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Abstract: In this paper, a second-order linearized discontinuous Galerkin method on general meshes,
which treats the backward differentiation formula of order two (BDF2) and Crank–Nicolson schemes
as special cases, is proposed for solving the two-dimensional Ginzburg–Landau equations with
cubic nonlinearity. By utilizing the discontinuous Galerkin inverse inequality and the mathematical
induction method, the unconditionally optimal error estimate in L2-norm is obtained. The core of
the analysis in this paper resides in the classification and discussion of the relationship between the
temporal step size τ and the spatial step size h, specifically distinguishing between the two scenarios
of τ2 ≤ hk+1 and τ2 > hk+1, where k denotes the degree of the discrete spatial scheme. Finally, this
paper presents two numerical examples involving various grids and polynomial degrees to verify the
correctness of the theoretical results.
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1. Introduction

In this paper, we will consider the following initial and boundary problems of two-dimensional
Ginzburg–Landau equations:

ut − (ν + iα)∆u + (κ + iβ)|u|2u − γu = 0, (x, t) ∈ Ω × (0, T ],
u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ],
u(x, 0) = u0(x), x ∈ Ω̄,

(1.1)

where Ω denotes a bounded convex polygonal domain in R2, ∂Ω is the boundary of Ω, ∆ is the Laplace
operator, i represents the the imaginary unit, ν > 0, κ > 0, α, β, γ are three given real constants, and
u0(x) is a sufficiently smooth complex-valued function with a zero boundary trace.
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The aforementioned model was first proposed in 1950 by two Soviet physicists, Vitaly Ginzburg and
Lev Landau, and has been widely applied in fields such as nonequilibrium hydrodynamic systems [1]
and physical phase transitions [2]. Due to the practical importance of the equations, a large
number of scholars have worked on solving them from both analytical and numerical perspectives.
In terms of mathematical analysis, for example, Porubov and Velarde [3] obtained three new exact
periodic solutions of the complex Ginzburg–Landau equation in terms of the Weierstrass elliptic
function. Doering et al. [4] investigated existence and regularity of solutions to the generalized
complex Ginzburg–Landau equation subject to periodic boundary conditions in various spatial
dimensions. Akhmediev et al. [5] presented novel stable solutions, which are soliton pairs and trains
of the 1D complex Ginzburg–Landau equation. For a more detailed mathematical analysis of the
Ginzburg–Landau equations, interested readers are advised to refer to recent monographs [6].

Due to the nonlinear nature of the equations, it is difficult to obtain their analytical solutions. To
date, a large number of effective numerical methods have been developed, such as finite difference
method, finite element method, meshless method, virtual element method, and H1-Galerkin method.
For the finite difference method, Xu and Chang [7] presented three difference schemes of the
Ginzburg–Landau equation in two dimensions. They proved the stability of the two difference schemes
by virtue of induction method and linearized analysis. Hu et al. [8] established fourth-order compact
finite difference schemes for the 1D nonlinear Kuramoto–Tsuzuki equation with Neumann boundary
conditions and conducted numerical analysis. They then extended the methods to 2D. Hao et al. [9]
proposed a high-order finite difference method for the two-dimensional complex Ginzburg–Landau
equation. They proved that the proposed difference scheme is uniquely solvable and unconditionally
convergent by energy methods. Based on a dynamical low-rank approximation, Zhao et al. [10]
discussed a numerical integration method for space fractional Ginzburg–Landau equation. Recently,
Chai et al. [11] developed two families of weighted-θ compact alternating direction implicit difference
methods to solve the three-dimensional space-fractional complex Ginzburg–Landau equation.

In the context of the finite element method, Shi and Liu [12] presented a two-grid method (TGM)
for the complex Ginzburg–Landau equation, i.e., the original nonlinear system is analyzed on the
coarse grid, and then a simple linearized problem on the fine grid is solved. Furthermore, they also
deduced the superclose estimation in the H1-norm for the TGM scheme. Yang and Jia [13] proposed the
backward Euler–Galerkin finite element method for the two-dimensional Kuramoto–Tsuzuki equation.
They obtained the optimal error estimate in L2-norm without any spatio-temporal restrictions.

As for other discretization approaches, Li et al. [14] proposed a fast element-free Galerkin (EFG)
method for solving the nonlinear complex Ginzburg–Landau equation. With the help of the
error-splitting argument, they proved the optimal error estimate in L2 and H1 norms. Wang
and Li [15] considered a linearized time-variable-step second order backward differentiation
formula (BDF2) virtual element method for the nonlinear Ginzburg–Landau equation. By using the
techniques of the discrete complementary convolution (DOC) kernels and the discrete complementary
convolution (DCC) kernels, they derived the optimal error estimate in L2-norm. They also extended
the scheme to coupled Ginzburg–Landau equations (CGLEs) [16]. Shi and Wang [17] discussed
an H1-Galerkin mixed finite element method (MFEM) for the two-dimensional Ginzburg–Landau
equation with the bilinear element and zero order Raviart–Thomas element.

In this paper, based on the second-order θ scheme in time proposed by Liu et al. [18] and the
polygonal discontinuous Galerkin methods, we propose a weighted implicit-explicit discontinuous
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Galerkin methods for two-dimensional Ginzburg–Landau equations. To the best of our knowledge,
this linearized polygonal discontinuous Galerkin scheme has not been presented in the literature.
Furthermore, we wish to highlight that the weighted θ scheme has been integrated with other numerical
methods for solving various partial differential equations, and interested readers are referred to the cited
references [19–21] for further details.

The discontinuous Galerkin algorithm employed in this paper is referred to as the symmetric
interior penalty Galerkin (SIPG) method in the literature. This algorithm was first introduced and
analyzed by Wheeler [22], and then was generalized to nonlinear elliptic and parabolic equations by
Arnold [23]. Discontinuous Galerkin methods were first applied to polygonal meshes obtained by
element agglomeration in [24]. As far as we know, in order to achieve the unconditional convergence
of linearized numerical schemes, i.e., there is no restrictive condition between the time step and the
space meshsize, the method commonly used in the literature is the space-time error splitting technique
proposed by Li and Sun [25,26]. Since this analytical method requires the introduction of an additional
time-discretized system, it brings a certain degree of complexity to numerical analysis to some extent.

In this paper, drawing on the ideas proposed by Sun and Wang [27], we present a relatively
simple analytical method. Specifically, this method directly performs a theoretical analysis of the fully
discrete scheme without introducing a time-discretized system, thereby simplifying the complex error
derivation process used in previous studies. The core idea of the argument is to conduct a classified
discussion on the relationship between τ and h. In addition, this paper presents, for the first time, a
generalized discontinuous Galerkin inverse inequality. By combining this inequality with a transfer
formula, we ultimately establish the optimal-order estimate of the L2-norm for the numerical solution,
thus filling the gap in the convergence analysis of discontinuous Galerkin schemes for this class of
nonlinear problems.

The structure and content of this paper are organized as follows: In Section 2, the derivation process
of the fully discrete numerical scheme is presented, and several important preparatory lemmas are
proven. In Section 3, the theoretical analysis of the weighted implicit-explicit discontinuous finite
element method is presented, including its stability and mesh-ratio-free convergence. In Section 4,
we present two numerical examples to verify the correctness of the theoretical analysis, covering both
convex and non-convex mesh partitions. Finally, we summarize the content of this paper in Section 5
and briefly discuss potential directions for future research.

2. Weighted implicit-explicit discontinuous Galerkin formulation

2.1. The variational formulation

Unless otherwise specified, all functions and vector spaces considered in this paper are complex.
For a given open subset D of the domain Ω, let | · |m,p,D and ∥ · ∥m,p,D be the seminorm and norm of the
Sobolev space Wm,p(D), respectively, where m ≥ 0 is an integer and 1 ≤ p ≤ ∞ a real number. When
p = 2, we denote Wm,2(D) by Hm(D), and the corresponding seminorm and norm are abbreviated as
| · |m,D and ∥ · ∥m,D, respectively. Let Hm

0 (D) be the closure of C∞0 (Ω) with respect to the norm ∥ · ∥m,D.
Denote by (·, ·)D and ∥ · ∥D, the inner product and the corresponding norm of the Hilbert space L2(D),
respectively. When D = Ω, we omit the subscript Ω in the above norm, seminorm, and inner product.
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Finally, for a strongly measurable function v : (0,T )→ X, we introduce the Bochner space defined as

Lp((0, T ); X) =
{
v : ||v||Lp((0,T );X) < ∞

}
,

where X is a complex Banach space. Throughout this paper, the constant C denotes a generic
positive constant independent of the mesh parameters, and its specific value may differ in different
contexts (even within the same equation or inequality).

By virtue of the notations introduced above, it is easy to derive the weak formulation of the Eq (1.1):
For all 0 < t ≤ T , find u ∈ L2((0, T ); H1

0(Ω)) ∩ L2((0, T ); L2(Ω)) with the initial condition u(0) = u0(x)
such that

(ut, v) + (ν + iα)a(u, v) + (κ + iβ)(|u|2u, v) − γ(u, v) = 0, ∀ v ∈ H1
0(Ω), (2.1)

where a(u, v) := (∇u,∇v). For the purpose of theoretical analysis in this paper, we assume that the
exact solution of the problem (2.1) possesses the following regularity:

∥u0∥Hk+1 + ∥u∥L∞((0,T );Hk+1) + ∥ut∥L2((0,T );Hk+1) + ∥utt∥L2((0,T );H2) + ∥uttt∥L2((0,T );L2) ≤ C.

2.2. Discrete settings of discontinuous Galerkin

Let Th be a sequence of partitions of Ω consisting of arbitrary polygons K with its measure denoted
as |K|, h is the spatial mesh size parameter, which is defined as h = maxK∈Th hK , where hK is the
diameter of K. An edge E is defined as a closed subset in Ω̄ such that either there exist distinct mesh
elements K1,K2 ∈ Th such that E = ∂K1∩∂K2, or there exists a mesh element K such that F = ∂K∩∂Ω.
We observe that in the case of general meshes containing a non-convex polygon, interior edges are not
always parts of hyperplanes. Denote the set of all edges in the partition Th by Eh. Moreover, interior
edges are collected in the set Ei

h and boundary edges in Eb
h, so that Eh = E

i
h∪E

b
h. It should be emphasized

here that mesh partitions with hanging nodes are allowed.
We also assume that the family of meshes Th satisfies the regularity conditions outlined in [28], i.e.,

there exists a real number ρ ∈ (0, 1), independent of h and called the mesh regularity parameter, such
that there exists a matching simplicial submesh Th that satisfies the following conditions:
(i) Shape regularity. For any simplex τ ∈ Th, denoting by hτ its diameter and rτ its inradius, it holds

ρhτ ≤ rτ;

(ii) Contact regularity. For any mesh element K ∈ Th and any simplex τ ∈ TK , where TK is the set of
simplices contained in K, it holds

ρhT ≤ hτ.

Let v be a scalar-valued function defined on Ω and assume that v is smooth enough to admit on all
E ∈ Ei

h a possibly two-valued trace. Then, for all E ∈ Ei
h shared by two adjacent elements K1 and K2,

the interior edge E is oriented by means of the unit normal vector nE pointing from K1 to K2, i.e.,

nE = nK1E = −nK2E,

where nKiE denotes the unit normal vector pointing out of Ki, i = 1, 2. The average and jump are
defined as

{v} =
1
2

(v|K1 + v|K2), [v] = v|K1 − v|K2 ,
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respectively. By convention, we can extended the definition of jump and average to edges that belong
to the boundary edge E = ∂K ∩ ∂Ω:

{v} = [v] = v|K .

At this moment, nE is taken to be the unit outward vector normal to ∂Ω.
Let k be a positive integer, and the discontinuous finite element space Vk

h is chosen to be

Vk
h = {vh ∈ L2(Ω) : vh|K ∈ Pk(K), ∀ K ∈ Th},

where Pk(K) denotes the space of polynomials of total degree less than or equal to k. This
finite-dimensional space is equipped with the following norm:

∥vh∥DG :=
( ∑

K∈Th

∫
K
|∇vh|

2dx +
∑
E∈Eh

1
hE

∫
E
[vh]2ds

)1/2

, (2.2)

where hE is the diameter of the edge E and | · | denotes the Euclidean norm in R2, satisfying the discrete
Sobolev embedding inequality [29]

∥vh∥0,p ≤ C∥vh∥DG, ∀ vh ∈ Vk
h ,

where 1 ≤ p < ∞. We also present the discrete Ladyzhenskaya’s inequality [30] that plays a crucial
role in deriving the optimal error estimate

∥vh∥0,4 ≤ C∥vh∥
1/2
DG∥vh∥

1/2, ∀ vh ∈ Vk
h . (2.3)

The local L2-orthogonal projector Π0,k
K : L2(K) → Pk(K) is defined as follows: For all v ∈ L2(K),

the polynomial Π0,k
K v satisfies

(Π0,k
K v − v, q)K = 0, ∀ q ∈ Pk(K).

The global L2-orthogonal projector Π0,k
h : L2(Ω)→ Vk

h can be easily obtained, i.e., for all v ∈ L2(Ω)
and all K ∈ Th

(Π0,k
h v)|K = Π0,k

K (v|K).

According to the exquisite argument in the book of Di Pietro and Droniou [31], the global
L2-orthogonal projector Π0,k

h satisfies the following approximation and boundedness properties:

||v − Π0,k
h v|| ≤ Chk+1||v||k+1, ∀ v ∈ Hk+1(Ω), (2.4)

||Π0,k
h v||0,∞ ≤ C||v||0,∞, ∀ v ∈ L∞(Ω), (2.5)

respectively.
In addition to the above assumption about the mesh Th, we suppose the mesh is quasi-uniform, i.e.,

ρh ≤ hK , ∀ K ∈ Th. (2.6)

Then, the following global inverse inequality is true [32]:

||vh||0,∞ ≤ Ch−1||vh||, ∀ vh ∈ Vk
h . (2.7)
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2.3. The fully discrete numerical scheme

Let N be a positive integer, and let τ = T/N denote the time step size. For any smooth function
v(x, t), we always use the following notations:

tn−θ := (n − θ)τ, v(tn−θ)(x) := v(x, tn−θ), n = 1, 2, · · · ,N − 1,N, θ ∈ [0, 1/2] ; (2.8)

Dτvn−θ :=
(3 − 2θ) vn − (4 − 4θ)vn−1 + (1 − 2θ) vn−2

2τ
, n = 2, 3, · · · ,N − 1,N; (2.9)

vn−θ := (1 − θ)vn + θvn−1, n = 1, 2, · · · ,N − 1,N; (2.10)
v̂n−θ := (2 − θ)vn−1 − (1 − θ)vn−2, n = 2, 3, · · · ,N − 1,N. (2.11)

In order to approximate the bilinear form a(u, v) = (∇u,∇v), we employ the following discrete
bilinear form:

ah(vh,wh) :=
∑
K∈Th

∫
K
∇vh · ∇w∗h dx −

∑
E∈Eh

∫
E
{∇hvh} · nE[w∗h] ds

−
∑
E∈Eh

∫
E
[vh]{∇hw∗h} · nE ds +

∑
E∈Eh

λ

hE

∫
E
[vh][w∗h] ds, ∀ vh,wh ∈ Vk

h , (2.12)

where the parameter λ is called penalty term, which is a sufficiently large nonnegative real number.
It is well known that the discrete bilinear form defined above satisfies the following coercivity and
continuity properties:

C∥vh∥
2
DG ≤ ah(vh, vh) := ∥vh∥

2
ah
≤ C∥vh∥

2
DG, ∀ vh ∈ Vk

h . (2.13)

In order to obtain the unconditionally optimal order error estimate for the fully discrete numerical
scheme, we define the elliptic projection operator Rh : H2(Ω)→ Vk

h such that

ah(Rhu, vh) = ah(u, vh), ∀vh ∈ Vk
h . (2.14)

According to the classical theory of discontinuous finite elements for solving elliptic problems [33],
we can obtain the following projection error:

∥Rhu − u∥ ≤ Chk+1∥u∥k+1, ∀ u ∈ Hk+1(Ω). (2.15)

With above notations, the weighted implicit-explicit (IMEX) discontinuous Galerkin algorithm is
given as follows: Find un

h ∈ Vk
h such that for n = 2, 3, · · · ,N − 1,N

(Dτun−θ
h , vh) + (ν + iα)ah(un−θ

h , vh) + (κ + iβ)(|ûn−θ
h |

2un−θ
h , vh)

− γ(un−θ
h , vh) = 0, ∀ vh ∈ Vk

h , (2.16)

with the initial approximation u0
h = Rhu0.

Since the above scheme is a three-level method, we need to additionally provide a second-order
calculation method for u(t1). Here, we analyze a backward Euler–Galerkin method for this purpose,
i.e., u1

h is the solution of the following equation:(
u1

h − u0
h

τ
, vh

)
+ (ν + iα)ah(u1

h, vh) + (κ + iβ)(|u0
h|

2u1
h, vh) − γ(u1

h, vh) = 0, ∀ vh ∈ Vk
h . (2.17)
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2.4. Some vital results

Lemma 2.1. ( [34, 35]) Assume that V is a complex inner product space equipped with the inner
product (·, ·)V and the induced norm ∥ · ∥V. Then, for any v0, v1, . . . , vN ∈ V, it holds that

Re(Dτvn−θ, vn−θ)V ≥
1
4τ

(
En − En−1

)
, 2 ≤ n ≤ N, (2.18)

where

En = (3 − 2θ)∥vn∥2V − (1 − 2θ)∥vn−1∥2V + (2 − θ)(1 − 2θ)∥vn − vn−1∥2V, 1 ≤ n ≤ N. (2.19)

In addition, the following inequality holds:

En ≥
1

1 − θ
∥vn∥2V, 1 ≤ n ≤ N. (2.20)

Lemma 2.2. Assuming that the polygon mesh subdivision of Ω is regular and quasi-uniform and v ∈
Hk+1(Ω), there exists a positive constant C independent of the mesh subdivision parameters h and τ,
such that

∥v − Rhv∥0,∞ + ∥Rhv∥0,∞ ≤ C. (2.21)

Proof. Using the error estimates (2.15) and (2.4) satisfied by the elliptic projection and L2-orthogonal
projector, respectively, and the global inverse inequality (2.7), we obtain

∥v − Rhv∥0,∞ = ∥v − Π0,k
h v + Π0,k

h v − Rhv∥0,∞
≤ ∥v − Π0,k

h v∥0,∞ + ∥Π0,k
h v − Rhv∥0,∞

≤ C∥v∥0,∞ +Ch−1∥Π0,k
h v − Rhv∥

≤ C∥v∥k+1 +Ch−1(∥Π0,k
h v − v∥ + ∥v − Rhv∥)

≤ C∥v∥k+1 +Chk∥v∥k+1

≤ C.

Furthermore, by virtue of the triangle inequality, we have

∥Rhv∥0,∞ ≤ ∥v − Rhv∥0,∞ + ∥v∥0,∞ ≤ C.

The proof of Lemma 2.2 is complete.

Lemma 2.3. For the energy norm defined in Eq (2.2), the following generalized discontinuous Galerkin
inverse inequality holds:

∥vh∥DG ≤ Ch−1∥vh∥, ∀ vh ∈ Vk
h . (2.22)
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Proof.

∥vh∥DG =

( ∑
K∈Th

∫
K
|∇vh|

2dx +
∑
E∈Eh

1
hE

∫
E
[vh]2ds

)1/2

≤ C
( ∑

K∈Th

h−2
K

∫
K
|vh|

2dx +
∑
K∈Th

h−1
K

∫
∂K
|vh|

2ds
)1/2

≤ C
( ∑

K∈Th

h−2
K

∫
K
|vh|

2dx +
∑
K∈Th

h−2
K

∫
K
|vh|

2ds
)1/2

≤ Ch−1∥vh∥,

where we have used the discrete inverse inequality and the trace inequality on regular mesh
sequences [31]

∥∇v∥K ≤ Ch−1
K ∥v∥K , ∥v∥∂K ≤ Ch−

1
2

K ∥v∥K , ∀ v ∈ Pk(K),

and the geometric inequality [31]

ChK ≤ hE ≤ hK , E ⊂ ∂K,

together with the quasi-uniform assumption (2.6).

Lemma 2.4. ( [36]) Let a ≥ 0, b ≥ 0, {ηi}Ni=1 and {ξi}Ni=1 be two series of nonnegative real numbers
such that

ηn + τ

n∑
i=1

ξi ≤ a + bτ
n∑

i=1

ηi, 1 ≤ n ≤ N.

Then, when τ ≤ 1
2b , it holds that

ηn + τ

n∑
i=1

ξi ≤ a exp(2bnτ), 1 ≤ n ≤ N.

Lemma 2.5. (Transfer formula [37]) Suppose that V is a normed linear space with the norm ∥ · ∥V,
and v0, v1, . . . , vN ∈ V. Then, we have

∥vn∥V ≤ (1 + 2θ)
n∑

m=1

∥∥∥vm−θ
∥∥∥
V
+ 2θ∥v0∥V, 1 ≤ n ≤ N. (2.23)

3. Theoretical analysis of the weighted IMEX discontinuous Galerkin method

3.1. The stability of the fully discrete numerical solution

Theorem 3.1. Suppose that un
h is the solution of the numerical schemes (2.16) and (2.17). When the

time step size τ satisfies max{0, γ}τ ≤ 1
16 , we have

∥un
h∥ ≤ C1∥u0

h∥, 1 ≤ n ≤ N, (3.1)

where

C1 =

(
exp (32 max{γ, 0}T )

(
24 +

128
7

max{γ, 0}
))1/2

.
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Proof. (I) Setting vh = u1
h in Eq (2.17), it holds that(u1

h − u0
h

τ
, u1

h

)
+ (ν + iα)∥u1

h∥
2
ah
+ (κ + iβ)(|u0

h|
2u1

h, u
1
h) − γ∥u1

h∥
2 = 0. (3.2)

Noticing the fact that

Re
(
u1

h − u0
h

τ
, u1

h

)
=

1
2τ

(
∥u1

h∥
2 − ∥u0

h∥
2 + ∥u1

h − u0
h∥

2
)

≥
1
2τ

(
∥u1

h∥
2 − ∥u0

h∥
2
)
,

and taking the real parts on both the right- and left-hand sides of Eq (3.2), we have

(1 − 2γτ)∥u1
h∥

2 ≤ ∥u0
h∥

2.

Obviously, when γ ≤ 0, it follows that

∥u1
h∥ ≤ ∥u

0
h∥ ≤ C1∥u0

h∥. (3.3)

When γ > 0 and τ ≤ 1
16γ , it holds that

∥u1
h∥ ≤

√
1

1 − 2γτ
∥u0

h∥ ≤

√
8
7
∥u0

h∥ ≤ C1∥u0
h∥

2. (3.4)

(II) Taking vh = un−θ
h in Eq (2.16) and considering the real parts of both sides of the equation yield that

Re
(
Dτun−θ

h , u
n−θ
h

)
+ ν∥un−θ

h ∥
2
ah
+ κ

(
|ûn−θ

h |
2un−θ

h , u
n−θ
h

)
− γ∥un−θ

h ∥
2 = 0. (3.5)

Utilizing Lemma 2.1, it follows that

1
4τ

(
Fn − Fn−1

)
≤ γ∥un−θ

h ∥
2, 2 ≤ n ≤ N, (3.6)

where

Fn = (3 − 2θ)∥un
h∥

2 − (1 − 2θ)∥un−1
h ∥

2 + (2 − θ)(1 − 2θ)∥un
h − un−1

h ∥
2

≥
1

1 − θ
∥un

h∥
2, 2 ≤ n ≤ N. (3.7)

Replacing n by m and summing up for m from 2 to n on both sides of inequality (3.6) and employing
Eq (3.7), we arrive at

∥un
h∥

2 ≤ (1 − θ)Fn ≤ Fn ≤ F1 + 4γτ
n∑

m=2

∥um−θ
h ∥

2, 2 ≤ n ≤ N. (3.8)
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Noticing

F1 = (3 − 2θ)∥u1
h∥

2 − (1 − 2θ)∥u0
h∥

2 + (2 − θ)(1 − 2θ)∥u1
h − u0

h∥
2

≤ 3∥u1
h∥

2 + 2∥u1
h − u0

h∥
2

≤ 7∥u1
h∥

2 + 4∥u0
h∥

2

≤ 12∥u0
h∥

2, (3.9)

we have

∥un
h∥

2 ≤ 12∥u0
h∥

2 + 4γτ
n∑

m=2

∥um−θ
h ∥

2, 2 ≤ n ≤ N. (3.10)

When γ ≤ 0, it follows that

∥un
h∥

2 ≤ 12∥u0
h∥

2. (3.11)

When γ > 0, one can easily obtain from inequality (3.10) that

∥un
h∥

2 ≤ 12∥u0
h∥

2 + 4γτ
n∑

m=2

∥um−θ
h ∥

2

≤ 12∥u0
h∥

2 + 4γτ
n∑

m=2

∥(1 − θ)um
h + θu

m−1
h ∥

2

≤ 12∥u0
h∥

2 + 8γτ
n∑

m=2

(
∥(1 − θ)um

h ∥
2 + ∥θum−1

h ∥
2
)

≤ 12∥u0
h∥

2 + 8γτ
n∑

m=2

(
∥um

h ∥
2 + ∥um−1

h ∥
2
)

≤ 12∥u0
h∥

2 + 8γτ∥un
h∥

2 + 16γτ
n−1∑
m=2

∥um
h ∥

2 + 8γτ∥u1
h∥

2, 2 ≤ n ≤ N. (3.12)

That is to say

(1 − 8γτ) ∥un
h∥

2 ≤

(
12 +

64
7
γ

)
∥u0

h∥
2 + 16γτ

n−1∑
m=2

∥um
h ∥

2, 2 ≤ n ≤ N. (3.13)

When τ ≤ 1
16γ , we have

∥un
h∥

2 ≤

(
24 +

128
7
γ

)
∥u0

h∥
2 + 32γτ

n−1∑
m=2

∥um
h ∥

2, 2 ≤ n ≤ N. (3.14)

With the help of estimates inequalities (3.11) and (3.14), we have

∥un
h∥

2 ≤

(
24 +

128
7

max{γ, 0}
)
∥u0

h∥
2 + 32 max{γ, 0}τ

n−1∑
m=2

∥um
h ∥

2, 2 ≤ n ≤ N. (3.15)

By virtue of the discrete Grönwall’s inequality given in Lemma 2.4, we have

∥un
h∥

2 ≤ exp (32 max{γ, 0}T )
(
24 +

128
7

max{γ, 0}
)
∥u0

h∥
2 ≤ C2

1∥u
0
h∥

2, 2 ≤ n ≤ N. (3.16)

All this completes the proof.
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3.2. The convergence of the fully discrete numerical scheme

Theorem 3.2. Let u1
h and u(t1) be the solutions of the problem (1.1) and the fully discrete weighted

IMEX discontinuous Galerkin scheme (2.17), respectively. Denote

η1
h = Rhu1 − u1

h, η
0
h = Rhu0 − u0

h = 0,
ξ1 = u1 − Rhu1, ξ0 = u0 − Rhu0.

Then, when max{0, γ}τ ≤ 1
4 , there exists a positive constant C2 such that

∥η1
h∥ + τ∥η

1
h∥DG ≤ C2

(
τ2 + hk+1

)
. (3.17)

Proof. At t = t1, we have from Eq (1.1) that(
u1 − u0

τ
, vh

)
+ (ν + iα)ah(u1, vh) + (κ + iβ)(|u0|2u1, vh) − γ(u1, vh)

=

(
u1 − u0

τ
− ut(t1), vh

)
+ (κ + iβ)

(
|u0|2u1 − |u1|2u1, vh

)
, ∀ vh ∈ Vk

h . (3.18)

Subtracting Eq (2.17) from Eq (3.18), it holds that(
η1

h

τ
, vh

)
+ (ν + iα)ah(η1

h, vh) + (κ + iβ)(|u0|2u1 − |u0
h|

2u1
h, vh) − γ(η1

h, vh)

=

(
u1 − u0

τ
− ut(t1), vh

)
+ (κ + iβ)

(
|u0|2u1 − |u1|2u1, vh

)
−

(
ξ1 − ξ0

τ
, vh

)
+ γ(ξ1, vh). (3.19)

Taking vh = η
1
h, multiplying both sides of the equation by τ, and considering the real parts of both

sides of the equation yield that

∥η1
h∥

2 + ντ∥η1
h∥

2
ah
− γτ∥η1

h∥
2 = −τRe

(
(κ + iβ)(|u0|2u1 − |u1

h|
2u1

h, η
1
h)
)
+ τRe

(
u1 − u0

τ
− ut(t1), η1

h

)
+ τRe

(
(κ + iβ)(|u0|2u1 − |u1|2u1, η1

h)
)
− τRe

(
ξ1 − ξ0

τ
, η1

h

)
+ γτRe

(
ξ1, η1

h

)
=:

5∑
i=1

Ai. (3.20)

Now, we estimate every term on the right-hand side of Eq (3.20). As for A1, it follows that

A1 = −τRe
(
(κ + iβ)(|u0|2u1 − |u0

h|
2u1

h − η
1
h, η

1
h)
)

= −τRe
(
(κ + iβ) (|u0|2

(
ξ1 + Rhu1

)
− |u0

h|
2
(
Rhu1 − η1

h

)
, η1

h)
)

= −τRe
(
(κ + iβ)

((
|u0|2 − |u0

h|
2
)

Rhu1 + |u0
h|

2ξ1, η1
h

))
− τκ

(
|u0

h|
2η1

h, η
1
h

)
≤ −τRe

(
(κ + iβ)

((
|u0|2 − |u0

h|
2
)

Rhu1 + |u0
h|

2ξ1, η1
h

))
≤

1
6
∥η1

h∥
2 +C∥ξ1∥2 + ∥ξ0∥2

≤
1
6
∥η1

h∥
2 +Ch2k+2, (3.21)
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where we have used the fact that

|u0|2 − |u0
h|

2 = Re
((

u0 − u0
h

) (
u0 + u0

h

)∗)
,

where the symbol ∗ denotes the complex conjugate operation on a complex number. By the Taylor
expansions with the integral remainder, it holds that

A2 + A3 = τRe
(
u1 − u0

τ
− ut(t1), η1

h

)
+ τRe

(
(κ + iβ)(|u0|2u1 − |u1|2u1, η1

h)
)

≤ Cτ

∥∥∥∥∥∥u1 − u0

τ
− ut(t1)

∥∥∥∥∥∥ · ∥η1
h∥ +Cτ

∥∥∥|u0|2u1 − |u1|2u1
∥∥∥ · ∥η1

h∥

≤ Cτ2

∥∥∥∥∥∥u1 − u0

τ
− ut(t1)

∥∥∥∥∥∥2

+Cτ2
∥∥∥|u0|2u1 − |u1|2u1

∥∥∥2
+

1
6
∥η1

h∥
2

≤ Cτ4 +
1
6
∥η1

h∥
2. (3.22)

Lastly, by virtue of the Cauchy-Schwarz inequality, it arrives at

A4 + A5 = −τRe
(
ξ1 − ξ0

τ
, η1

h

)
+ γτRe

(
ξ1, η1

h

)
≤ C

∥∥∥∥∥∥ξ1 − ξ0

τ

∥∥∥∥∥∥2

+C∥ξ1∥2 +
1
6
∥η1

h∥
2

≤ Ch2k+2 +
1
6
∥η1

h∥
2. (3.23)

Combining the bounds above and substituting Eqs (3.21)–(3.23) into Eq (3.20), we have for
sufficiently small τ

1
2
∥η1

h∥
2 + ντ∥η1

h∥
2
ah
≤ Cτ4 +Ch2k+2 + γτ∥η1

h∥
2. (3.24)

When γ ≤ 0, noting the norm equivalence in Eq (2.13), we have

∥η1
h∥

2 + τ∥η1
h∥

2
DG ≤ c1

(
τ2 + hk+1

)2
. (3.25)

When γ > 0 and τγ ≤ 1
4 , it holds that

1
4
∥η1

h∥
2 + τ∥η1

h∥
2
DG ≤

(
1
2
− γτ

)
∥η1

h∥
2 + τ∥η1

h∥
2
DG ≤ C

(
τ2 + hk+1

)2
, (3.26)

i.e.,

∥η1
h∥

2 + τ∥η1
h∥

2
DG ≤ c2

(
τ2 + hk+1

)2
. (3.27)

Choosing C2 = max(c1, c2) implies the truth of inequality (3.17).

Networks and Heterogeneous Media Volume 20, Issue 4, 1367–1391.



1379

Theorem 3.3. Suppose that un
h and u(tn) be the solutions of the continuous problem (1.1) and the fully

discrete numerical schemes (2.16) and (2.17), respectively, then there exist two positive constants τ1

and h1 such that when τ ≤ τ1 and h ≤ h1, we have

∥ηn
h∥ + τ∥η

n
h∥DG ≤ C3

(
τ2 + hk+1

)
, 0 ≤ n ≤ N, (3.28)

where
C3 = max{C2, c3}, η

n
h = Rhun − un

h, ξ
n = un − Rhun, 2 ≤ n ≤ N,

and c3 is given in inequality (3.47). Moreover, with the help of the triangle inequality from
inequality (3.28), we can immediately obtain the optimal error estimate in L2-norm

∥un − un
h∥ ≤ C(τ2 + hk+1), 0 ≤ n ≤ N. (3.29)

Proof. In the whole process, the mathematical induction method is employed to prove Eq (3.28).
According to the conclusion in Lemma 3.2, we can easily obtain that inequality (3.28) is true for
the case n = 0, 1. Next, we assume that Eq (3.28) holds for n from 0 to m − 1 (m ≥ 2), this is to say

∥ηn
h∥ + τ∥η

n
h∥DG ≤ C3

(
τ2 + hk+1

)
, 0 ≤ n ≤ m − 1. (3.30)

Below, we will prove the following inequality by dividing it into two cases:

∥ηn
h∥DG ≤ 1, 0 ≤ n ≤ m − 1. (3.31)

Case I : τ2 ≤ hk+1

In this case, noting inequality (2.22), we have

∥ηn
h∥DG ≤ Ch−1∥ηn

h∥ ≤ Chk ≤ 1, 0 ≤ n ≤ m − 1. (3.32)

Case II : τ2 > hk+1

It follows from inequality (3.30) that

∥ηn
h∥DG ≤ C3τ ≤ 1, 0 ≤ n ≤ m − 1. (3.33)

With the above preparations, we will next prove that the inequality (3.30) also holds when n = m.
For this purpose, consider the Eq (1.1) at t = tn−θ. Since the scheme is consistent, we can easily obtain
the equation satisfied by the exact solution

(Dτun−θ, vh) + (ν + iα)ah(un−θ, vh) + (κ + iβ)(|ûn−θ|2un−θ, vh)
= γ(un−θ, vh) + γ(u(tn−θ) − un−θ, vh) + (Dτun−θ − u(tn−θ), vh) + (ν + iα)ah(un−θ − u(tn−θ), vh),
+ (κ + iβ)(|ûn−θ|2un−θ − |u(tn−θ)|2u(tn−θ), vh), 2 ≤ n ≤ m, ∀ vh ∈ Vk

h . (3.34)
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Subtracting Eq (2.16) from Eq (3.34), we have the system of error equation

(Dτηn−θ
h , vh) + (ν + iα)ah(ηn−θ

h , vh) + (κ + iβ)(|ûn−θ|2un−θ − |ûn−θ
h |

2un−θ
h , vh)

= γ(ηn−θ
h , vh) + γ(u(tn−θ) − un−θ, vh) + (Dτun−θ − u(tn−θ), vh) + (ν + iα)ah(un−θ − u(tn−θ), vh)

+ (κ + iβ)(|ûn−θ|2un−θ − |u(tn−θ)|2u(tn−θ), vh)
− (Dτξn−θ, vh) + γ(ξn−θ, vh), 2 ≤ n ≤ m, ∀ vh ∈ Vk

h , (3.35)

where we have used the fact that (ν + iα)ah(ξn−θ, vh) = 0. Let vh = η
n−θ
h in Eq (3.35) and take the real

part of both sides of the resulting equation. Thus, we have

Re
(
Dτηn−θ

h , η
n−θ
h

)
+ ν∥ηn−θ

h ∥
2
ah
− γ∥ηn−θ

h ∥
2 = −Re

(
(κ + iβ)

(
|ûn−θ|2un−θ − |ûn−θ

h |
2un−θ

h , η
n−θ
h

))
= γRe(u(tn−θ) − un−θ, ηn−θ

h ) + Re(Dτun−θ − u(tn−θ), ηn−θ
h ) + Re

(
(ν + iα)ah(un−θ − u(tn−θ), ηn−θ

h )
)

+ Re
(
(κ + iβ)(|ûn−θ|2un−θ − |u(tn−θ)|2u(tn−θ), ηn−θ

h )
)

− Re
(
Dτξn−θ, ηn−θ

h

)
+ γRe

(
ξn−θ, ηn−θ

h

)
, 2 ≤ n ≤ m. (3.36)

Next, we estimate each term in the above equality. For this purpose, note that

|ûn−θ|2un−θ − |ûn−θ
h |

2un−θ
h = |ûn−θ|2

(
ξn−θ + Rhun−θ

)
− |ûn−θ

h |
2
(
Rhun−θ − ηn−θ

h

)
=

(
|ûn−θ|2 − |ûn−θ

h |
2
)

Rhun−θ + |ûn−θ|2ξn−θ + |ûn−θ
h |

2ηn−θ
h

= Re
(
(ûn−θ − ûn−θ

h )(ûn−θ + ûn−θ
h )∗

)
Rhun−θ + |ûn−θ|2ξn−θ + |ûn−θ

h |
2ηn−θ

h

= Re
(
(η̂n−θ

h + ξ̂n−θ)(ûn−θ + Rhûn−θ − η̂n−θ
h )∗

)
Rhun−θ

+ |ûn−θ|2ξn−θ + |ûn−θ
h |

2ηn−θ
h , 2 ≤ n ≤ m. (3.37)

Then, it holds that

− Re
(
(κ + iβ)

(
|ûn−θ|2un−θ − |ûn−θ

h |
2un−θ

h , η
n−θ
h

))
≤ C(∥η̂n−θ

h ∥
2
0,4∥η

n−θ
h ∥∥Rhun−θ∥0,∞ + ∥η̂

n−θ
h ∥∥η

n−θ
h ∥∥û

n−θ + Rhûn−θ∥0,∞

+ ∥ξ̂n−θ∥∥ηn−θ
h ∥∥Rhun−θ∥0,∞∥ûn−θ + Rhûn−θ∥0,∞

+ ∥ξ̂n−θ∥0,∞∥Rhun−θ∥0,∞∥η
n−θ
h ∥∥η̂

n−θ
h ∥ + ∥û

n−θ∥20,∞∥ξ
n−θ∥∥ηn−θ

h ∥)
≤ C(∥ηn

h∥
2 + ∥ηn−1

h ∥
2 + ∥ηn−2

h ∥
2 + h2k+2), 2 ≤ n ≤ m, (3.38)

where we have used inequality (2.3) and the facts that

∥η̂n−θ
h ∥

2
0,4∥η

n−θ
h ∥ ≤ C∥η̂n−θ

h ∥DG∥η̂
n−θ
h ∥∥η

n−θ
h ∥

≤ C∥η̂n−θ
h ∥∥η

n−θ
h ∥

≤ C(∥ηn
h∥

2 + ∥ηn−1
h ∥

2 + ∥ηn−2
h ∥

2), 2 ≤ n ≤ m.
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By virtue of the Taylor formula, we can immediately obtain

γRe(u(tn−θ) − un−θ, ηn−θ
h ) + Re(Dτun−θ − u(tn−θ), ηn−θ

h ) + Re
(
(ν + iα)ah(un−θ − u(tn−θ), ηn−θ

h )
)

+ Re
(
(κ + iβ)(|ûn−θ|2un−θ − |u(tn−θ)|2u(tn−θ), ηn−θ

h )
)

≤ C(τ4 + ∥ηn
h∥

2 + ∥ηn−1
h ∥

2), 2 ≤ n ≤ m. (3.39)

Utilizing the approximation properties of Ritz projection, we have

− Re
(
Dτξn−θ, ηn−θ

h

)
+ γRe

(
ξn−θ, ηn−θ

h

)
≤ C(h2k+2 + ∥ηn

h∥
2 + ∥ηn−1

h ∥
2), 2 ≤ n ≤ m. (3.40)

Substituting the above inequality into Eq (3.36), we can easily obtain

Re
(
Dτηn−θ

h , η
n−θ
h

)
+ ν∥ηn−θ

h ∥
2
ah
− γ∥ηn−θ

h ∥
2

≤ C(τ4 + h2k+2 + ∥ηn
h∥

2 + ∥ηn−1
h ∥

2 + ∥ηn−2
h ∥

2), 2 ≤ n ≤ m. (3.41)

Furthermore, employing Lemma 2.1, we have

1
4τ

(
Gn −Gn−1

)
+ ν∥ηn−θ

h ∥
2
ah
≤ Re

(
Dτηn−θ

h , η
n−θ
h

)
+ ν∥ηn−θ

h ∥
2
ah

≤ C(τ4 + h2k+2 + ∥ηn
h∥

2 + ∥ηn−1
h ∥

2 + ∥ηn−2
h ∥

2), 2 ≤ n ≤ m, (3.42)

where

Gn = (3 − 2θ)∥ηn
h∥

2 − (1 − 2θ)∥ηn−1
h ∥

2 + (2 − θ)(1 − 2θ)∥ηn
h − η

n−1
h ∥

2

≥
1

1 − θ
∥ηn

h∥
2, 1 ≤ n ≤ m. (3.43)

Replacing n with j in inequality (3.42), summing the resulting inequality over j from 2 to n, and
multiplying both sides by 4τ, we have

Gn +Cτ
n∑

j=2

∥η
j−θ
h ∥

2
ah
≤ G1 +C(τ4 + h2k+2) +Cτ

n∑
j=2

(
∥η

j
h∥

2 + ∥η
j−1
h ∥

2 + ∥η
j−2
h ∥

2
)

≤ G1 +C(τ4 + h2k+2) +Cτ
n∑

j=2

∥η
j
h∥

2 +C∥η1
h∥

2

≤ G1 +C(τ4 + h2k+2) +Cτ
n∑

j=2

∥η
j
h∥

2, 2 ≤ n ≤ m, (3.44)

where we have used Theorem 3.2. Moreover, applying inequality (3.43) and the equivalence of
norms (2.13), we can conclude that

∥ηn
h∥

2 +Cτ
n∑

j=2

∥η
j−θ
h ∥

2
DG ≤ G1 +C(τ4 + h2k+2) +Cτ

n∑
j=2

∥η
j
h∥

2, 2 ≤ n ≤ m. (3.45)

By using Grönwall’s inequality and the simple result

G1 = (3 − 2θ)∥η1
h∥

2 − (1 − 2θ)∥η0
h∥

2 + (2 − θ)(1 − 2θ)∥η1
h − η

0
h∥

2 ≤ C(τ4 + h2k+2),

Networks and Heterogeneous Media Volume 20, Issue 4, 1367–1391.



1382

it holds that

∥ηm
h ∥

2 +Cτ
m∑

j=2

∥η
j−θ
h ∥

2
DG ≤ C(τ4 + h2k+2). (3.46)

At last, employing Lemma 2.5 and inequality (3.46), it can be immediately obtained that

τ∥ηm
h ∥DG ≤ (1 + 2θ)τ

m∑
j=1

∥∥∥η j−θ
h

∥∥∥
DG

≤ (1 + 2θ)
m∑

j=1

√
τ ·

(√
τ
∥∥∥η j−θ

h

∥∥∥
DG

)
≤ (1 + 2θ)

√
nτ

√√
τ

m∑
j=1

∥η
j−θ
h ∥

2
DG

≤ (1 + 2θ)
√

T

√√
τ

m∑
j=1

∥η
j−θ
h ∥

2
DG

≤ C(τ2 + hk+1).

Therefore, we can obtain

∥ηm
h ∥ + τ∥η

m
h ∥DG ≤ c3

(
τ2 + hk+1

)
≤ C3

(
τ2 + hk+1

)
. (3.47)

All this complete the proof.

4. Numerical examples

In this section, we provide two numerical examples to verify the theoretical analysis provided in
the previous section. The first focuses on testing the accuracy in terms of the L2-norm and H1-norm,
which are defined as follows:

L2-error = ∥u(x,T ) − uN
h ∥, H1-error = ∥∇h

(
u(x, T ) − uN

h

)
∥,

where ∇h· is the piecewise defined gradient operator on mesh partitioning. The second example is
for verifying the decay property of the L2-norm in the case where the right-hand side is zero and the
robustness of the numerical scheme is in curved-boundary domains. In the second example, we adopt
a circular computational domain and employ unstructured polygonal meshes with varying polynomial
degrees for testing purposes. Regarding the selection of penalty parameters, for k = 1, 2, 3, the values
are set to 16, 4, and 128, respectively.

Example 4.1. In Eq (1.1), we choose the parameters ν = κ = α = β = γ = 1, Ω = (0, 1)2, and the
exact solution is taken as

u(x, y, t) = eit sin(x) sin(y)(1 − x)(1 − y). (4.1)

The right-hand side is computed from the equation based on the true solution above.
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The numerical results corresponding to this example are tabulated in Tables 1–10. The mesh
partitions employed in this example are illustrated in Figures 1–3. To assess the convergence accuracy
in the spatial direction, we employ a sufficiently small time step and report the results for three
categories of meshes and three polynomial degrees in Tables 1–9. The convergence results for different
polynomial degrees (k = 1, 2, 3) on non-convex meshes with θ = 1/8 are presented in Tables 1–3. The
orders of accuracy under Voronoi meshes (with θ = 1/4) are presented in Tables 4–6, and the accuracy
results under hybrid meshes (with θ = 3/8) are provided in Tables 7–9. It can be seen from the above
numerical results that the numerical schemes proposed in this paper have achieved the convergence
orders predicted by the theoretical analysis in the previous section. Finally, the numerical results under
non-convex meshes when θ = 1/4 and k = 3 in the temporal direction are presented in Table 10. It
is in very good agreement with the theoretical second-order convergence accuracy. Following [38],
in order to demonstrate the unconditional convergence property, we select three distinct temporal
mesh resolutions N = 5, 10, 15 on successively refined spatial meshes with 1

h = 5, 10, 20, 40, 80, 120.
The L2-norm errors are illustrated in Figure 4. It can be observed that as the spatial mesh sizes h are
progressively refined, the L2-norm errors tend to a fixed value, which confirms that the linearized
numerical scheme (2.17) we proposed exhibits unconditional convergence.

Table 1. The convergence orders for Example 4.1 on non-convex meshes with θ = 1
8 and

k = 1.

h L2-error Order H1-error Order

1/2 6.77954e-03 – 8.57821e-02 –
1/4 1.96755e-03 1.7848 4.64516e-02 0.8849
1/8 5.08362e-04 1.9525 2.36283e-02 0.9752
1/16 1.27725e-04 1.9928 1.18364e-02 0.9973
1/32 3.19239e-05 2.0003 5.90933e-03 1.0022

Table 2. The convergence orders for Example 4.1 on non-convex meshes with θ = 1
8 and

k = 2.

h L2-error Order H1-error Order

1/2 1.89377e-03 – 3.21908e-02 –
1/4 2.59449e-04 2.8677 8.94403e-03 1.8477
1/8 3.21984e-05 3.0104 2.29592e-03 1.9619
1/16 3.95193e-06 3.0264 5.78684e-04 1.9882
1/32 4.87451e-07 3.0192 1.45110e-04 1.9956
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Table 3. The convergence orders for Example 4.1 on non-convex meshes with θ = 1
8 and

k = 3.

h L2-error Order H1-error Order

1/2 3.32796e-04 – 8.06780e-03 –
1/4 1.83062e-05 4.1842 9.90653e-04 3.0257
1/8 1.06468e-06 4.1038 1.20608e-04 3.0381
1/16 6.71119e-08 3.9877 1.44979e-05 3.0564

Table 4. The convergence orders for Example 4.1 on Voronoi meshes with θ = 1
4 and k = 1.

h L2-error Order H1-error Order

1/2 6.49409e-03 – 8.25620e-02 –
1/4 1.83974e-03 1.8196 4.45675e-02 0.8895
1/8 4.42711e-04 2.0551 2.25716e-02 0.9815
1/16 2.16718e-04 2.0611 1.58809e-02 1.0144
1/32 2.61228e-05 2.0350 5.62040e-03 0.9990

Table 5. The convergence orders for Example 4.1 on Voronoi meshes with θ = 1
4 and k = 2.

h L2-error Order H1-error Order

1/2 1.75795e-03 – 3.01168e-02 –
1/4 2.43349e-04 2.8528 8.42798e-03 1.8373
1/8 2.76447e-05 3.1380 1.98436e-03 2.0865
1/16 9.30524e-06 3.1418 9.55196e-04 2.1096
1/32 3.93557e-07 3.0423 1.16588e-04 2.0229

Table 6. The convergence orders for Example 4.1 on Voronoi meshes with θ = 1
4 and k = 3.

h L2-error Order H1-error Order

1/2 3.10919e-04 – 6.84783e-03 –
1/4 1.81557e-05 4.0980 8.53570e-04 3.0041
1/8 9.57198e-07 4.2455 9.58020e-05 3.1554
1/16 2.36222e-07 4.0373 3.28305e-05 3.0900
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Table 7. The convergence orders for Example 4.1 on mixed meshes with θ = 3
8 and k = 1.

h L2-error Order H1-error Order

1/2 7.10731e-03 – 8.77645e-02 –
1/4 2.07023e-03 1.7795 4.79082e-02 0.8734
1/8 5.35665e-04 1.9504 2.45034e-02 0.9673
1/16 1.34702e-04 1.9916 1.23081e-02 0.9934
1/32 3.36800e-05 1.9998 6.16071e-03 0.9984

Table 8. The convergence orders for Example 4.1 on mixed meshes with θ = 3
8 and k = 2.

h L2-error Order H1-error Order

1/2 1.93394e-03 – 3.38850e-02 –
1/4 2.66987e-04 2.8567 9.43686e-03 1.8443
1/8 3.33308e-05 3.0018 2.41674e-03 1.9652
1/16 4.10516e-06 3.0213 6.07827e-04 1.9913
1/32 5.07309e-07 3.0165 1.52238e-04 1.9973

Table 9. The convergence orders for Example 4.1 on mixed meshes with θ = 3
8 and k = 3.

h L2-error Order H1-error Order

1/2 3.41577e-04 – 8.39104e-03 –
1/4 1.88177e-05 4.1820 1.04558e-03 3.0045
1/8 1.08430e-06 4.1173 1.29440e-04 3.0140
1/16 6.59498e-08 4.0393 1.58202e-05 3.0324

Table 10. The convergence orders in time direction for Example 4.1 on non-convex meshes
with θ = 1

4 and k = 3.

τ L2-error Order H1-error Order

1/2 8.77078e-04 – 3.92322e-03 –
1/4 1.61655e-04 2.4398 7.23625e-04 2.4387
1/8 4.16780e-05 1.9556 1.86402e-04 1.9568
1/16 1.04455e-05 1.9964 4.67695e-05 1.9948
1/32 2.61201e-06 1.9997 1.20221e-05 1.9599
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Figure 1. A non-convex partition
composed of 64 elements.

Figure 2. A Voronoi partition
composed of 64 elements.

Figure 3. A mixed mesh partition
containing concave and convex
elements.

Figure 4. L2-norm errors of the linear
discontinuous finite element method
for a fixed τ and varying spatial mesh
size h.

Example 4.2. In Eq (1.1), we set the parameters as ν = κ = α = β = γ = 1, take Ω = {(x, y) :
x2 + y2 < 1}, and define the source function f according to the exact solution

u(x, y, t) = i sin
(
x2 + y2 − 1

)
e−t.

The purpose of this example is to test the robustness of the numerical algorithm in curved-edge
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domains and verify the boundedness of the L2-norm. A polygonal partition of the unit circle is
presented in Figure 5. It can be seen from Tables 11 and 12 that, in the circular domain, the computer
implementation results of the fully discrete numerical scheme are consistent with the theoretical
analysis. To test the boundedness of the numerical solution under the L2-norm, we set the right-hand
side term in the equation to zero. Obviously, there is no explicitly expressible solution in this
case. Figure 6 shows its variation trend over time, which is consistent with the argument result in
Theorem 3.1. This further demonstrates the robustness of the numerical scheme in this paper.

Figure 5. A Voronoi mesh partition for the unit circle.

Table 11. The convergence orders for Example 4.2 on Voronoi meshes with θ = 1
4 and k = 1.

h L2-error Order H1-error Order

1/4 4.28568e-02 – 6.90124e-01 –
1/8 9.33613e-03 2.1986 3.30723e-01 1.0612
1/16 2.25235e-03 2.0514 1.63946e-01 1.0124
1/32 5.53500e-04 2.0248 8.15875e-02 1.0068

Table 12. The convergence orders for Example 4.2 on Voronoi meshes with θ = 1
4 and k = 2.

h L2-error Order H1-error Order

1/4 1.77305e-03 – 4.40879e-02 –
1/8 2.55595e-04 2.7943 1.30722e-02 1.7539
1/16 3.36348e-05 2.9258 3.45896e-03 1.9181
1/32 4.45948e-06 2.9150 8.90269e-04 1.9580
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Figure 6. L2-norm of the numerical solution for Example 4.2 with h = 1/30 and τ = 1/100.

5. Conclusions

In this paper, we propose a novel linearized fully discrete discontinuous finite element scheme,
which adopts the second-order θ scheme and the polygonal discontinuous finite element method
in the temporal and spatial directions, respectively. The stability of the numerical method and its
unconditional convergence under the L2-norm are rigorously proven by means of the generalized
inverse inequality and the transfer formula. There are two issues worthy of further consideration
in the future. First, high-order discrete methods can be adopted in the temporal direction, such as
the Gaussian collocation method and the discontinuous finite element method. Second, the adaptive
polygonal discontinuous Galerkin method deserves further exploration in the future.
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