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Abstract: In this paper, a novel second-order numerical method on a Shishkin mesh is constructed to
solve a singularly perturbed Volterra integro-differential equation. The proposed numerical scheme
employs a second-order backward differentiation formula (BDF2) for discretizing the first-order
derivative term, while utilizing the trapezoidal rule to approximate the integral term. Specifically, at
the grid transition point, a first-order finite difference approximation is implemented to handle the first-
order derivative computation. Subsequently, comprehensive truncation error estimations and rigorous
convergence analyses are systematically conducted. Finally, two numerical examples are performed to
verify the theoretical findings.
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1. Introduction

In this paper, our primary focus is developing a second-order accurate numerical method for solving
the following singularly perturbed Volterra integro-differential equation (SPVIDE):εu′(x)+a(x)u(x)+

∫ x

0
K(x,s)u(s)ds = f (x), x ∈ Ω := (0,1],

u(0) = u0,
(1.1)

where 0 < ε ≪ 1 and u0 is a given constant. The functions a(x), K(x,s) and f (x) are assumed to be
sufficiently smooth. Moreover, there exists a positive constant α , such that a(x) ≥ α > 0, x ∈ [0,1].
Under these conditions, the problem (1.1) has a unique solution u(x), and its derivatives have the
following bounds (see [1]):

|uk(x)| ≤C(1+ ε
−ke−αx/ε), x ∈ Ω, 0 ≤ k ≤ 3,
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where C is a positive constant. Obviously, as ε → 0, the solution u(x) of (1.1) typically exhibits an
initial layer at x = 0.

It is widely recognized that SPVIDEs arise in diffusion-dissipation processes, filament stretching
problems, epidemic dynamics, synchronous control systems, and so forth [2–5]. The primary
characteristic and challenge of such problems is that the first-order derivative term contains a
perturbation parameter ε , requiring numerical methods to be ε-uniformly convergent. To the best of
our knowledge, two distinct categories of numerical solution methods have been developed to solve
SPVIDEs. The first is the layer-adapted meshes approach (Shishkin meshes and Bakhvalov meshes,
see, e.g., [1, 6, 7]), which is specifically designed to handle the boundary layer or the initial layer
effectively by using the prior information of the exact solution; The second is the adaptive grid
method [8–10], which is derived through the application of a posteriori error estimation techniques.

It is crucial to highlight that the numerical methods proposed in this body of literature demonstrate
merely first-order accuracy with parameter-uniform convergence, revealing a fundamental limitation
in their approximation capabilities. For this reason, Yapman and Amiraliyev [11, 12] developed
second-order exponentially fitted schemes on Shishkin-type meshes to solve SPVIDEs and singularly
perturbed Volterra delay-integro-differential equations (SPVDIDEs), respectively. Based on the
Richardson extrapolation technique, the authors in [13, 14] presented a second-order layer-adapted
meshes approach and a second-order adaptive grid method, respectively. Moreover, the
Crank-Nicolson scheme was constructed on Shishkin-type meshes and Bakhvalov-type meshes to
solve singularly perturbed problems [15], while the ε-uniform second-order convergences were
shown. In the very recent past, a discontinuous Galerkin method was proposed on Bakhvalov-type
meshes for SPVIDEs [16], and the (k + 1)-st order of accuracy has been reached, where k is the
degree of the piecewise polynomial space.

Recently, building upon the foundational framework of the second-order variable-step-size
backward differentiation formula (BDF2) [17], Liao et al. [18, 19] proposed a second-order finite
difference method (non-hybrid schemes) on Shishkin-type meshes and Bakhvalov-type meshes for
SPVIDEs, and utilized the discretization BDF2 convolution kernels theory (see [17]) to derive the
corresponding stability results. Besides, the mesh ratios near the transition points of Shishkin grids
and Bakhvalov grids is related to 1

ε
, which introduces certain difficulties in the stability analysis of the

proposed numerical methods in [18, 19]. Here, to overcome the limitations of the mesh ratio near
transition points, this paper proposes a modified BDF2-based numerical framework on Shishkin-type
grids for solving Eq (1.1). Crucially, we introduce a stability analysis methodology that circumvents
the conventional reliance on discrete convolution kernel theory for BDF2 schemes as described
in [17].

The outline of this paper is organized as follows: The discretization scheme on a Shishkin mesh
is constructed in Section 2. Section 3 introduces the local truncation error estimates. In Section 4,
the convergence result of our proposed scheme is proved through rigorous theoretical analysis. Some
numerical results are presented in Section 5. Finally, some concluding discussions are provided in
Section 6.

Notation. In this paper, C denotes a positive constant independent of ε and the mesh parameter N,
which may take different values in different places. For our analysis we shall assume that ε ≤CN−1.
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2. The discretization scheme

Let N be an even and positive integer and σ = min
{1

2 ,
2ε

α
lnN

}
be a grid transition point. Then the

Shishkin-type meshes can be constructed as follows:

Ω̄
N := {0 = x0 < x1 < · · ·< xN = 1} ,

where the point xi is defined by

xi =

{
2σ i
N , 0 ≤ i ≤ N/2,

σ + 2(1−σ)
N (i−N/2) , N/2+1 ≤ i ≤ N.

To simplify the notation, we set gi = g(xi) for any function g and set Ki,k = K(xi,xk) for a bivariate
function K. In addition, for i = 1, · · · ,N, let hi := xi − xi−1 be the step sizes, which are given by

hi =

{
h = 4

α
εN−1 lnN, 0 ≤ i ≤ N/2,

H = 2(1−σ)N−1, N/2+1 ≤ i ≤ N.

For a given mesh function v = {vi}N
i=0, define the following backward differentiation operators:

LN
1 vi :=


vi − vi−1

hi
, i = 1, N/2+1,

3vi −4vi−1 + vi−2

2hi
, else.

Then we obtain the following discretization scheme of problem (1.1):{
εLN

1 uN
i +aiuN

i +LN
2 uN

i = fi, 1 ≤ i ≤ N,

uN
0 = u0,

(2.1)

where uN is the approximation solution of u(x) on Ω̄N and LN
2 is the trapezoidal formula, presented as

LN
2 uN

i :=
i

∑
k=1

hk

2
(
Ki,k−1uN

k−1 +KikuN
k
)
, 1 ≤ i ≤ N.

3. Truncation error

For i = 1, · · · ,N, let Ri be the local truncation error of scheme (2.1) at point xi. Then

Ri = ε
(
LN

1 ui −u′i
)
+LN

2 ui −
∫ xi

0
K(xi,s)u(s)ds := Ri,1 +Ri,2, (3.1)

where

Ri,1 = ε
(
LN

1 ui −u′i
)
,

Ri,2 = LN
2 ui −

∫ xi

0
K(xi,s)u(s)ds.
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Lemma 3.1. For i = 1, · · · ,N, one has

|R1| ≤CN−1 lnN, (3.2)

|Ri| ≤C(e−αxi/ε + ε)N−2 ln2 N, 2 ≤ i ≤ N/2, (3.3)

|Ri| ≤CN−2, N/2+1 ≤ i ≤ N. (3.4)

Proof. In order to prove this lemma, we need to give the upper bounds of
∣∣Ri,1

∣∣ and
∣∣Ri,2

∣∣, respectively.
Now, we will present a detailed proof process as follows:

At first, by using the Taylor series expansion, one has

∣∣R1,1
∣∣≤ ε

h

∫ x1

0

∣∣u′′(t)∣∣ tdt ≤ ε

∫ x1

0
(1+ ε

−2e−αt/ε)dt ≤CN−1 lnN

and

∣∣RN/2+1,1
∣∣≤ ε

H

∫ xN/2+1

xN/2

∣∣u′′(t)∣∣(t − xN/2)dt

≤
∫ xN/2+1

xN/2

ε(1+ ε
−2e−αt/ε)dt

≤ εH + e−ασ/ε

(
1− e−αH/ε

)
≤CεN−1 +CN−2

≤CN−2.

Similarly, for 2 ≤ i ≤ N/2, it is easy to get

∣∣Ri,1
∣∣≤C

ε

h

[∫ xi

xi−1

∣∣u′′′(t)∣∣(t − xi−1)
2dt +

∫ xi

xi−2

∣∣u′′′(t)∣∣(t − xi−2)
2dt
]

≤Cεh
∫ xi

xi−2

(1+ ε
−3e−αt/ε)dt

≤CN−1 lnN
∫ xi

xi−2

ε
2(1+ ε

−3e−αt/ε)dt

≤CN−1 lnN
[
ε

2h+ e−αxi/ε

(
eα·2h/ε −1

)]
≤CN−1 lnN(ε3N−1 lnN + e−αxi/εN−1 lnN)

≤Ce−αxi/εN−2 ln2 N,

where we have used the simple fact that ε3 ≤CN−3 ≤ e−αxi/ε , 1 ≤ i ≤ N/2.
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Meanwhile, when N/2+2 ≤ i ≤ N, we have

∣∣Ri,1
∣∣≤C

ε

H

[∫ xi

xi−1

∣∣u′′′(t)∣∣(t − xi−1)
2dt +

∫ xi

xi−2

∣∣u′′′(t)∣∣(t − xi−2)
2dt
]

≤C
∫ xi

xi−2

(
ε + ε

−2e−αt/ε

)
(t − xi−2)dt

≤C
[∫ xi

xi−2

(√
ε + ε

−1e−αt/2ε

)
dt
]2

≤C
(√

εN−1 + e−ασ/2ε

)2

≤CN−2,

where we have used the fact that

∫ b

a
φ(x)(x−a)k−1dx ≤ 1

k

[∫ b

a
φ(x)

1
k dx
]k

in which k ∈ N∗ and φ is a positive decreasing function on [a,b].

The next thing to do in the proof is to derive the bounds for
∣∣Ri,2

∣∣, i = 1, · · · ,N.

By using the Taylor series expansion, one has

Ri,2 =
i

∑
k=1

∫ xk

xk−1

{
xk − s

hk

∫ xk

xk−1

[K(xi, t)u(t)]
′′ (t − xk−1)dt

−
∫ xk

s
[K(xi, t)u(t)]

′′ (t − s)dt
}

ds.

So that for 1 ≤ i ≤ N/2, there holds

∣∣Ri,2
∣∣≤C

i

∑
k=1

∫ xk

xk−1

ds
∫ xk

xk−1

(|u(t)|+
∣∣u′(t)∣∣+ ∣∣u′′(t)∣∣)(t − xk−1)dt

≤Ch2
i

∑
k=1

∫ xk

xk−1

(1+ ε
−2e−αt/ε)dt

≤CεN−2 ln2 N
∫

σ

0
ε(1+ ε

−2e−αt/ε)dt

≤CN−3 ln2 N
(

ε/2+1− e−ασ/ε

)
≤CN−3 ln2 N.
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Similarly, for N/2+1 ≤ i ≤ N, it is easy to show that

∣∣Ri,2
∣∣≤CN−3 ln2 N +CN−1

i

∑
k=N/2+1

∫ xk

xk−1

(1+ ε
−2e−αt/ε)(t − xk−1)dt

≤CN−3 ln2 N +CN−1
i

∑
k=N/2+1

[∫ xk

xk−1

(
1+ ε

−1e−αt/2ε

)
dt
]2

≤CN−3 ln2 N +CN−1
i

∑
k=N/2+1

(
N−1 + e−ασ/2ε

)2

≤CN−2.

Combining Eq (3.1), we complete the proof of this lemma.

4. Convergence analysis

Before conducting convergence analysis for our proposed numerical scheme, we present the
following important identity.

Lemma 4.1. (Telescope formula for BDF2 [20]) For arbitrary (vn,vn−1,vn−2), it holds that(
3
2

vn −2vn−1 +
1
2

vn−2
)

vn =
1
4

(
|vn|2 −

∣∣vn−1∣∣2 + ∣∣2vn − vn−1∣∣2
−
∣∣2vn−1 − vn−2∣∣2 + ∣∣vn −2vn−1 + vn−2∣∣2) .

Let ei = ui −uN
i . Then we obtain the following error equation:

εLN
1 ei +aiei +LN

2 ei = Ri, 1 ≤ i ≤ N, e0 = 0. (4.1)

Theorem 4.1. For i = 1, · · · ,N, one has

|ei| ≤CN−2 ln2 N.

Proof. For i = 1, it follows from Eq (4.1) that

ε
e1 − e0

h
+a1e1 +

h
2
(K10e0 +K11e1) = R1.

By using h = 4
α

εN−1 lnN, e0 = 0 and Eq (3.2), it is easy to obtain

|e1| ≤CN−1 lnN |R1| ≤CN−2 ln2 N. (4.2)

For 2 ≤ i ≤ N/2, by multiplying both sides of Eq (4.1) by ei, yields

ε
3ei −4ei−1 + ei−2

2h
ei =−ai |ei|2 − ei

i

∑
k=1

h
2
(
Ki,k−1ek−1 +Kikek

)
+ eiRi

≤−ai |ei|2 +CεN−1 lnN |ei|
i

∑
k=1

|ek|+ |ei| |Ri| .
(4.3)
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Then, applying Lemma 4.1 to the left-hand side of Eq (4.3) and Cauchy inequality to the right-hand
side, one has

ε

4h

(
|ei|2 −|ei−1|2 + |2ei − ei−1|2 −|2ei−1 − ei−2|2

)
≤ ε

3ei −4ei−1 + ei−2

2h
ei

≤−ai |ei|2 +CεN−1 lnN |ei|
i

∑
k=1

|ek|+ |ei| |Ri|

≤ −ai |ei|2 +CεN−1 lnN
i

∑
k=1

(
|ei|2 + |ek|2

)
+α |ei|2 +

1
4α

|Ri|2

≤Cε lnN |ei|2 +CεN−1 lnN
i

∑
k=1

|ek|2 +C |Ri|2 .

Moreover, multiply both sides by 4h/ε and sum up from 2 to i to obtain

|ei|2 −|e1|2 + |2ei − ei−1|2 −|2e1 − e0|2 ≤CεN−1 ln2 N
i

∑
k=1

|ek|2 +CN−1 lnN
i

∑
k=2

|Ri|2 ,

which implies

|ei|2 ≤C |e1|2 +CεN−1 ln2 N
i

∑
k=1

|ek|2 +CN−1 lnN
i

∑
k=2

|Ri|2

≤CN−4 ln4 N +CεN−1 ln2 N
i

∑
k=1

|ek|2 +CN−5 ln5 N
i

∑
k=2

(
e−αxi/ε + ε

)2

≤CN−4 ln4 N +CεN−1 ln2 N
i

∑
k=1

|ek|2 +CN−5 ln5 N
i

∑
k=2

e−2αxi/ε

≤CN−4 ln4 N +CεN−1 ln2 N
i

∑
k=1

|ek|2 .

(4.4)

Then, it follows from Eqs (4.2) and (4.4) and the discrete Grönwall inequality [21, Lemma 3.2] that

|ei| ≤CN−2 ln2 N, 1 ≤ i ≤ N/2.

For i = N/2+1, by using Eq (4.1) and the simple calculation, it holds that

|ei| ≤
∣∣∣∣ ε

H
+ai +

H
2

Kii

∣∣∣∣−1
(

ε

H
|ei−1|+CεN−1 lnN

i−1

∑
k=1

|ek|+CN−1 |ei−1|+ |Ri|
)

≤CN−2 ln2 N +CεN−1 lnN ·N−1 ln2 N +CN−3 ln2 N +CN−2

≤CN−2 ln2 N.

Similarly, for N/2+2 ≤ i ≤ N, we have(
3ε

2H
+ai

)
|ei| ≤ 2

ε

H
|ei−1|+

ε

2H
|ei−2|+CN−1

i

∑
k=N/2+1

|ek|+CN−2. (4.5)
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Furthermore, for a sufficiently small value of ε satisfying ε ≤CN−1, yields,

3ε

2H
+ai ≥

3ε

2H
+α ≥ 3

ε

H
. (4.6)

By applying inequality Eq (4.6) to Eq (4.5), it is straightforward to demonstrate that

|ei| ≤
2
3
|ei−1|+

1
6
|ei−2|+CN−1

i

∑
k=N/2+1

|ek|+CN−2.

By simple calculation, the above inequality is equivalent to

|ei|+ p |ei−1|−q(|ei−1|+ p |ei−2|)≤CN−1
i

∑
k=N/2+1

|ek|+CN−2, (4.7)

with p =
√

10−2
6 , q =

√
10+2
6 .

Furthermore, for N/2+2 ≤ j ≤ i, from Eq (4.7), yields,

|e j|+ p|e j−1|−q(|e j−1|+ p|e j−2|)

≤CN−1
j

∑
k=N/2+1

|ek|+CN−2

≤CN−1
i

∑
k=N/2+1

|ek|+CN−2.

(4.8)

Multiplying both sides of Eq (4.8) by qi− j, summing over j from N/2+ 2 to i and noting that
∞

∑
n=0

qn ≤C, we obtain

|ei| ≤C(|eN/2|+ |eN/2+1|)+CN−1
i

∑
k=N/2+1

|ek|+CN−2

≤CN−2 ln2 N +CN−1
i

∑
k=N/2+1

|ek| .

Then by using the discrete Grönwall inequality, one has

|ei| ≤CN−2 ln2 N, N/2+1 ≤ i ≤ N.

This completes the proof.

5. Numerical results and discussion

In this section, we present two numerical examples to test the accuracy and efficiency of our
proposed numerical method.
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Example 1. The test problem follows [1] by taking Eq (1.1) with

a(x) = x+1, K(x,s) = x+ s,

f (x) = (ε −2x)cosx+(x+2)sinx+(x−2εx− ε
2)e−x/ε +(1+ ε)x+ ε

2,

and the initial condition is u(0) = 1. The exact solution of this problem is

u(x) = sinx+ e−x/ε .

Let EN := max
1≤i≤N

|ei| denote the maximum nodal errors. The corresponding convergence rates are

then determined through the formula r = log2

(
EN

E2N

)
.

Example 2. The test problem follows [11] by taking Eq (1.1) with

a(x) = 2, K(x,s) =−(x− s)e1−xs, f (x) = ex − x,

and the initial condition is u(0) = 1. Since the exact solution of the test problem is not available, we
present the numerical solutions in Figure 1 and use the double mesh principle to estimate the errors
and convergence rates. Because mesh points for N and 2N do not match, we measure the maximum
nodal errors by

EN := max
1≤i≤N

∣∣uN
i − ũ2N

i
∣∣ ,

where ũ2N represents the Hermite interpolation of the approximate solution u2N and
ũ2N

i := ũ2N(xi), xi ∈ Ω̄N . Similarly, corresponding convergence rates are calculated by

r = log2

(
EN

E2N

)
.
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Figure 1. Nunerical solutions for N = 512 with ε = 10−1 and 10−5.

For different values of ε and N, Tables 1 and 2 show the maximum nodal error EN and its
convergence rates r in the above two test problems. We can see that the convergence rates r reach
ε-uniform almost second-order, which is consistent with the theoretical result in Theorem 4.1.
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Table 1. Results for Example 1: The maximum errors EN and convergence rates r.

N
ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

EN r EN r EN r EN r
27 3.3097e-03 1.8050 1.0344e-02 1.3753 1.0349e-02 1.3757 1.0349e-02 1.3758
28 9.4718e-04 1.8907 3.9873e-03 1.4879 3.9879e-03 1.4880 3.9879e-03 1.4880
29 2.5543e-04 1.9277 1.4216e-03 1.5758 1.4217e-03 1.5759 1.4217e-03 1.5759
210 6.7138e-05 1.9611 4.7689e-04 1.6493 4.7691e-04 1.6494 4.7691e-04 1.6494
211 1.7243e-05 1.9767 1.5203e-04 1.6981 1.5203e-04 1.6981 1.5203e-04 1.6981
212 4.3808e-06 1.9869 4.6852e-05 1.7380 4.6853e-05 1.7380 4.6853e-05 1.7380
213 1.1052e-06 - 1.4046e-05 - 1.4046e-05 - 1.4046e-05 -

N
ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−8

EN r EN r EN r EN r
27 1.0349e-02 1.3758 1.0349e-02 1.3758 1.0349e-02 1.3758 1.0349e-02 1.3758
28 3.9880e-03 1.4880 3.9880e-03 1.4880 3.9880e-03 1.4880 3.9880e-03 1.4880
29 1.4217e-03 1.5759 1.4217e-03 1.5759 1.4217e-03 1.5759 1.4217e-03 1.5759
210 4.7691e-04 1.6494 4.7691e-04 1.6494 4.7691e-04 1.6494 4.7691e-04 1.6494
211 1.5203e-04 1.6981 1.5203e-04 1.6981 1.5203e-04 1.6981 1.5203e-04 1.6981
212 4.6853e-05 1.7380 4.6853e-05 1.7380 4.6853e-05 1.7380 4.6853e-05 1.7380
213 1.4046e-05 - 1.4046e-05 - 1.4046e-05 - 1.4046e-05 -

Table 2. Results for Example 2: The maximum errors EN and convergence rates r.

N
ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

EN r EN r EN r EN r
27 3.6618e-03 1.5891 3.3200e-03 1.3360 3.3199e-03 1.3360 3.3199e-03 1.3360
28 1.2171e-03 1.7895 1.3151e-03 1.4386 1.3151e-03 1.4386 1.3151e-03 1.4386
29 3.5206e-04 1.8818 4.8520e-04 1.5643 4.8519e-04 1.5643 4.8519e-04 1.5643
210 9.5534e-05 1.9283 1.6407e-04 1.6249 1.6407e-04 1.6249 1.6407e-04 1.6249
211 2.5101e-05 1.9579 5.3197e-05 1.6899 5.3197e-05 1.6899 5.3197e-05 1.6899
212 6.4613e-06 1.9769 1.6489e-05 1.7271 1.6489e-05 1.7271 1.6489e-05 1.7271
213 1.6414e-06 - 4.9806e-06 - 4.9806e-06 - 4.9806e-06 -

N
ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−8

EN r EN r EN r EN r
27 3.3199e-03 1.3360 3.3199e-03 1.3360 3.3199e-03 1.3360 3.3199e-03 1.3360
28 1.3151e-03 1.4386 1.3151e-03 1.4386 1.3151e-03 1.4386 1.3151e-03 1.4386
29 4.8519e-04 1.5643 4.8519e-04 1.5643 4.8519e-04 1.5643 4.8519e-04 1.5643
210 1.6407e-04 1.6249 1.6407e-04 1.6249 1.6407e-04 1.6249 1.6407e-04 1.6249
211 5.3197e-05 1.6899 5.3197e-05 1.6899 5.3197e-05 1.6899 5.3197e-05 1.6899
212 1.6489e-05 1.7271 1.6489e-05 1.7271 1.6489e-05 1.7271 1.6489e-05 1.7271
213 4.9806e-06 - 4.9806e-06 - 4.9806e-06 - 4.9806e-06 -
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6. Conclusions

A novel second-order numerical method on a Shishkin mesh based on the BDF2 has been developed
for solving a singularly perturbed Volterra integro-differential equation. Unlike the discrete approach
used in [18, 19], although we have employed a first-order upwind scheme to discretize the first-order
derivatives at the interface between the fine grid and the coarse grid, this does not compromise the
second-order convergence result of our proposed numerical scheme.

The linchpin of this paper’s success lies in the development of an innovative stability analysis
methodology we have crafted. In the future, it will be significant to extend our method to nonlinear
singularly perturbed Volterra integro-differential equations and singularly perturbed Fredholm
integro-differential equations.
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