2

∫ T

0
[yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (33)

The significance of the negative sign in the cost function’s term that is associated with the
perturbation variable d̃(t) is that the disturbance tries to maximize the cost function J(t) while the
control signal u(t) tries to minimize it. The physical meaning of the relation given above is that the
control signal and the disturbances compete to each other within a min-max differential game. This
problem of min-max optimization can be written as

minumaxd̃ J(u, d̃) (34)

The objective of the optimization procedure is to compute a control signal u(t) which can
compensate for the worst possible disturbance, that is externally imposed to the system. However, the
solution to the min-max optimization problem is directly related to the value of the parameter ρ. This
means that there is an upper bound in the disturbances magnitude that can be annihilated by the
control signal.

4.3. Computation of the feedback control gains

For the linearized system given by Equation (32) the cost function of Equation (33) is defined,
where the coefficient r determines the penalization of the control input and the weight coefficient ρ
determines the reward of the disturbances’ effects. It is assumed that (i) The energy that is transferred
from the disturbances signal d̃(t) is bounded, that is

∫ ∞
0

d̃T (t)d̃(t)dt < ∞, (ii) the matrices [A, B] and
[A, L] are stabilizable, (iii) the matrix [A,C] is detectable. Then, the optimal feedback control law is
given by

u(t) = −Kx(t) (35)

with K = 1
r BT P, where P is a positive semi-definite symmetric matrix which is obtained from the

solution of the Riccati equation

AT P + PA + Q − P( 1
r BBT − 1

2ρ2 LLT )P = 0 (36)

where Q is also a positive definite symmetric matrix. The worst case disturbance is given by

Quantitative Finance and Economics Volume 2, Issue 2, 373–387.



380

d̃(t) = 1
ρ2 LT Px(t) (37)

The diagram of the considered control loop is depicted in Figure 1.

Figure 1. Diagram of the control scheme for the macroeconomic model.

4.4. The role of Riccati equation coefficients in H∞ control robustness

The parameter ρ in Equation (33), is an indication of the closed-loop system robustness. If the
values of ρ > 0 are excessively decreased with respect to r, then the solution of the Riccati equation is
no longer a positive definite matrix. Consequently there is a lower bound ρmin of ρ for which the H∞
control problem has a solution. The acceptable values of ρ lie in the interval [ρmin,∞). If ρmin is found
and used in the design of the H∞ controller, then the closed-loop system will have elevated robustness.
Unlike this, if a value ρ > ρmin is used, then an admissible stabilizing H∞ controller will be derived but
it will be a suboptimal one. The Hamiltonian matrix

H =

(
A −( 1

r BBT − 1
ρ2 LLT )

−Q −AT

)
(38)

provides a criterion for the existence of a solution of the Riccati equation Equation (36). A necessary
condition for the solution of the algebraic Riccati equation to be a positive semi-definite symmetric
matrix is that H has no imaginary eigenvalues (Rigatos, 2011).
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5. Lyapunov stability analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear control scheme
assures H∞ tracking performance for the macroeconomic model, and that in case of bounded
disturbance terms asymptotic convergence to the reference setpoints is achieved. The tracking error
dynamics for the macroeconomic model is written in the form

ė = Ae + Bu + Ld̃ (39)

where in the the tracking error dynamics for the macroeconomic model’s case L = I∈R2 with I being
the identity matrix. Variable d̃ denotes model uncertainties and external disturbances of the financial
system’s model. The following Lyapunov equation is considered

V = 1
2eT Pe (40)

where e = x − xd is the tracking error. By differentiating with respect to time one obtains

V̇ = 1
2 ėT Pe + 1

2ePė⇒
V̇ = 1

2 [Ae + Bu + Ld̃]T Pe + 1
2eT P[Ae + Bu + Ld̃]⇒

(41)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+

+1
2eT P[Ae + Bu + Ld̃]⇒

(42)

V̇ = 1
2eT AT Pe + 1

2uT BT Pe + 1
2 d̃T LT Pe+

1
2eT PAe + 1

2eT PBu + 1
2eT PLd̃

(43)

The previous equation is rewritten as

V̇ = 1
2eT (AT P + PA)e + ( 1

2uT BT Pe + 1
2eT PBu)+

+( 1
2 d̃T LT Pe + 1

2eT PLd̃)
(44)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists a positive
definite matrix P, which is the solution of the following matrix equation

AT P + PA = −Q + P(2
r BBT − 1

ρ2 LLT )P (45)

Moreover, the following feedback control law is applied to the system

u = −1
r BT Pe (46)

By substituting Equation (45) and Equation (46) one obtains

V̇ = 1
2eT [−Q + P( 2

r BBT − 1
ρ2 LLT )P]e+

+eT PB(−1
r BT Pe) + eT PLd̃⇒

(47)

V̇ = −1
2eT Qe + 1

r eT PBBT Pe − 1
2ρ2 eT PLLT Pe

−1
r eT PBBT Pe + eT PLd̃

(48)

which after intermediate operations gives
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V̇ = −1
2eT Qe − 1

2ρ2 eT PLLT Pe + eT PLd̃ (49)

or, equivalently

V̇ = −1
2eT Qe − 1

2ρ2 eT PLLT Pe+

+1
2eT PLd̃ + 1

2 d̃T LT Pe
(50)

Lemma: The following inequality holds

1
2eT PLd̃ + 1

2 d̃LT Pe − 1
2ρ2 eT PLLT Pe≤1

2ρ
2d̃T d̃ (51)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above inequality one

gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2 (52)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous relation becomes

1
2 d̃T LT Pe + 1

2eT PLd̃ − 1
2ρ2 eT PLLT Pe≤1

2ρ
2d̃T d̃ (53)

Equation (53) is substituted in Equation (54) and the inequality is enforced, thus giving

V̇≤ − 1
2eT Qe + 1

2ρ
2d̃T d̃ (54)

Equation (54) shows that the H∞ tracking performance criterion is satisfied. The integration of V̇
from 0 to T gives ∫ T

0
V̇(t)dt≤ − 1

2

∫ T

0
||e||2Qdt + 1

2ρ
2
∫ T

0
||d̃||2dt⇒

2V(T ) +
∫ T

0
||e||2Qdt≤2V(0) + ρ2

∫ T

0
||d̃||2dt

(55)

Moreover, if there exists a positive constant Md > 0 such that∫ ∞
0
||d̃||2dt ≤ Md (56)

then one gets ∫ ∞
0
||e||2Qdt ≤ 2V(0) + ρ2Md (57)

Thus, the integral
∫ ∞

0
||e||2Qdt is bounded. Moreover, V(T ) is bounded and from the definition of the

Lyapunov function V in Equation (40) it becomes clear that e(t) will be also bounded since
e(t) ∈ Ωe = {e|eT Pe≤2V(0) + ρ2Md}. According to the above and with the use of Barbalat’s Lemma
one obtains limt→∞e(t) = 0.

Elaborating on the above, it can be noted that the proof of global asymptotic stability for the control
loop of the macroeconomic model is based on Equation (54) and on the application of Barbalat’s
Lemma. It uses the condition of Equation (56) about the boundedness of the square of the aggregate

Quantitative Finance and Economics Volume 2, Issue 2, 373–387.



383

disturbance and modelling error term d̃ that affects the model. However, as explained above the proof
of global asymptotic stability is not restricted by this condition. By selecting the attenuation coefficient
ρ to be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||

2 one has that the first derivative of
the Lyapunov function is upper bounded by 0. Therefore for the i-th time interval it is proven that
the Lyapunov function defined in Equation (40) is a decreasing one. This also assures the Lyapunov
function of the system defined in Equation (29) will always have a negative first-order derivative.

6. Simulation tests

The efficiency of the proposed control scheme for stabilization of the Grossman-Helpman
macroeconomic development model is further confirmed through simulation experiments. The
computation of the H-infinity controller’s feedback gain was repeated at each iteration of the control
algorithm and was based on the solution of the algebraic Riccati equation of Equation (45). The
obtained results which are depicted if Figure 2 to Figure 4 and confirm the excellent tracking
performance of the control method. Actually it is shown that the elements of the state vector of the
macroeconomic model converge fast to the reference setpoints and track them with high precision.
The variation of the control inputs to the macroeconomic model remained smooth.
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Figure 2. Setpoint 1: (a) Tracking of the reference setpoints (red line) by state variable
x3 = m (blue line) at the South area (b) Control inputs applied to the macroeconomic model
at the North area.
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Figure 3. Setpoint 2: (a) Tracking of the reference setpoints (red line) by state variable
x3 = m (blue line) at the South area (b) Control inputs applied to the macroeconomic model
at the North area.
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Figure 4. Setpoint 3: (a) Tracking of the reference setpoints (red line) by state variable
x3 = m (blue line) at the South area (b) Control inputs applied to the macroeconomic model
at the North area.
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The following features can be attributed to the presented nonlinear H-infinity control scheme (i)
despite the strong nonlinearities of the macroeconomic model the control method has an excellent
performance, (ii) the computation of the feedback control signal follows an optimal control concept
and requires the solution of an algebraic Riccati equation at each iteration of the control algorithm,
(iii) the approximate linearization that is induced due to Taylor series expansion round a temporary
equilibrium results in modelling error that is compensated by the robustness of the control scheme.

7. Conclusions

The article has proposed a nonlinear optimal (H-infinity) control method for the problem of
stabilization of the Grossman-Helpman macroeconomic development model. The macroeconomic
model has undergone approximate linearization round a temporary equlibrium which is re-computed
at each iteration of the control algorithm. The linearization procedure is based on Taylor series
expansion and on the computation of the model’s Jacobian matrices. For the approximately linearized
macroeconomic model an H-infinity feedback controller has been developed.

The feedback gain of the H-infinity controller is re-computed at each time instant through the
solution of an algebraic Riccati equation. The stability features of the control scheme are analyzed
with the use of the Lyapunov method. Actually, it is shown that under moderate conditions, global
asymptotic stability holds. This assures that under suitable control at the finance dynamics of the
developed country (North), the growth of the country under development (South) will finally converge
to the designated reference values. The article’s results show that the developed country, may
determine the degree up to which a peripheral economy is going to grow as well as the types of
sectors and activities in the peripheral country which are going to remain alive. This primarily
excludes randomness from the development dynamics of peripheral economies.
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