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Abstract: This paper proposes two jump diffusion models with and without mean reversion,
for stocks or commodities, capable to fit highly leptokurtic processes. The jump component is a
continuous mixture of independent point processes with Laplace jumps. As in financial markets,
jumps are caused by the arrival of information and sparse information has usually more importance
than regular information, the frequencies of shocks are assumed inversely proportional to their average
size. In this framework, we find analytical expressions for the density of jumps, for characteristic
functions and moments of log-returns. Simple series developments of characteristic functions are
also proposed. Options prices or densities are retrieved by discrete Fourier transforms. An empirical
study demonstrates the capacity of our models to fit time series with a high kurtosis. The Continuous
Mixed-Laplace Jump Diffusion (CMLJD) is fitted to four major stocks indices (MS World, FTSE, S&P
and CAC 40), over a period of 10 years. The mean reverting CMLJD is fitted to four time series of
commodity prices (Copper, Soy Beans, Crude Oil WTI and Wheat), observed on four years. Finally,
examples of implied volatility surfaces for European Call options are presented. The sensitivity of this
surface to each parameters is analyzed.

Keywords: jump diffusion model; options; mixed-exponential distributions; double exponential
jump diffusion

1. Introduction

The success of the geometric Brownian motion is directly related to its analytical tractability.
Prices of European and most of exotic options are calculable without intensive numerical
computations. However, there are many piece of evidences proving that stocks returns are slightly
asymmetric and have especially heavier tails than these suggested by a Brownian motion.
Furthermore, an analysis of past stocks or commodities prices contradicts the assumption of
continuity, inherent to a Brownian motion. Since the eighties, many alternatives have been developed
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to incorporate asymmetric and/or leptokurtic features in stocks dynamics. In a first category, we find
models with an infinite number of jumps, obtained e.g. by subordinating a Brownian motion with an
independent increasing Lévy process. This approach has been studied by Madan and Seneta (1990),
Madan et al. (1998), Heyde (2000), Barndorff-Nielsen O.E., Shephard (2001) or more recently by
Hainaut (2016 b). In a second category, called jump diffusion models, the evolution of prices is driven
by a diffusion process, punctuated by jumps at random interval. The two most common
jump-diffusion models for stocks are Merton’s model with Gaussian jumps (1976) and the
double-exponential jump diffusion (DEJD) model, such as presented by Kou (2002) or Lipton (2002).
In this last model, the amplitude of jumps is distributed as a doubly exponential random variable. As
characteristic functions and Laplace transforms have closed form expressions, Kou and Wang (2003,
2004) priced path dependent options and obtained probabilities of hitting times. Boyarchenko and
Levendorskii (2002) and Levendorskii (2004) appraised American, Barrier and Touch-and-out options
for the same process, using expected present value operators. Hainaut and Le Courtois (2014),
Hainaut (2016 a) studied a switching regime version of the DEJD process, for credit risk applications.
Cai and Kou (2011) replaced doubly exponential distributions by mixed exponential jumps. But this
model, being over-parameterized, is of limited interest for econometric applications. On another hand,
jump diffusion processes are not appropriate to represent commodities. Their prices tend indeed to
revert to long run equilibrium prices as illustrated in Bessembinder et al. (1995). Mean reversion is
mainly induced by convenience yields. To remedy to this issue, Gibson and Schwartz (1990),
Cortazar and Schwartz (1994) and Schwartz (1997) modeled commodities with an
Ornstein-Uhlenbeck (OU). Recently, Jaimungal and Surkov (2011) proposed a Levy OU process for
modeling energy spot prices and pricing of derivatives.

This work contributes to previous researches in several directions. Firstly, it proposes
parsimonious models with and without mean reversion, for stocks and commodities, capable to fit
highly leptokurtic processes. To achieve this goal, the return is modeled by a diffusion and a sum of
compound Poisson processes. Jumps are Laplace random variables and their frequencies of
occurrences are inversely proportional to their average size. This assumption is based on the
observation that sparse information has a bigger impact on stocks or commodities prices than regular
information. This model, called Continuous Mixed-Laplace Jump Diffusion (CMLJD) duplicates a
wide variety of leptokurtic distribution. It is adjustable to time series by likelihood maximization. A
second appealing feature of CMLJD is that the number of compound Poisson processes is
uncountable. CMLJD is in this sense an extension to continuous time of the Mixed Exponential Jump
Diffusion model. The CMLJD converges weakly to a diffusion process punctuated by single jumps,
distributed as a continuous mixture of Laplace random variables. In this setting, we infer closed form
expressions for the density of jumps, for characteristic functions and moments of log-returns, both for
CMLJD with and without mean reversion. Approached formulas of characteristic functions are
available and can be used to speed up calculations. The last contribution is empirical. To illustrate its
efficiency, the CMLJD model is fitted to four stocks indices (MS World, FTSE, S&P and CAC 40),
over a period of 10 years. Whereas the mean reverting CMLJD model is calibrated to four
commodities (Copper, Soy Beans, Crude Oil WTI and Wheat), observed over four years. These
empirical tests confirm that the CMLJD outperforms the DEJD and Brownian processes. Probability
density functions and European options prices are retrieved by a discrete Fourier’s transform (DFT).
Finally, we study the sensitivity of options implied volatility to parameters.
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The rest of the paper is organized as follows. Section 2 introduces the Continuous Mixed-Laplace
Jump Diffusion (CMLJD) process and its properties. Section 3 develops the mean reverting CMLJD.
Sections 4 and 5 review the DFT methods to compute the probability density functions and options
prices. Finally, the section 6 presents an empirical study.

2. The Continuous Mixed Laplace Jump Diffusion model

This work extends the mixed double exponential jump diffusion model of Cai and Kou (2011) by
considering an uncountable number of jump processes. The construction of this model proceeds with
the following steps. Firstly, we present a process for asset log-returns with a finite mixture of Laplace
jumps. So as to propose a parsimonious model, parameters are replaced by functions. Secondly, we
find the moment generating function of this process when the number of jump processes tends to
infinity and show that it converges weakly (or in distribution) toward a jump diffusion process with a
single jump component.

The asset price is a process denoted by (At)t≥0 and is defined on a probability space Ω, endowed with
its natural filtration (Ft)t≥0 and a probability measure P. P is indifferently the real historical measure
or a risk neutral measure used for pricing purposes. The log return of At noted Xnk

t , is such that

At = A0 exp
(
Xnk

t
)
, (1)

where nk is a parameter that points out the number of jump processes involved in the dynamics of
log-return. We assume that Xnk

t is driven by the following jump-diffusion:

dXnk
t = µdt + σdWt +

∑
k=1:∆k:K

dLk
t , (2)

where µ , σ are respectively the return, and volatility of the Brownian motion Wt. Whereas K is
constant and strictly above one (K > 1). The nk = K

∆k processes Lk
t , are compound Poisson processes

parameterized by k, defined as the sum of Nk
t independent and identically distributed jumps noted Jk:

Lk
t : =

∑Nk
t

j=1 Jk
j . (3)

The counting processes Nk
t , have intensities equal to λk∆k for k = 1 : ∆k : K. The most popular

distributions for jumps are either the Gaussian as in Merton (1976) or the double exponential
distributions. However, as emphasized in Kou (2002) or in Kou and Wang (2003, 2004), adding a
single double exponential jump process to a diffusion considerably improves the explanatory power of
the model. Furthermore, the process remains analytically tractable for options pricing and fits
relatively well the surface of implied volatility. From an econometric point of view, the popularity of
the double exponential jump diffusion (DEJD) comes from its ability to exhibit reasonable
leptokurticity and asymmetry.

Cai and Kou (2011) extend the DEJD by considering a mixture of double exponential jumps and
study a dynamics similar to the one of equation (2). But the over-parameterization of this model
constitutes a serious drawback. As our purpose is to extend their model with an uncountable number
of jump processes to fit processes with a high kurtosis, we remedy to this problem by doing two
assumptions. Firstly, jumps Jk are Laplace random variables. The Laplace law is a double exponential
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distribution, with symmetric positive and negative exponential jumps. Secondly, parameters are
replaced by functions of the index k. The process obtained by this way is parsimonious: it counts the
same number of parameters as the DEJD model of Kou (2002). We lose the asymmetry of the Cai and
Kou process but our model exhibits a wider range of kurtosis, which is an important driver of option
prices. Furthermore, empirical investigations concluding this work emphasizes that our approach
outperforms the DEJD model. On the other hand, this specification entails that the jump part in the
equation (2) is a martingale. The expectation of dXnk

t is equal to the drift, µdt and we don’t need to
introduce a compensator for the jump processes.

More precisely, Laplace densities of Jk depend on a parameter αk as follows:

µk(x) =
αk

2
e−αk |x| f or k ∈ [1,K]. (4)

This is a double exponential distribution for which the probability of observing an upward or downward
shock is 1

2 , with respective averages 1
αk

and − 1
αk

. With a such distribution, the expected jump is null,

E
(
Jk

)
= 0. The characteristic function of Jk is also equal to the following quotient:

MJk(z) = E
(
eizJk)

=
α2

k

α2
k + z2

f or k ∈ [1,K]. (5)

On the other hand, jump processes Lk
t have a null mean

E
(
Lk

t |F0

)
= λk∆k E

(
Jk|F0

)
t = 0 f or k ∈ [1,K] , (6)

and a variance given by:

V
(
Lk

t |F0

)
:= E

E

 Nk

t∑
j=1

Jk
j


2

|F0 ∨ Nk
t

 |F0


= E

(
Nk

t E
((

Jk
)2
)
|F0

)
= λk∆k E

((
Jk

)2
)

t. (7)

Furthermore Lk
t are martingales, given that increments of Lk

t are independent and such that:

E
(
Lk

T | Ft

)
= Lk

t + E
(
Lk

T − Lk
t | Ft

)
= Lk

t . (8)

In order to limit the degrees of freedom, αk and λk are parameterized with the following reasoning.
Jumps are related to the flow of information. Good news or bad news, of different importance, arrive
according to Poisson processes and prices change in response, according to an exponential jump. If we
assume that sparse information has a bigger impact on prices than regular information, intensities λk,

and average absolute values of jumps 1
αk

, respectively increase and decrease with the index k. The next
functions for αk and λk satisfy these features:

λk = λ0 kβ1 ∀k ∈ [1,K] β1 > 0 , (9)
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αk = α0 kβ2 ∀k ∈ [1,K] β2 > 0 . (10)

where λ0 , α0, β1 and β2 are positive constants. The positivity of β1 and β2 ensures that intensities λk

are inversely proportional to average jumps, 1
αk

. Before any further developments, let us define Nt , a
Poisson process with an intensity λ equal to

λ =

ˆ K

1
λ0 kβ1dk

=
λ0

1 + β1
Kβ1+1 −

λ0

1 + β1
. (11)

Let us denote by B a random variable on the interval [1,K] and defined by the measure µB(k) as follows:

µB(k) =

λk
λ

k ∈ [1,K]
0 k < [1,K]

. (12)

Let J be a random variable distributed as a continuous mixture of Laplace random variables:

J =

ˆ K

1
Jkdδ{B=k}. (13)

Then using nested conditional expectations, the characteristic function of J is such that:

E
(
eizJ

)
= E

(
E

(
eizJB)

| B
)

=

ˆ K

1

α2
k

α2
k + z2

dµB(k)

=

ˆ K

1

λk

λ

α2
k

α2
k + z2

dk . (14)

When the number of jumps components tends to infinity, nk → ∞, the process Xnk
t converges in

distribution (weak convergence) toward Xt that is a jump diffusion process. As stated in the next
proposition, the jump component of Xt is a unique compound Poisson process, with jumps distributed
as a finite mixture of Laplace’s random variables.

Proposition 2.1. Xnk
t converges in distribution toward Xt, Xnk

t
d
→ Xt, which is a process defined by:

dXt = µdt + σdWt + dLt , (15)

where Lt :=
∑Nt

k=1 J is a compound Poisson process. J is defined by equation (13) and Nt is a point
process with an intensity given by equation (11). The characteristic function of Xt is equal to:

MXt(z) = E
(
eizXt | F0

)
= exp

(
t
(
µiz −

1
2
σ2z2 − λ

(
1 −
ˆ K

1

λk

λ

α2
k

α2
k + z2

dk
)))

. (16)
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Proof. To prove this result, we show that characteristic functions of jump processes (2) converge to the
one of equation (15). The Lk

t have a characteristic function equal to (for a proof see e.g. Kaas et al.
2008, page 43),

MLk
t
(z) = E(eziLk

t ) = mNk
t
(ln M jk(z)) f or k = 1 : ∆k : K. (17)

where mNk
t
(h) is the moment generating function of Nk

t , mNk
t
(h) = E

(
ehNk

t

)
= e−(λk∆k)t(1−eh) and M jk(z) is

the characteristic function of Jk, such as defined by equation (5). Then, MLk
t
(z) is equal to:

MLk
t
(z) = exp

(
− (λk∆k) t (1 −

α2
k

α2
k + z2

)
)

f or k = 1 : ∆k : K. (18)

Given that Lk
t ’s are independent, the sum of all jumps components till time t, Lt := lim∆k→0

∑
k=1:∆k:K Lk

t

, has the following characteristic function:

MLt(z) = lim
∆k→0
E(ezi

∑
k=1:∆k:K Lk

t )

= lim
∆k→0

∏
k=1:∆k:K

E(eziLk
t ) . (19)

Wherein, the product in this limit is equal to:

∏
k=1:∆k:K

E(eziLk
t ) = exp

− ∑
k=1:∆k:K

(λk∆k) t(1 −
α2

k

α2
k + z2

)

 . (20)

If λ∆k =
∑

k=1:∆k:K (λk∆k), this characteristic function becomes:

∏
k=1:∆k:K

E(eziLk
t ) = exp

−λ∆kt(1 −
∑

k=1:∆k:K

λk

λ∆k

α2
k

α2
k + z2

∆k)


= exp

−λ∆kt

1 − E exp

iz ∑
k=1:∆k:K

I{B∆k=k}Jk

 | B∆k

 , (21)

where B∆k denotes here a random variable defined on the interval [1,K] by a discrete measure µB∆k(k):

µB∆k(k) =

λk∆k
λ∆k

k = 1 : ∆k : K

0 else
. (22)

∏
k=1:∆k:K E(eziLk,∆k

t ) is then the characteristic function of a jump process, of intensity λ∆k, with jumps
distributed as a finite mixture of Laplace random variables. Taking the limit of (21) when ∆k → 0, and
according to the definition of λ, we get that

lim
∆k→0

∑
k=1:∆k:K

(λk∆k) =

ˆ K

1
λkdk

= λ . (23)
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On another hand, we have that

lim
∆k→0

∑
k=1:∆k:K

λk

λ∆k

α2
k

α2
k + z2

∆k =

ˆ K

1

λk

λ

α2
k

α2
k + z2

dk. (24)

The characteristic function of Lt is then equal to:

MLt(z) = exp
(
−λt(1 −

ˆ K

1

λk

λ

α2
k

α2
k + z2

dk
)

(25)

= exp
(
−λt

(
1 − E

(
exp

(
i z
ˆ K

1
Jkdδ{B=k}

)
| B

)))
.

As there is an unequivocal correspondence between the moment generating function of a random
variable and its probability density function, we have proven that

lim
∆k→0

P

 ∑
k=1:∆k:K

Lk
t ≤ x

 = P (Lt ≤ x) . (26)

Xnk
t converges then weakly or in distribution toward Xt.

�

This proposition reveals an interesting feature of our model and shared with all Mixed Exponential
Models. Whatever the number of jumps components, the dynamics of the asset return always
converges in a weak sense toward a jump diffusion model, with a single compound Poisson process
for which jumps are distributed as a mixture of distributions.

The next proposition presents a closed form expression for the density of the mixture of Laplace
jumps.

Proposition 2.2. Let us define a constant γ by:

γ = 1/β2 (1 + β1 + β2) , (27)

the probability density function of jumps J defined in equation (13) is given by the following expression:

µJ(x) =
λ0

λ

α0

2
1
β2

1
(α0|x|)γ

(
Γ (γ, α0 |x|) − Γ

(
γ, α0Kβ2 |x|

))
, (28)

where Γ (a, x) is the incomplete Gamma function defined as:

Γ (a, x) =

ˆ +∞

x
ua−1e−udu . (29)

Proof. By construction, the probability density function of jumps is equal to

µJ(x) =

ˆ K

1

αk

2
e−αk |x|µB(dk)
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=
1
λ

ˆ K

1
λk
αk

2
e−αk |x|dk

=
λ0

λ

α0

2

ˆ K

1
k(β1+β2)e−α0 kβ2 |x|dk . (30)

Substituting k′ = α0 kβ2 |x| to the integration variable k leads to the following relations

k =
1

(α0|x|)1/β2

(
k′
) 1
β2 , (31)

dk =
1

β2 (α0|x|)1/β2

(
k′
) 1
β2
−1 dk′ , (32)

and to the next expression for the density:

µJ(x) =
λ0

λ

α0

2
1
β2

1
(α0|x|)1/β2(1+β1+β2)

ˆ α0Kβ2 |x|

α0 |x|

(
k′
)( 1

β2
(β1+1)+1

)
−1 e−k′dk′. (33)

The integral in this last equation is the difference between two incomplete Gamma functions, such as
defined by equation (29).

�

Remark that Xt , being a jump diffusion process, belongs to the family of Lévy processes. Its
infinitesimal generator is then equal to

(Lu) (x) = µ
∂

∂x
u(x) +

σ2

2
∂

∂x2 u(x) + λ

ˆ +∞

−∞

(u(x + y) − u(x)) µJ(y)dy , (34)

for any function u(x) that is twice continuously differentiable and where µJ(.) is given by (28). This
generator is the key used later, to build the Feynman-Kac equation, satisfied by option prices. This
equation is solved numerically by inverting the Fourier transform of option prices. But this approach
requires to know the characteristic function of Xt. The next proposition provides us this important
result:

Proposition 2.3. The characteristic function MXt(z) = E
(
eizXt

)
of the CMLJD process Xt is given by

MXt(z) := exp (tψ(z)) (35)

= exp
(
t
(
i µ z −

1
2
σ2z2 +

ˆ K

1
λk

α2
k

α2
k + z2

dk − λ
))
,

and if we denote by θ = 2β2 + β1 + 1, the integral in (35) is equal toˆ K

1
λk

α2
k

α2
k + z2

dk =

λ0

(
α0

z

)2 1
θ

[
KθG

(
θ

2β2
,−

(
α0

z

)2
K2β2

)
−G

(
θ

2β2
,−

(
α0

z

)2
)]
, (36)

where G(b, x) is the hypergeometric function:

G(b, x) = 2F1(1, b, b + 1, x)

= b
ˆ 1

0

ub−1

1 − ux
du . (37)
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Proof. As mentioned in the proof of proposition 2.1, the characteristic function of S t =
∑Nt

i=1 Ji is

MS t(z) = e−λt(1−MJ(z)) , (38)

where MJ(z) is provided by equation (14). Then MXt(z) = E
(
eizXt

)
is equal to expression (35). The

integral present in equation (35) is split as follows:
ˆ K

1
λk

α2
k

α2
k + z2

dk = λ0

ˆ K

1

k2β2+β1

k2β2 +
(

z
α0

)2 dk

= λ0


ˆ K

0

k2β2+β1

k2β2 +
(

z
α0

)2 dk −
ˆ 1

0

k2β2+β1

k2β2 +
(

z
α0

)2 dk

 . (39)

To calculate the integral
´ s

0
k2β2+β1

k2β2 +

(
z
α0

)2 dk with s = K or s = 1, the next change of variable is done:

k = u
1

2β2 s. As dk = 1
2β2

s u
1

2β2
−1du, we infer that:

ˆ s

0

k2β2+β1

k2β2 +
(

z
α0

)2 dk =

ˆ s

0

u
1

2β2
(2β2+β1)s(2β2+β1)

us2β2 +
(

z
α0

)2

1
2β2

s u
1

2β2
−1du

=
1

2β2
s(2β2+β1+1)

(
α0

z

)2 ˆ s

0

u
1

2β2
(β1+1)

1 − u
(
−s2β2

(
α0
z

)2
)du

=
1
θ

sθ
(
α0

z

)2
G(

θ

2β2
,−

(
α0

z

)2
s2β2) . (40)

Given that the hypergeometric function, 2F1(a, b, c, x) , is defined by

2F1(a, b, c, x) =
Γ(c)

Γ(b)Γ(c − b)

ˆ 1

0
ub−1(1 − u)c−b−1(1 − ux)−adu , (41)

we infer that G(b, x) =2 F1(1, b, b + 1, x) and conclude.
�

The moments of Xt are obtained by differentiating the characteristic function, as stated in the next
proposition. The skewness is null as by construction the distribution of Xt is symmetric. But the
kurtosis is always above 3. Xt has then fatter tails than a normal distribution.

Proposition 2.4. The mean, variance, skewness and kurtosis of Xt are respectively given by:

E(Xt) = µ t , (42)

V(Xt) = t
(
σ2 + 2

λ0

α2
0

1
β1 − 2β2 + 1

(
Kβ1−2β2+1 − 1

))
, (43)

S(Xt) = 0 , (44)
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K(Xt) = 3 +

24λ0
α4

0(β1−4β2+1) (Kβ1−4β2+1−1)

t
(
σ2+2 λ0

α2
0

1
β1−2β2+1 (Kβ1−2β2+1−1)

)2 . (45)

Proof. The moments of Xt are obtained by deriving the characteristic function with respect to z,

E(Xk
t ) =

∂k

∂zk MXt(−iz)

∣∣∣∣∣∣
z=0

. (46)

In particular,

E(Xt) = µ t , (47)

E(X2
t ) = (µ t)2 + t

(
σ2 +

ˆ K

1
2
λk

α2
k

dk
)
, (48)

E(X3
t ) = (µ t)3 + 3t2µ

(
σ2 +

ˆ K

1
2
λk

α2
k

dk
)
, (49)

E(X4
t ) = (µ t)4 + 6t3µ2

(
σ2 +

ˆ K

1
2
λk

α2
k

dk
)

+

3t2
(
σ2 +

ˆ K

1
2
λk

α2
k

dk
)2

+ t
(ˆ K

1
24
λk

α4
k

dk
)
. (50)

The skewness and kurtosis are inferred from following relations:

S(Xt) =
E(X3

t ) − 3E(Xt)V(Xt) − E(Xt)3

V(Xt)
3
2

, (51)

K(Xt) = 1
(V(Xt))2

(
E(X4

t ) − 4E(Xt)E(X3
t ) + 6E(Xt)2E(X2

t ) − 3E(Xt)4
)
. (52)

�

A helpful feature of the hypergeometric function for numerical purposes, is that it can be rewritten
as an infinite sum. In this case, the characteristic exponent admits the following alternative expression:

Corollary 2.5. The characteristic exponent ψ(z) is equal to the sum:

ψ(z) = i µ z −
1
2
σ2z2 − λ +

∞∑
j=0

λ0

(θ + 2 j β2)
(−1) j

(
K2 jβ2+θ − 1

) (α0

z

)2( j+1)
(53)

where θ = 2β2 + β1 + 1.

Proof. 2F1(a, b, c, x) has the property to be equivalent to the infinite series:

2F1(a, b, c, x) = 1 +
a b
1! c

x +
a(a + 1) b(b + 1)

2! c(c + 1)
x2
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+
a(a + 1)(a + 2) b(b + 1)(b + 2)

3! c(c + 1)(c + 2)
x3 + . . . (54)

This feature allows us to develop G(b, x) as follows:

G(b, x) = 1 +
b

(b + 1)
x +

b
(b + 2)

x2 +
b

(b + 3)
x3 + . . . (55)

and the difference present in the characteristic exponent, becomes

KθG
(
θ

2β2
,−

(
α0

z

)2
K2β2

)
−G

(
θ

2β2
,−

(
α0

z

)2
)

=
(
Kθ − 1

)
+

∞∑
j=1

θ

(θ + 2 j β2)

Kθ

(
−

(
α0

z

)2
K2β2

) j

−

(
−

(
α0

z

)2
) j

=

∞∑
j=0

θ

(θ + 2 j β2)
(−1) jα

2 j
0

(
K2 jβ2+θ − 1

) 1
z2 j (56)

�

3. The mean reverting CMLJD model

As mentioned in the introduction, a simple jump diffusion is not appropriate to represent
commodities as their prices revert to long run equilibrium prices. To insert this feature in assets
dynamics, the following mean reversion mechanism is studied

Xt = ϕ(t) + Yt , (57)

where ϕ(t) is a function of time defined by

ϕ(t) = b (1 − e−at) . (58)

b is the constant mean reversion level whereas a is the speed of mean reversion. On the other hand, Yt

is non Gaussian Ornstein-Uhlenbeck process with Y0 = X0, driven by the next SDE:

dYt = −aYtdt + dZt. (59)

where dZt is a Lévy process, sum of a Brownian component and of a jump process:

dZt : = σdWt + dLt . (60)

As previously, Lt =
∑Nt

j=1 J j where Nt is a Poisson process and J is a continuous mixture of Laplace’s
law. Lt is the limit in the weak sense of the sum of processes Lk

t when ∆k tends to zero. In this setting,
Applying the Lévy Ito formula to eatYt leads to the following expression for Yt,

Yt = Yse−a(t−s) +

ˆ t

s
e−a(t−u)dZu . (61)
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The statistical distribution of Ys is unknown but may be inferred from its characteristic function in
numerical applications. The asset value at time t, conditionally to the available information at time s is
given by:

At = As exp
(
ϕ(t) − ϕ(s) + Yse−a(t−s) +

ˆ t

s
e−a(t−u)dZu

)
. (62)

Given that Y0 = X0, the characteristic function of the asset return is:

MXt(z) = E
(
eizXt |F0

)
= eiz(ϕ(t)+X0e−at)E

(
e
´ t

0 ize−a(t−u)dZu |F0

)
(63)

The expectation is valued by the following result, proposed by Eberlein and Raible (1999):

Proposition 3.1. Let Zt be a Lévy process having a cumulant transform defined as follows

ψ̃(u) = logE(exp(uZ1)) , (64)

and let f : R+ → C be a complex valued left continuous function such that |Re( f )| ≤ M then

E

(
exp

(ˆ t

0
f (u) dZθ

)
|F0

)
= exp

(ˆ t

0
ψ̃( f (u)) du

)
. (65)

In particular, if Zt is a mixed Laplace process, its cumulant transform is equal to:

ψ̃(u) =
1
2
σ2u2 +

ˆ K

1
λk

α2
k

α2
k − u2

dk − λ , (66)

and

f (u) = ize−a(t−u) . (67)

Proposition 3.2. The characteristic function of Xt is equal to

MXt(z) := exp (ψ(t, z)) (68)

= exp
(
iz

(
ϕ(t) + X0e−at) +

ˆ t

0
ψ̃(ize−a(t−u)) du

)
,

where the integral
´ t

0 ψ̃(ize−a(t−u)) du is given by the next expression:

ˆ t

0
ψ̃(ize−a(t−u)) du = −

1
4a
σ2z2

(
1 − e−2at

)
+ (69)

λ0

2a
2β2 Kβ1+1

(β1 + 1)2

(
G

(
β1 + 1

2β2
,−
α2

0

z2 K2β2e2at

)
−G

(
β1 + 1

2β2
,−
α2

0

z2 K2β2

))
−
λ0

2a
2β2

(β1 + 1)2

(
G

(
β1 + 1

2β2
,−
α2

0

z2 e2at

)
−G

(
β1 + 1

2β2
,−
α2

0

z2

))
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+
λ0

2a
Kβ1+1

(β1 + 1)
ln

(
α2

0K2β2 + z2e−2at

α2
0K2β2 + z2

)
−
λ0

2a
1

(β1 + 1)
ln

(
α2

0 + z2e−2at

α2
0 + z2

)
,

and where G(b, x) is again the hypergeometric function:

G(b, x) = 2F1(1, b, b + 1, x)

= b
ˆ 1

0

ub−1

1 − ux
du . (70)

Proof. A direct calculation leads to the following development:
ˆ t

0
ψ̃(ize−a(t−u)) du = −

1
4a
σ2z2

(
1 − e−2at

)
+ (71)

ˆ K

1
λk

ˆ t

0

α2
k

α2
k + z2e−2a(t−u)

du dk − λt ,

and the integral in the second term is equal to

ˆ t

0

α2
k

α2
k + z2e−2a(t−u)

du =

[
u −

1
2a

ln
(
1 +

(
z2

α2
k

e−2at

)
e2au

)]u=t

u=0

= t +
1

2a
ln

(
α2

k + z2e−2at

α2
k + z2

)
. (72)

Then the integral in equation (71) becomes:

ˆ K

1
λk

ˆ t

0

α2
k

α2
k + z2e−2a(t−u)

du dk = λt +
1

2a

ˆ K

1
λk ln

(
α2

k

z2 + e−2at

)
dk

−
1

2a

ˆ K

1
λk ln

(
α2

k

z2 + 1
)

dk . (73)

For any constant κ, several changes of variables similar to these done in proposition 2.3, lead to the
following expression for the integral:

ˆ K

1
λk ln

(
α2

k

z2 + κ

)
dk = λ0

ˆ K

1
kβ1 ln

(
α2

0

z2 k2β2 + κ

)
dk = λ0

1
(β1 + 1)2 ×[

kβ1+1
(
2β2 G

(
β1 + 1

2β2
,−
α2

0k2β2

z2κ

)
+ (β1 + 1) ln

(
α2

0

z2 k2β2 + κ

)
− 2β2

)]k=K

k=1
. (74)

Combining equations (71) (73) and (74) allows us to conclude the proof.
�

Notice that the dynamics of Xt can be described by the following SDE

dXt = a (b − Xt) dt + σdWt + dLt, (75)
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We deduce from this last relation, its infinitesimal generator is equal to

(Lu) (x) = a (b − x)
∂

∂x
u(x) +

σ2

2
∂

∂x2 u(x) + (76)

λ

ˆ +∞

−∞

(u(x + y) − u(x)) µJ(y)dy ,

for any function u(x) that is twice continuously derivable and where µJ(.) is given by (28). This
generator is used for pricing purposes in appendix A.

The moments of Xt are then obtained by differentiating the characteristic function. Again, the
skewness is null and the kurtosis is always above 3.

Proposition 3.3. The mean, variance, skewness and kurtosis of Xt are respectively given by:

E(Xt) = b (1 − e−at) + X0e−at , (77)

V(Xt) =
1

2a
(1 − e−2at)

(
σ2 + 2

λ0

α2
0

1
β1 − 2β2 + 1

(
Kβ1−2β2+1 − 1

))
, (78)

S(Xt) = 0 , (79)

K(Xt) = 3 +
24 1

4a (1−e−4at)
(
λ0
α4

0

1
β1−4β2+1 (Kβ1−4β2+1−1)

)
(

1
2a (1−e−2at)

(
σ2+2 λ0

α2
0

1
β1−2β2+1 (Kβ1−2β2+1−1)

))2 . (80)

Proof. The moments of Xt are obtained by differentiating the characteristic function with respect to z,

E(Xk
t ) =

∂k

∂zk MXt(−iz)

∣∣∣∣∣∣
z=0

. (81)

In particular, if g(t) denotes the following function,

g(t) = σ2
ˆ t

0
e−2a(t−u) du + 2

ˆ t

0

ˆ K

1

λk

α2
k

e−2a(t−u)dk du , (82)

the non centered moments of Xt are

E(Xt) = b (1 − e−at) + X0e−at , (83)
E(X2

t ) =
(
b (1 − e−at) + X0e−at)2

+ g(t) , (84)
E(X3

t ) =
(
b (1 − e−at) + X0e−at)3

+ 3
(
b (1 − e−at) + X0e−at) g(t) , (85)

E(X4
t ) =

(
b (1 − e−at) + X0e−at)4

+ 6
(
b (1 − e−at) + X0e−at)2 g(t)

+3g(t)2 + 24
ˆ t

0

ˆ K

1

λk

α4
k

e−4a(t−u)dkdu . (86)

�
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If the hypergeometric function is developed as an infinite serie, the following result speeds up the
numerical calculation of the moment generating function:

Corollary 3.4. The integral
´ t

0 ψ̃(ize−a(t−u)) du is equal to the following sum:

ˆ t

0
ψ̃(ize−a(t−u)) du = −

1
4a
σ2z2

(
1 − e−2at

)
+ (87)

λ0

2a
2β2

(β1 + 1)2

 ∞∑
j=1

1

1 +
2β2
β1+1 j

(
K2 jβ2+β1+1 − 1

) (
−
α2

0

z2

) j (
e2at − 1

) j


+
λ0

2a
Kβ1+1

(β1 + 1)
ln

(
α2

0K2β2 + z2e−2at

α2
0K2β2 + z2

)
−
λ0

2a
1

(β1 + 1)
ln

(
α2

0 + z2e−2at

α2
0 + z2

)
.

4. Calculation of the probability density function

The calculation of characteristic exponents can be done numerically by discretizing the integral
form of G(b, x) or with the development in equation (53), truncated to a finite number of terms. Both
approaches may be used in numerical applications to retrieve the density function of CMLJD processes
with and without mean reversion, by a discrete Fourier transform. The next proposition presents this
methodology:

Proposition 4.1. Let N be the number of steps used in the Discrete Fourier Transform (DFT) and
∆x = 2xmax

N−1 , be the step of discretization. Let us denote δ j = 1
21{ j=1}+1{ j,1} , ∆z = 2π

N ∆x
and z j = ( j − 1) ∆z.

If Xt is CMLJD, the values of fXt(.) at points xk = −N
2 ∆x + (k − 1)∆x are approached by

fXt(xk) =
2

N ∆x

N∑
j=1

δ j

(
etψ(z j)(−1) j−1

)
e−i 2π

N ( j−1)(k−1) , (88)

where ψ(z) is defined by equation (35). If Xt is CMLJD with mean reversion, the function fXt(.) is
approached by

fXt(xk) =
2

N ∆x

N∑
j=1

δ j

(
eψ(t,z j)(−1) j−1

)
e−i 2π

N ( j−1)(k−1) , (89)

where ψ(t, z) is defined by equation (68). This last relation can be computed by any DFT procedure.

Proof. By definition, the characteristic function is the inverse Fourier transform of the density

MXt(z) =
´ +∞

−∞
fXt(x)eizxdx

:= 2πF −1[ fXt(x)](z) . (90)

If Xt is CMLJD, the density is retrieved by calculating the Fourier transform of MXt(z) as follows

fXt(x) =
1

2π
F [etψ(z)](x)
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=
1

2π

ˆ +∞

−∞

etψ(z)e−ixzdz

=
1
π

ˆ +∞

0
etψ(z)e−ixzdz . (91)

The last equality comes from the fact that ψ(z) and ψ(−z) are complex conjugate. Equation (88) is
deduced by approaching this last integral with the trapezoid rule

´ b
a h(x)dx =

h(a)+h(b)
2 ∆x +

∑N−1
k=1 h(a +

k ∆x)∆x. Equation (89) is proven in the same way.
�

The CMLJD process without and with mean reversion are respectively identified by 7 parameters
(µ, σ,α0, λ0, β1, β2, K) and 8 parameters (a, b , σ,α0, λ0, β1, β2, K). Both processes cannot be fitted
to time series by the method of moments matching, without setting a priori some parameters. An
alternative consists to calibrate the process by log-likelihood maximization. We adopt this approach
in numerical illustrations to fit CMLJD processes. The matlab code implementing the equation (88) is
provided in appendix B and may be used to evaluate the expression (89). The characteristic exponents
are computed by direct integration, with equation (2.3) and (3.2). The matlab code implementing these
operations is also reported in appendix B.

5. Options pricing

Firstly, we consider that log-returns are ruled by a CMLJD process without mean reversion. The
pricing of financial securities is done under a risk neutral measure. Under this measure, the discounted
price process is a martingale and the expected return is equal to the risk free rate, r to avoid any
arbitrage. Xt is then defined by parameters (r, σ, α0, β1, λ0, β2,K). The most common methods used for
pricing derivatives are based on Fourier and Inverse Fourier transforms. We denote them respectively
by:

F [ f ](ω) =

ˆ +∞

−∞

f (x)e−iωxdx , F −1[ f ](x) =
1

2π

ˆ +∞

−∞

f (ω)eiωxdω. (92)

The Fourier transform maps spatial derivatives ∂
∂x into multiplications in the frequency domain. As

shown in the next result, this feature allows us to price any European derivatives.

Proposition 5.1. In the CMLJD model, the price at time t and when Xt = x, of an European derivatives
delivering a payoff V(T, XT ) at maturity T, is given by

[V(t, x)] = F −1
[
F [V(T, x)] (ω)e(ψ(ω)−r)(T−t)

]
(x). (93)

Proposition 5.2. In the CMLJD model with mean reversion, the price at time t and when Yt = y, of an
European derivatives delivering a payoff V(T,YT ) at maturity T, is given by

[
V(t, y)

]
= F −1

[
F

[
V(T, y)

]
(ea(T−t)ω)e

´ T−t
0 ψ̃(iea(T−t−u)ω)du−(r−a)(T−t)

]
(y). (94)

where
´ T−t

0 ψ̃(iea(T−t−u)ω)du is provided by equation (69).

Quantitative Finance and Economics Volume 1, Issue 2, 145–173



161

The proofs are standard in the literature and are reproduced in appendix A for information.
Jackson et al. (2008) an Jaimungal and Surkov (2011) have used iteratively a similar procedure to
price American or barrier options for other Lévy processes, with or without mean reversion. In
practice, integrals in equations (93) or (5.2) are discretized, and the price is obtained by Discrete
Fourier Transforms as stated in next propositions.

Proposition 5.3. Let N and ∆x = 2xmax
N−1 be respectively the number of steps used in the Discrete Fourier

Transforms (DFT) and the step of discretization. Let us define ∆ω = 2π
N ∆x

and δk = 1
21{k=1} + 1{k,1}

. V(t, x j) in equations (93), at points x j = −N
2 ∆x + ( j − 1)∆x, for j = 1...N , is approached by the

following DFTs sum:

V(t, x j) ≈
2
N

N∑
k=1

δke(ψ(ωk)−r)(T−t)
N∑

m=1

V(T, xm)e−i 2π
N (k−1)(m−1)

 ei 2π
N (k−1)( j−1) , (95)

where ωk = (k − 1)∆ω.

Proof. The Fourier transform is approached by the following sum

F [V(T, x)](ωk) =

ˆ +∞

−∞

V(T, x)e−iωk xdx

≈ ∆xe−i(k−1)∆ωxmin

N∑
m=1

V(T, xm)e−i(k−1)(m−1)∆ω∆x . (96)

As ∆ω∆x = 2π
N and xmin = −N

2 ∆x, this last expression becomes

F [V(T, x)](ωk) ≈
(
∆xei(k−1)π

) N∑
m=1

V(T, xm)e−i 2π
N (k−1)(m−1) . (97)

Let us denote g(ω) = F [V(T, x)] (ω)e(ψ(ω)−r)(T−t) then

V(t, x) = F −1[g(ω)](x)

=
1
π

ˆ +∞

0
g(ω)eiωxdω . (98)

The function being known at point ωk = (k − 1)∆ω, approaching this last integral with the trapezoid
rule, leads to:

V(t, x j) ≈
1
π

N∑
k=1

δkg(ωk)eiωk x j∆ω

≈
∆ω

π

N∑
k=1

δk

(
g(ωk)e−i(k−1)π

)
ei 2π

N (k−1)( j−1) , (99)

which is equivalent to (95).
�
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Proposition 5.4. Let N and ∆y =
2ymax
N−1 be respectively the number of steps used in the Discrete Fourier

Transforms (DFT) and the step of discretization. Let us define ∆ω = 2π
N ∆y

and δk = 1
21{k=1} + 1{k,1}.

V(t, y j) in equations (5.2), at points y j = −N
2 ∆x + ( j − 1)∆y, for j = 1...N , is approached by the

following DFTs sum:

V(T, y j) =
2
N

N∑
k=1

δke
´ T−t

0 ψ̃(iea(T−t−u)ωk)du−r(T−t)

 N∑
m=1

[
V(T, e−a(T−t)ym)

]
e−i 2π

N (k−1)(m−1)


×ei 2π

N (k−1)( j−1) , (100)

where ωk = (k − 1)∆ω.

Proof. By a change of variable y′ = ea(T−t)y and if ∆y′ = ∆y, the Fourier transform of the terminal is
approached by a DFT as follows

F [V(T, y)](ea(T−t)ωk) =

ˆ +∞

−∞

V(T, y)e−iea(T−t)ωkydy

=

ˆ +∞

−∞

(
V(T, e−a(T−t)y′)e−a(T−t)

)
e−iωky′dy′

≈ ∆y′e−i(k−1)∆ωy′min

N∑
m=1

[
V(T, e−a(T−t)y′m)e−a(T−t)

]
e−i(k−1)(m−1)∆ω∆y′ . (101)

As ∆ω∆y′ = 2π
N and y′min = −N

2 ∆y′ , this last expression becomes

F [V(T, y)](ea(T−t)ωk) ≈ ∆y′ei(k−1)π
N∑

m=1

[
V(T, e−a(T−t)y′m)e−a(T−t)

]
e−i 2π

N (k−1)(m−1) . (102)

Let us denote g(ω) = F
[
V(T, y)

]
(ea(T−t)ω)e

´ T−t
0 ψ̃(iea(T−t−u)ω)du−(r−a)(T−t) then

V(t, y) = F −1[g(ω)](y)

=
1
π

ˆ +∞

0
g(ω)eiωydω . (103)

The function being known at point ωk = (k−1)∆ω, if we approach this last integral with the trapezoidal
rule, we infer that:

V(t, y j) ≈
1
π

N∑
k=1

g(ωk)eiωky j∆ω

≈
∆ω

π

N∑
k=1

(
g(ωk)e−i(k−1)π

)
ei 2π

N (k−1)( j−1) , (104)

and we can conclude.
�
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6. Numerical applications

Firstly, we fit the CMLJD to daily log-returns of four stocks indices, over the period June 2006 to
June 2016 (2600 observations). The chosen indices are the Morgan Stanley World stocks indice, the
FTSE 100, the S&P 500 and the CAC 40. Given that E (dXt) = µdt, we set the drift to the average of
log-returns. The calibration of other parameters is done by log-likelihood maximization. The density
is retrieved numerically by inverting the characteristic function of the CMLJD process. The number of
steps for the DFT is set to N = 218, the minimum and maximum daily returns are respectively equal to
−N

2 ∆x = −0.30 and N
2 ∆x = 0.30. The characteristic exponent is computed numerically with equation

(35). The CMLJD is also compared to the DEJD model of Kou (2002) that postulates the following
dynamics for the log-return:

dXDEJD
t = µdt + σdWt + dLDEJ

t , (105)

where LDEJ
t :=

∑NDEJ
t

j=1 JDEJ
j . In this last expression, NDEJ

t is a Poisson process with a constant intensity
λDEJ and JDEJ

j are distributed according to a double exponential law with a density:

µDEJ(x) = pλ+e−λ
+x1{x≥0} − (1 − p)λ−e−λ

−y1{x<0} (106)

where p and λ+ are positive constants and λ− is a negative constant. They represent the probability of
observing respectively upward and downward exponential jumps. The expectation of J is set to zero
by setting λ− = −

p
1−pλ

+. This ensures the identifiability of the model and that LDEJ
t is a martingale.

The characteristic exponent of this process is equal to

ψDEJ(z) := iµz −
1
2
σ2z2 + p

λ+

λ+ − z i
− (1 − p)

λ−

z i − λ−
. (107)

As the CMLJD, the DEJD does not admit analytical expression for its probability density function.
The same DFT algorithm is used to compute it. Fitted parameters, standard errors∗ and log-likelihoods
are reported in table 1. The CMLJD consistently outperform the Brownian motion and the DEJD
model as underlined by the comparison of log-likelihoods (lines “LogLik.”, “DEJD LogLik.” and
“B.M. LogLik.” in exhibit 1). Parameters are well behaved and consistent in so much that they exhibit
stability and some form of erratic variations among the different index. The Brownian volatility σ is
between 5.81% and 12.22%: the lowest Brownian volatility being obtained for the most diversified
stocks indice (MS world). The λ0’s that measure the average number of jumps per year are in the range
[22.80 , 27.72]. At least for the MS world, FTSE 100 and S&P 500, K and α0 are comparable.

∗

The standard error of estimation for a parameter θ ∈ (µ, σ, λ0, β1, β2, α0,K) is computed numerically as the square root
of the asymptotic Fisher information:

S td. err. (θ) =

√
−

(
∂2 ln L(θ)
∂θ2

)−1

.
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Table 1. Parameters and estimation standard errors ×103, CMLJD model.

MS World FTSE 100
Values err 10−3 Values err 10−3

µ 0.0546 0.3027 0.0473 0.3597
σ 0.0664 0.2056 0.0713 0.2316
λ0 23.640 0.4026 27.718 0.1854
log β1 -1.5252 0.3027 -1.4276 0.2375
α0 49.095 0.2802 52.299 0.2707
log β2 -0.076 0.1982 -0.1536 0.2345
K 16.586 0.1483 13.970 0.2375

LogLik. 8475 LogLik. 8107
DEJD LogLik. 8310 B.M. LogLik. 7973
B.M. LogLik. 8056 B.M. LogLik. 7750

S&P 500 CAC 40
µ 0.0563 0.3236 0.0248 0.4471
σ 0.0581 0.2118 0.1222 1.4829
λ0 27.496 0.5243 22.795 0.4689
log β1 -2.2091 0.4113 -4.672 0.4943
α0 52.231 0.2966 96.090 0.6632
log β2 -0.3931 0.2802 -4.8624 0.3829
K 13.468 0.2472 8.1999 0.5605

LogLik. 7853 LogLik. 7591
Kou logLik. 7668 Kou logLik. 7477

B.M. LogLik. 7380 B.M. LogLik. 7307

The table 2 compares the empirical moments of daily returns with these of CMLJD processes.
These figures clearly confirm that CMLJD’s exhibit a high kurtosis, comparable to the one displayed
by observations. By construction, the skewness is null as the distribution of jump is symmetric.

Table 2. Comparison of empirical moments of daily log-returns with these of CMLJD
processes.

Empirical E(∆Xt)
√
V(∆Xt) S(∆Xt) K(∆Xt)

MS world 0.0002 1.09% -0.4723 12.263
FTSE 100 0.0002 1.20% -0.1589 11.846
S&P 500 0.0002 1.29% -0.3294 13.955
CAC 40 0.0001 1.43% 0.0463 9.962
Model
MS world 0.0002 1.09% 0 13.914
FTSE 100 0.0002 1.19% 0 11.070
S&P 500 0.0002 1.29% 0 10.705
CAC 40 0.0001 1.41% 0 7.487
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To check that the CMLJD process duplicates smiles of implied volatilities similar to these
observed in financial markets, European call prices on the S&P 500 are computed with fitted
parameters of table 1. Next, implied volatilities are retrieved by inverting the Black & Scholes
formula. The volatility surface obtained by this method is shown in the left graph of exhibit 1. The
shape of this surface is coherent and realistic. For short term maturities, the smile of volatilities is
well visible and a minimum is attained for “At The Money” option (moneyness =100). The curvature
of the smile is inversely proportional to time to maturity. The implied volatility of 1 year and 1 month
ATM options are respectively 21.09% and 23.72%.
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Figure 1. Surface of implied volatilities. Call Options on S&P 500 and Wheat.

Figure 2 illustrates the sensitivity of S&P 500 implied volatilities to modification of parameters.
The time to maturity is 1 month. Keeping all other parameters equal to these of table 1, increasing λ0

or K shift up the volatility surface, without important modification of the curvature. Whereas raising
β2 or α0 moves down the curve and slightly flattens the smile of volatilities.
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Figure 2. S&P 500 sensitivity of implied volatilities. Call options, 1 month.

Tests of the mean reverting CMLJD are carried out on four times series of commodities: Copper
(LME), Soy Beans (yellow soybeans, Chicago), Crude Oil WTI spot and Wheat (USDA 2 soft red
winter wheat, Chicago) from December 2011 to November 2015 (1000 observations). It is well known
that commodities exhibit cointegration in prices. Like equity prices they are also exposed to sudden
jumps of price. However, unlike equities, commodities tend to revert to long run equilibrium prices.
Parameters are fitted by maximization of the log-likelihood. However the calculation of this log-
likelihood requires a pre-treatment of data to reduce the computation time. Firstly, we calculate the
log-return process, X j =

P j

P0
where P j is the price of commodity on the jth day. The process Y j is next

obtained by subtracting from X j the function ϕ(t j) as defined by equation (58),

Y j = X j − ϕ(t j) . (108)

If ∆t represents one day of trading, according to equation (61), the process V j is distributed as follows

V j = Y j − Y j−1e−a∆t ∼

ˆ ∆t

0
e−a(t−u)dZu . (109)

The distribution of V j is finally retrieved by inverting numerically the characteristic function of´ ∆t

0 e−a(t−u)dZu, that is reported in proposition 3.2. The log-likelihood is computed with this
distribution. Results of the calibration procedure are shown in table 3. Soy Beans and Copper prices
display respectively the lowest and the highest speed of mean reversion. Furthermore, log-likelihoods
of the mean reverting CMLJD are significantly higher than these obtained with and without a mean
reverting Brownian motions ( lines “M.R. B.M. LogLik.” and”B.M. LogLik.” in the exhibit 3).
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Table 3. Parameters and standard errors ×103, model with mean reversion.

Copper Soy Beans
Values err 10−3 Values err 10−3

σ 0.0433 0.3236 0.0008 0.1521
λ0 61.379 0.3963 59.736 0.2966
log β1 -3.0785 0.5243 -3.2651 0.2406
α0 74.408 0.2966 90.641 0.2854
log β2 -0.5729 0.4281 -0.8025 0.2966
K 25.678 0.6961 19.636 0.3316
a 0.6148 0.3316 0.0439 0.2345
b -0.0049 0.5243 0.0681 0.2406

LogLik. 2749 LogLik. 2852
M.R. B.M. LogLik. 2714 M.R. B.M. LogLik. 2810

B.M. LogLik. 2713 B.M. LogLik. 2809
Crude Oil WTI Wheat

σ 0.2048 0.8562 0.0758 0.6632
λ0 58.512 1.9593 65.345 1.0486
log β1 -3.8147 1.4829 -3.8828 0.5605
α0 77.248 0.7415 73.501 0.6632
log β2 -1.0708 0.4113 -1.215 0.6054
K 3.5864 1.4829 16.407 0.4689
a 0.1555 1.0486 0.2093 1.4829
b 0.0502 0.4689 0.0859 0.1253

LogLik. 2658 LogLik. 2371
M.R. B.M. LogLik. 2631 M.R. B.M. LogLik. 2344

B.M. LogLik. 2629 B.M. LogLik. 2343

As for stocks indices, fitted parameters exhibit stability among the different times series. The
frequency of jumps λ0 is in the range [58.51 , 65.34]. β1 is small (around 4%). β2 for Crude Oil and
Wheat are similar and close to 30% whereas β2 of Soy beans and Copper are higher. K varies a lot:
from 3.58 for Crude Oil to 25 for Copper. The parameter α0 is in a corridor [73.50 , 90.64]. Table 4
compares the moments of daily returns with these of models. Again, the CMLJD demonstrates its
capacity to fit the variance and leptokurticity of time series.

According to the proposition 3.3, the expectation of Xt converges to b when t tends to∞. Then, the
estimated b should be close to the average of Xt for the considered period. The first column of table 4
confirms this intuition. On the other hand, the parameter b is only involved in the mean of the process
and does not influence the variance and kurtosis. Then, if we calibrate the model with data observed
on another time window, b will be different if and only if we observe a significant modification of the
average of Xt.

To assess the impact of the mean reversion on implied volatilities, European call options on Wheat
are priced with fitted parameters. The surface of implied volatilities obtained by inverting the Black
& Scholes formula is displayed in the right graph of exhibit 1. Contrary to equities, we don’t observe
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a smile of volatilities, with a local minimum for ATM options. Instead, volatilities are convex and
inversely proportional to the moneyness. Given that a similar trend is not observed for the S&P500
volatility surface, this behavior may be associated to the mean reversion of returns.

Table 4. Moments of daily log-returns and moments of fitted CMLJD processes.

Empirical E(∆Xt)
√
V(∆Xt) S(∆Xt) K(∆Xt)

Copper 0.0523 1.61% -0.1672 5.3038
Soy Beans 0.0761 1.46% -0.2714 5.1813

Crude Oil WTI 0.0484 1.74% -0.1231 5.3889
Wheat 0.0792 2.32% 0.0283 4.5756
Model
Copper 0.0490 1.61% 0 5.3172

Soy Beans 0.0681 1.46% 0 5.1858
Crude Oil WTI 0.0502 1.70% 0 4.9097

Wheat 0.0859 2.32% 0 4.6326

Figure 3 illustrates the sensitivity of Wheat implied volatilities to parameters a and b. Two
maturities are considered: 3 and 6 months. Keeping all other parameters equal to these of table 3,
increasing the speed of mean reversion a raises the steepness of the volatility surface, without any
strong modification of the curvature. On the contrary, raising the level of mean reversion b, shifts up
the curve in an asymmetrical manner.
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Figure 3. Sensitivity of implied volatilities, call on Wheat, 3 and 6 months.
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7. Conclusion

This article proposes two parsimonious models for stocks or commodities, driven by a diffusion
and a mixture of Laplace jumps processes. These dynamics aim to replicate time series for which
increments have a distribution with a high kurtosis. Despite the somewhat lengthy expressions of
characteristic functions, the CMLJD remains analytically tractable and its density can be retrieved
numerically by a discrete Fourier transform. Its ability to duplicate leptokurtic processes makes it
eligible for option pricing or risk management.

As underlined by the empirical study, the CMLJD processes fit stocks and commodities better than
a Brownian motion or a DEJD. Furthermore, the parameters estimated by log-likelihood maximization
show stability and consistency over a variety of assets. On the other side, CMLJD processes generate
realistic surfaces of implied volatilities. In the CMLJD model with mean reversion, we observe a
strong asymmetry in this surface, due to the reversion of prices.

There exist many possibilities for further researches. Firstly, the main criticism about the CMLJD is
that it does not capture the asymmetry of returns. It is possible to remedy to this problem by considering
double exponential jumps. However, this increases the number of parameters and requires additional
parameterization. Secondly, we only consider power functions for αk and λk. It is probably possible
to find another type of functions for which we can obtain a closed form expression for the limit of the
characteristic function of Xt. Finally, it would be interesting to develop a multivariate extension of this
model.

Appendix A

The Fourier transform maps spatial derivatives ∂
∂x into multiplications in the frequency domain. For

any differentiable function f , we have then:

F

[
∂n

∂xn f
]

(t, ω) = (iω)n
F [ f ](t, ω) (110)

and

F

[
x
∂

∂x
f
]

(t, ω) = −F [ f ](t, ω) −
∂

∂ω
F [ f ](t, ω) (111)

If Xt is a CMLJD process, the price of any derivatives is arbitrage free if and only it is solution of the
Feynman-Kac equation:

∂

∂t
V +LV = rV (112)

where L is the infinitesimal generator of Xt, such as introduced in equation (34). If we transport the
equation (112) in the frequency domain, we infer that

F [LV](ω) =

(
i rω −

1
2
ω2σ2 +

ˆ
R

(
eiωz − 1

)
µJ(dz)

)
F [V](ω)

= ψ(ω)F [V](ω) (113)
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and that the Feynman-Kac equation becomes an ODE:

∂

∂t
F [V](ω) + (ψ(ω) − r)F [V](ω) = 0. (114)

F [V](ω) is solution of this ODE and the option price is obtained by inversion, as stated in proposition
5.1.

If Xt is a mean reverting CMLJD process, the Fourier’s transform of the Feynman Kac equation is
now

∂

∂t
F [V] + aω

∂

∂ω
F [V] + aF [V] −

σ2

2
ω2F [V] + λ

ˆ
R

(
eiωz − 1

)
µJ(dz)F [V] = rF [V] (115)

Change of variables γ = e−a(T−t)ω or ω = ea(T−t)γ, then

∂

∂t
F [V](ω) =

∂

∂t
F [V](ea(T−t)γ)

= −aea(T−t)γ
∂

∂γ
F [V](γ) +

∂

∂t
F [V](γ) (116)

and the Feynman Kac Equation becomes

∂

∂t
F [V](γ) +

(
a − r −

σ2

2

(
ea(T−t)γ

)2
+ λ

ˆ
R

(
eiea(T−t)γz − 1

)
µJ(dz)

)
F [V](γ) = 0 (117)

then

F [V](t, γ) = exp
(
−(r − a)(T − t) +

ˆ T−t

0
ψ̃(iea(T−t−u)γ)du

)
F [V](T, γ) (118)

and this proves proposition 5.2.

Appendix B

The next Matlab function implements the algorithm of proposition 4.1 that computes the probability
density function of the CMLJD process.

function [x,fXt]=DensityXt(T,mu,sig,lam0,b1,alp0,b2,K,N,x_max)
% T: time horizon
% mu, sig, lam0, b1, alp0, b2, K : parameters defining the CMLJD
% x_max : maximum value for the domain of Xt
% N : number of DFT steps

% definition of the grid
x_min = -x_max;
dx = (x_max-x_min)/(N-1);
x = [ x_min:dx:x_max,]’;
dz = 2*pi/(N*dx);
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z = [ 0:dz:(N-1)*dz]’;
% optimization the speed of the DFT
fftw(’planner’, ’estimate’);
% evaluation of characteristic exponent and function
psi = CharacteristicExponent(z,mu,sig,lam0,alp0,b1,b2,K,T);
J = [1:N]’;
phi = (-1).^(J-1) .*exp(psi.*T); % characteristic function
phi(1) = 0.5* phi(1);
% inversion by DFT of the characteristic function
fXtraw = 2/((N)*dx)*real(fft(phi));
% parallel shift to avoid negative value for the pdf
fXtraw = fXtraw -min(fXtraw);
adj = sum(fXtraw*dx);
% ensure that the integral of the pdf is 1
fXt = fXtraw./adj;

end

The following Matlab function evaluates by direct integration, the characteristic exponent of the
CMLJD process, such as presented in equation (35).

function [psi] = CharacteristicExponent(z,mu,sig,lam0,alp0,b1,b2,K,T)
% This function calculates the Characteristic function by numerical
% integration of the function a_k^2/(a_k^2+z^2), such as introduced
% in proposition 2.1

lam = lam0/(1+b1)*K^(b1+1)-lam0/(1+b1);
fun = @(k) k.^(2*b2+b1)./(k.^(2*b2)+ (z./alp0).^2 ) ;
q = integral(fun,1,K,’ArrayValued’,true);
psi = (T*(mu*i.*z - 0.5*sig^2.*z.^2-lam+lam0*q));

end

This last function computes the integral
´ t

0 ψ̃
(
ize−a(t−u)

)
du, that is present in the characteristic

exponent of the mean reverting CMLJD, equation (68).

function [logM] = CharacExponentMeanRevert(z,t,sig,lam0,alp0,b1,b2,K,a,b)
lam = lam0/(1+b1)*K^(b1+1)-lam0/(1+b1);
fun1 = @(k,u) lam0*k^b1*(alp0*k^b2)^2./((alp0*k^b2)^2-u.^2);
fun2 = @(u) 0.5*sig^2*u.^2+integral(@(k) fun1(k,u),1,K,’ArrayValued’,...

true)-lam ;
fun3 = @(u) fun2(1i.*z.*exp(-a.*(t-u)));
fun4 = @(z) 1i.*z.*b*(1-exp(-a*t))+ ...

integral(fun3,1e-5,t,’ArrayValued’,true);
logM = fun4(z);

end
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