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Abstract: Here, by integrating continuous control and dynamic event-triggered impulsive control (DETIC) 
based on a piecewise function ratio framework, a hybrid control strategy is developed to solve 
prescribed-time stabilization (PTS) for nonlinear systems. Different from the traditional methods, the 
designed hybrid control strategy is rooted in DETIC, and the designed triggering mechanism allows 
the impulsive triggering instants to be dynamically adjusted, with the Zeno behavior being eliminated. 
The dynamic event-triggered mechanism (DETM) is utilized to determine the instants of impulses, 
thereby reducing unnecessary control execution and enhancing control efficiency. Moreover, the 
proposed approach is utilized for the master-slave synchronization of the Lorenz system, and numerical 
experiments are conducted to demonstrate the practicality and efficiency of the developed hybrid 
control scheme. 
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1. Introduction 

Investigating the stability and developing control methods for nonlinear systems is a central topic 
in modern control theory and has important practical applications in engineering fields such as robot 
motion planning, spacecraft attitude control, and smart grid management. Traditional continuous 
control methods (e.g., PID control, sliding-mode control) face significant challenges in terms of the 
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resource efficiency, real-time performance, and robustness [1]. In addition, as a key method to handle 
system uncertainties and external disturbances, adaptive control combined with advanced strategies 
such as fuzzy logic and backstepping methods has demonstrated great potential in solving nonlinear 
control problems in fields of multi-agent collaboration [2], network attack protection [3], and 
spacecraft formation [4]. Although the above-mentioned methods have their advantages, how to 
achieve efficient and accurate stability control of nonlinear systems is still a difficult problem. As a 
type of non-continuous control method [5], impulsive control has found extensive use across various fields, 
including satellite orbit transfer [6], chaotic synchronization [7], and communication security [8]. So far, 
scholars in different fields have focused on impulsive control strategies [9]. However, traditional 
impulsive control mostly adopts periodic or fixed-time impulsive instants, which simplifies the 
controller design to a certain extent, but difficultly adapts to the dynamic changes of the system state. 
Fixed impulses may cause control lag or redundancy, particularly in fast-response scenarios, thus 
reducing the robustness of the system. 

The trigger control strategy, which includes time-triggered control (TTC) and event-triggered 
control (ETC), is applied as a discontinuous strategy to ensure system stability and other performance. 
TTC usually relies on a manually set fixed sampling period [10,11], which is prone to over-sampling, 
resource waste, and control redundancy. In contrast, ETC only updates the controller at specific 
discrete instants [12–14], which are determined by the triggering conditions. At present, a variety of 
ETC strategies have been applied in actual control systems, such as state observation systems [15], 
multi-agent systems [16], and network control systems [17]. The significant advantages of ETC in resource 
optimization have naturally inspired its integration with impulsive control, making event-triggered 
impulsive control (ETIC) a key research direction [18–20]. For example, Li and Peng [18] investigated 
Lyapunov stability of impulsive systems under an event-triggered mechanism (ETM) and derived 
sufficient conditions for uniform and global asymptotic stability. Liu and Zhang [19] explored a new 
type of ETIC mechanism, and established the relationship between impulse intensity and ETIC. 
Subsequently, Li and Li [20] further expanded the robustness analysis of ETIC in terms of input-to-
state stability. The aforementioned research on ETIC primarily focused on asymptotic stability or 
finite-time stability, with relatively limited focus on prescribed-time stabilization (PTS). PTS is a stringent 
control objective that requires the system to converge to an equilibrium within a prescribed-time, no matter 
what the initial conditions and control parameters are [21]. Compared with the existing time-bounded 
stability methods (e.g., finite-time and fixed-time stability) [22,23], PTS exhibits a greater application 
potential in scenarios demanding stringent real-time performance, such as unmanned aerial vehicle 
formations and high-speed robotic arms. However, many existing studies focused on the PTS design 
under the continuous control framework, while the analysis of PTS under discontinuous control (such as 
impulsive control) was still insufficient. This theoretical gap limits its application in resource-constrained 
but high-precision scenarios. For instance, in Unmanned Aerial Vehicle (UAV) formations, a 
prescribed-time convergence guarantee, under a discontinuous communication protocol, is crucial to 
avoid collisions and maintain the formation shape during rapid maneuvers, which requires control 
commands to be executed at non-periodic but precise instants. The motivation of this article is to 
present an enriching theoretical study on PTS under ETIC. 

In the last few years, hybrid control schemes integrate the strengths of continuous and impulsive 
control, thus offering a new avenue to manage complex systems. For instance, [24] designed an ETIC 
algorithm, thereby combining the impulsive control mechanism with an ETM, thus ensuring input-to-state 
stability in time-delay systems. Reference [25] proposed a new type of ETM controller that integrated 
impulsive and sampled-data control to establish criteria for finite-time stability. Nevertheless, 
implementing strict PTS for nonlinear systems under the hybrid control framework, especially to 
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ensure the balance between the triggering frequency and the convergence accuracy, remains a 
challenge in current research. Addressing this challenge is crucial to deploy such controllers in practice. 
For example, in high-speed robotic arms, continuous control ensures smooth trajectory tracking, while 
impulsive control provides powerful and instantaneous corrections for sudden disturbances. A well-
balanced hybrid strategy can achieve the prescribed-time positioning accuracy without overwhelming 
the actuator by excessive triggering. Overcoming this challenge is another motivation of this article. 

In addition, a traditional ETM mostly adopt static thresholds or single time-dependent thresholds, 
thus making it difficult to balance the dynamic requirements of the convergence speed and steady-state 
accuracy. For instance, in [26], the ETM is static, that is, an event is only triggered when the 
measurement error reaches or exceeds a predefined threshold. To achieve a more substantial reduction in 
the communication overhead, the dynamic event-triggered mechanism (DETM) was proposed in [27]. In 
reference [28], a DETM was introduced into the design of the synchronous controller to achieve the 
exponential boundedness for complex dynamic networks, but this imprecise steady-state performance 
goal lead to fundamental limitations in its DETM design. Herein, the adopted linear DETM structure 
meant that its triggering strategy was in a single mode throughout the control process, and the designer 
must make a choice between a “faster initial convergence” and a “better steady-state accuracy” at the 
initial design stage and not be adjusted during operation. Li and Wu [29] investigated the problem of 
achieving specified-time synchronization in piecewise smooth network systems using a nonlinear 
DETM, where its DETM was an open-loop process with the evolution of the internal dynamic variables 
being designed as a fixed-driven function, that is the evolution process in [29] did not receive or 
respond to the feedback of real-time synchronization errors of the system, which resulted in redundant 
triggering. It is noteworthy that although the aforementioned studies have proposed some DETM 
solutions for multi-agent system synchronization, distributed control, and nonlinear system 
synchronization, there is still a lack of sufficient research on DETM to balance the triggering 
mechanism with the system performance, particularly in dynamically adjusting the trade-off between 
the convergence speed and steady-state accuracy. For example, take the adaptive cruise control system 
of unmanned vehicle fleets as follows: in the transient stage of sudden situations, the system needs to 
prioritize ensuring the convergence speed to achieve a rapid response; and during the steady-state stage 
of smooth following, it is necessary to prioritize ensuring the control accuracy and communication 
efficiency. For this, how to achieve the balance is an open issue. Therefore, the final motivation of this 
article is to understand how to design a DETM with dynamic trade-off capabilities. 

Inspired by the aforementioned motivations, this paper focuses on exploring the PTS of nonlinear 
systems through the development of a novel DETM. Compared with prior work, this paper presents 
the following major contributions: 

1) A DETIC method is proposed, which employs by employing the ratio of dynamic piecewise 
function. Specifically, this method constructs a novel time-dependent piecewise function to 
dynamically adjust the impulsive triggering conditions, while ensuring the avoidance of Zeno behavior 
and PTS of the system. Moreover, it designs a new time-dependent piecewise function. 

2) A hybrid control strategy is proposed, which combines the smooth regulation of continuous 
control and the instantaneous intervention of impulsive control. 

3) The designed hybrid control approach guarantees that the master-slave system reaches 
synchronization within the prescribed-time. A numerical example which involves master-slave 
synchronization of the chaotic Lorenz system is utilized to further validate the strategy’s feasibility 
and practical control performance. 

The remainder of the paper is structured as below: Section 2 provides essential definitions and 
preliminary concepts; Section 3 introduces the design of a DETM along with sufficient conditions to 
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achieve PTS in nonlinear systems; in Section 4, a hybrid control strategy is developed to ensure 
prescribed-time synchronization between the master and slave systems; Section 5 offers a simulation case 
to validate the effectiveness of the proposed approach ; and the conclusion is presented in Section 6. 

Notations. ∥⋅∥ is the Euclidean norm on ℝ௡. ℝା, ℤା refer to non-negative reals and positive 
integers, respectively. ℝ௡×௠  represents all real matrices of size 𝑛 × 𝑚 . 𝐼௡  denotes the 𝑛 × 𝑛 
identity matrix. ℋ > 0ሺℋ < 0)  denotes a positive (negative) definite matrix. ∥ ℋ ∥=ඥ𝜆௠௔௫ሺℋ்ℋ), where 𝜆௠௔௫ሺℋ்ℋ) is the maximun eigenvalue of matrix ℋ்ℋ. 

2. Preliminaries 

Consider a general nonlinear system, ∀𝓈 ≥ 0, 

 𝓂ሶ ሺ𝓈) = 𝒻൫𝓂ሺ𝓈)൯,𝓈 ≠ 𝓈𝓀,      (1) 

subject to impulse 

 𝓂ሺ𝓈) = ℊ𝓀൫𝓂ሺ𝓈ି)൯,𝓈 = 𝓈𝓀,     (2) 

With the initial value 𝓂଴, where 𝓂 ∈ ℝ௡ represents the system state, 𝓂ሶ  stands for the right-
hand derivative of 𝓂, and 𝒻,ℊ𝓀: ℝ௡ → ℝ௡, with 𝒻 assumed to be locally Lipschitz. ሼ𝓈𝓀,𝓀 ∈ ℤାሽ is 
an impulsive sequence; when 𝓈 ≠ 𝓈𝓀, the continuous evolution is determined by 𝓂ሶ ሺ𝓈) = 𝒻൫𝓂ሺ𝓈)൯, 
and at the impulsive instants 𝓈 = 𝓈𝓀, the state is updated according to 𝓂ሺ𝓈) = ℊ𝓀൫𝓂ሺ𝓈ି)൯. 𝓂ሺ𝓈) 
is assumed to be right-continuous and has a left limitation (i.e., 𝓂ሺ𝓈𝓀) = 𝓂ሺ𝓈𝓀ା)). 

Definition 1. [20] Let 𝒰：ℝ௡ → ℝା denote a function that is locally Lipschitz continuous. Its 
upper-right Dini derivative along the solutions of system (1) is as follows: 

  𝐷ା𝒰൫𝓂ሺ𝓈)൯ = 𝑙𝑖𝑚𝑠𝑢𝑝ℓ→଴శ ଵℓ ቂ𝒰 ቀ𝓂ሺ𝓈) + ℓ𝒻൫𝓂ሺ𝓈)൯ቁ − 𝒰൫𝓂ሺ𝓈)൯ቃ .   (3) 

Definition 2. [29] System (1) is globally PTS, if the following hold: 
1) for every initial value 𝓂଴ ∈ ℝ௡ , there exists a function 0 ≤ 𝑇ሺ𝓂଴) < +∞  such that lim𝓈→்ሺ𝓂బ)ష 𝓂ሺ𝓈) = 0 and 𝓂ሺ𝓈) ≡ 0, for 𝓈 ≥ 𝑇ሺ𝓂଴); 

2) the settling time 𝑇ሺ𝓂଴) has an upper bound 𝑇∗ > 0, for ∀𝓂଴ ∈ ℝ௡. Here, 𝑇∗ is called the 
prescribed-time. 

The next section will introduce the following time-dependent function with a piecewise structure: 

 𝓅ሺ𝓈) = ൜𝛼𝑙𝑛ሺ1 + 𝑇∗ − 𝓈),𝓈 ∈ [0,𝑇∗)𝑒ିఏ𝓈,𝓈 ∈ [𝑇∗, + ∞) ,      (4) 

where 𝛼 > 0 and 𝜃 > 0 are adjustable constants. Then, 

 𝓅ሶሺ𝓈) = ቊ ିఈଵା்∗ି𝓈 ,𝓈 ∈ [0,𝑇∗)−𝜃𝑒ିఏ𝓈,𝓈 ∈ [𝑇∗, + ∞).      (5) 

When 𝓈 ∈ [0,𝑇∗) , 𝓅ሺ𝓈)  is strictly monotonically decreasing, 𝓅ሺ0) = 𝛼𝑙𝑛ሺ1 + 𝑇∗) , and 𝑙𝑖𝑚𝓈→்∗ 𝓅ሺ𝓈) = 0; and when 𝓈 ∈ [𝑇∗, + ∞), 𝑙𝑖𝑚𝓈→ାஶ 𝓅ሺ𝓈) = 0. 
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In essence, this function effectively describes the time-dependent dynamics of the system by 
adopting different expressions on [0,𝑇∗)  and [𝑇∗, + ∞) . Specifically, 𝓅ሺ𝓈)  is strictly 
monotonically decreasing on [0,𝑇∗) and tends to zero at 𝓈 = 𝑇∗; alternatively, on [𝑇∗, + ∞), 𝓅ሺ𝓈) 
gradually approaches zero. 

3. Event-triggered mechanism 

Here, we aim to adopt a control strategy based on a DETM to adaptively adjust the impulsive 
triggering instants and eliminate the Zeno behavior. Specifically, the DETM is designed as follows: 

 𝓈𝓀 = 𝑖𝑛𝑓 ቄ𝓈 ≥ 𝓈𝓀ିଵ,𝒰൫𝓂ሺ𝓈)൯ ≥ 𝓅ሺ𝓈)𝓅ሺ𝓈𝓀షభ) 𝒰൫𝓂ሺ𝓈𝓀ିଵ)൯ቅ ,   (6) 

where the function 𝒰൫𝓂ሺ𝓈)൯ represents the Lyapunov function of system (1) when 𝓈଴ = 0. 
The DETM (6) implies that triggering instants ሼ𝓈𝓀,𝓀 ∈ ℤାሽ are determined by the ratio of 𝓅ሺ𝓈) 

and may vary with the choice of 𝒰൫𝓂ሺ𝓈)൯ . Among them, the piecewise function 𝓅ሺ𝓈)  is 
monotonically decreasing in each time period, thus causing the threshold of impulsive triggering to 
gradually decrease over time. It should be particularly emphasized that the threshold is relatively high 
and the triggering frequency is low in the early stage, thus avoiding excessive control; in the later stage, 
as 𝓅ሺ𝓈)  decreases, the triggering threshold also accordingly decreases to ensure that the system 
gradually converges to the desired state. Additionally, the threshold can be modified in response to 
changes in the system’s dynamics, thereby avoiding unnecessary activation and improving the overall 
efficiency and responsiveness of the system. 

Remark 1. The existing research on the ETM (e.g. [18]) mostly adopts static thresholds or single 
attenuation functions (e.g. exponential thresholds), and its limitation lies in the inability to dynamically 
adapt to the phased requirements of the system state. This study proposes a dynamic ratio triggering 
condition. The triggering threshold dynamically decays with 𝓅ሺ𝓈) ∕ 𝓅ሺ𝓈𝓀ିଵ), which not only reflects 
the convergence requirement at the current instant but also inherits the state information of the previous 
triggering instant, thus avoiding false triggering caused by instantaneous disturbances. 

Theorem 1: Suppose that 𝒰: ℝ௡ → ℝା is a locally Lipschitz continuous function which satisfies 𝒰ሺ0) ≡ 0 . Given the prescribed-time 𝑇∗ > 0 , assume there exist constants 𝜏 > 0 , 𝑎𝓀 > 0 , and a 
bounded, time-dependent function 𝒸ሺ𝓈) that is negative for all 𝓈, such that 

 𝐷ା𝒰൫𝓂ሺ𝓈)൯ ≤ 𝜏𝒸ሺ𝓈)𝒰൫𝓂ሺ𝓈)൯,𝓈 ≠ 𝓈𝓀,      (7) 

 𝒰 ቀℊ𝓀൫𝓂ሺ𝓈)൯ቁ ≤ 𝑒ି௔𝓀𝒰൫𝓂ሺ𝓈)൯,𝓈 = 𝓈𝓀,      (8) 

where ሼ𝓈𝓀,𝓀 ∈ ℤାሽ is generated by the DETM (6); then system (1) is globally PTS. 
Proof. Let 𝓂ሺ𝓈) represent the solution of system (1). Evidently, if the event is triggered finitely 

or not at all on [𝓈଴, + ∞), then the Zeno behavior can be directly avoided. Consequently, we focus on 
the case of infinite event triggering. From Eq (6), the sequence ሼ𝓈𝓀ሽ satisfies 𝓈଴ ≤ 𝓈ଵ ≤ 𝓈ଶ ≤ ⋯ ≤𝓈𝓀 ≤ ⋯; then, we prove that no Zeno behavior occurs. 

From Eq (7), there exists a positive constant 𝜖 that satisfies 0 < 𝜖 < 𝜏 such that Eq (9) holds: 

 
𝐷ା𝒰൫𝓂ሺ𝓈)൯ ≤ 𝜏𝒸ሺ𝓈)𝒰൫𝓂ሺ𝓈)൯< ሺ𝜏 − 𝜖)𝒸ሺ𝓈)𝒰൫𝓂ሺ𝓈)൯.     (9) 
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From Eq (9), one has the following: 𝒰൫𝓂ሺ𝓈ଵ)൯ < 𝑒ሺఛିఢ) ׬ 𝒸ሺ𝓈) ௗ𝓈𝓈భ𝓈బ 𝒰൫𝓂ሺ𝓈଴)൯.       

Then, from Eq (6) for 𝓈 ∈ [𝓈଴,𝓈ଵ), 

 
𝒰൫𝓂ሺ𝓈ଵ)൯ = 𝓅ሺ𝓈భ)𝓅ሺ𝓈బ) 𝒰൫𝓂ሺ𝓈଴)൯< 𝑒ሺఛିఢ) ׬ 𝒸ሺ𝓈) ௗ𝓈𝓈భ𝓈బ 𝒰൫𝓂ሺ𝓈଴)൯.     (10) 

Since 𝒸ሺ𝓈) < 0, then 𝑒ሺఛିఢ) ׬ 𝒸ሺ𝓈) ௗ𝓈𝓈భ𝓈బ ≤ 1, and 𝓅ሺ𝓈భ)𝓅ሺ𝓈బ) < 1. Since 𝓅ሺ𝓈) is strictly monotonically 

decreasing, 𝓅ሺ𝓈ଵ) < 𝓅ሺ𝓈଴), which implies that 𝓈ଵ > 𝓈଴. 
Similarly, for 𝓈 ∈ [𝓈ଵ,𝓈ଶ), we can obtain the following: 

 𝒰൫𝓂ሺ𝓈ଶ)൯ ≤ 𝑒ఛ ׬ 𝒸ሺ𝓈) ௗ𝓈𝓈మ𝓈భ 𝒰൫𝓂ሺ𝓈ଵ)൯ < 𝑒ሺఛିఢ) ׬ 𝒸ሺ𝓈) ௗ𝓈𝓈మ𝓈భ 𝒰൫𝓂ሺ𝓈ଵ)൯.   (11) 

From Eq (6), we have the following: 

 𝒰൫𝓂ሺ𝓈ଶ)൯ = 𝓅ሺ𝓈మ)𝓅ሺ𝓈భ) 𝒰൫𝓂ሺ𝓈ଵ)൯ < 𝑒ሺఛିఢ) ׬ 𝒸ሺ𝓈) ௗ𝓈𝓈మ𝓈భ 𝒰൫𝓂ሺ𝓈ଵ)൯.   (12) 

For ׬ 𝒸ሺ𝓈) 𝑑𝓈𝓈మ𝓈భ < 0, it follows that 𝑒ఛ ׬ 𝒸ሺ𝓈) ௗ𝓈𝓈మ𝓈భ ≤ 1. Consequently, 𝓅ሺ𝓈మ)𝓅ሺ𝓈భ) < 1. Since 𝓅ሺ𝓈) is 

strictly monotonically decreasing, it follows that 𝓈ଶ > 𝓈ଵ . Through mathematical induction, it is 
evident that 𝓈ద − 𝓈దିଵ > 0 holds for all 𝜚 ∈ ℤା, thereby excluding the Zeno behavior. 

Then, we will prove the PTS of system (1) under the DETM (6). Since the Zeno behavior has 
been excluded, the triggering number of a finite interval is finite. Let 𝓈ே denote the last triggering 
instant on [𝓈଴,𝑇∗). 

Step 1. Consider 𝓈 ∈ [𝓈଴,𝑇∗). From the DETM (6), 

 𝒰൫𝓂ሺ𝓈ଵ)൯ = 𝓅ሺ𝓈భ)𝓅ሺ𝓈బ) 𝒰൫𝓂ሺ𝓈଴)൯.      (13) 

For ∀𝓈 ∈ [𝓈଴,𝓈ଵ), from Eq (6), we obtain the following: 

 𝒰൫𝓂ሺ𝓈)൯ ≤ 𝓅ሺ𝓈)𝓅ሺ𝓈బ) 𝒰൫𝓂ሺ𝓈଴)൯.       (14) 

Thus, 

 𝒰൫𝓂ሺ𝓈ଵି )൯ ≤ 𝓅ሺ𝓈భ)𝓅ሺ𝓈బ) 𝒰൫𝓂ሺ𝓈଴)൯.      (15) 

At the event-triggering instant 𝓈ଶ, we have the following: 

 𝒰൫𝓂ሺ𝓈ଶ)൯ = 𝓅ሺ𝓈మ)𝓅ሺ𝓈భ) 𝒰൫𝓂ሺ𝓈ଵ)൯.      (16) 

For ∀𝓈 ∈ [𝓈ଵ,𝓈ଶ), the DETM (6) implies the following: 
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 𝒰൫𝓂ሺ𝓈)൯ ≤ 𝓅ሺ𝓈)𝓅ሺ𝓈భ) 𝒰൫𝓂ሺ𝓈ଵ)൯.       (17) 

Thus, 

 𝒰൫𝓂ሺ𝓈ଶି )൯ ≤ 𝓅ሺ𝓈మ)𝓅ሺ𝓈భ) 𝒰൫𝓂ሺ𝓈ଵ)൯.      (18) 

By Eq (8), we have 𝒰 ቀℊଵ൫𝓂ሺ𝓈ଵ)൯ቁ ≤ 𝑒ି௔భ𝒰൫𝓂ሺ𝓈ଵ)൯, and from Eqs (15) and (18), 

 

𝒰൫𝓂ሺ𝓈)൯ ≤ 𝓅ሺ𝓈)𝓅ሺ𝓈భ) 𝒰 ቀℊଵ൫𝓂ሺ𝓈ଵି )൯ቁ≤ 𝑒ି௔భ 𝓅ሺ𝓈)𝓅ሺ𝓈భ) 𝒰൫𝓂ሺ𝓈ଵି )൯≤ 𝑒ି௔భ 𝓅ሺ𝓈)𝓅ሺ𝓈భ) 𝓅ሺ𝓈భ)𝓅ሺ𝓈బ) 𝒰൫𝓂ሺ𝓈଴)൯≤ 𝑒ି௔భ 𝓅ሺ𝓈)𝓅ሺ𝓈బ) 𝒰൫𝓂ሺ𝓈଴)൯.
     (19) 

Similarly, for ∀𝓈 ∈ [𝓈ଶ,𝓈ଷ), 

 

𝒰൫𝓂ሺ𝓈)൯ ≤ 𝓅ሺ𝓈)𝓅ሺ𝓈మ) 𝒰 ቀℊଶ൫𝓂ሺ𝓈ଶି )൯ቁ≤ 𝑒ି௔మ 𝓅ሺ𝓈)𝓅ሺ𝓈మ) 𝒰൫𝓂ሺ𝓈ଶି )൯≤ 𝑒ି௔మ 𝓅ሺ𝓈)𝓅ሺ𝓈మ) 𝓅ሺ𝓈మ)𝓅ሺ𝓈భ) 𝒰൫𝓂ሺ𝓈ଵ)൯= 𝑒ି௔మ 𝓅ሺ𝓈)𝓅ሺ𝓈మ) 𝓅ሺ𝓈మ)𝓅ሺ𝓈భ) 𝒰 ቀℊଵ൫𝓂ሺ𝓈ଵି )൯ቁ≤ 𝑒ି௔మ𝑒ି௔భ 𝓅ሺ𝓈)𝓅ሺ𝓈మ) 𝓅ሺ𝓈మ)𝓅ሺ𝓈భ) 𝒰൫𝓂ሺ𝓈ଵି )൯≤ 𝑒ି௔మି௔భ 𝓅ሺ𝓈)𝓅ሺ𝓈బ) 𝒰൫𝓂ሺ𝓈଴)൯.
    (20) 

For ∀𝓈 ∈ [𝓈ேିଵ,𝓈ே), it follows from the DETM (6) that 𝒰൫𝓂ሺ𝓈ேି)൯ ≤ 𝓅ሺ𝓈ಿ)𝓅ሺ𝓈ಿషభ) 𝒰൫𝓂ሺ𝓈ேିଵ)൯. 
By analogy, for ∀𝓈 ∈ [𝓈ே,𝑇∗), 𝒰൫𝓂ሺ𝓈)൯ ≤ 𝓅ሺ𝓈)𝓅ሺ𝓈ಿ) 𝒰൫𝓂ሺ𝓈ே)൯≤ 𝓅ሺ𝓈)𝓅ሺ𝓈ಿ) 𝒰 ቀℊே൫𝓂ሺ𝓈ேି)൯ቁ≤ 𝑒ି௔ಿ 𝓅ሺ𝓈)𝓅ሺ𝓈ಿ) 𝒰൫𝓂ሺ𝓈ேି)൯≤ 𝑒ି௔ಿ 𝓅ሺ𝓈)𝓅ሺ𝓈ಿ) 𝓅ሺ𝓈ಿ)𝓅ሺ𝓈ಿషభ) 𝒰൫𝓂ሺ𝓈ேିଵ)൯= 𝑒ି௔ಿ 𝓅ሺ𝓈)𝓅ሺ𝓈ಿ) 𝓅ሺ𝓈ಿ)𝓅ሺ𝓈ಿషభ) 𝒰 ቀℊேିଵ൫𝓂ሺ𝓈ேିଵି )൯ቁ≤ 𝑒ି௔ಿ𝑒ି௔ಿషభ 𝓅ሺ𝓈)𝓅ሺ𝓈ಿ) 𝓅ሺ𝓈ಿ)𝓅ሺ𝓈ಿషభ) 𝒰൫𝓂ሺ𝓈ேିଵି )൯
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≤ 𝑒ି௔ಿ𝑒ି௔ಿషభ 𝓅ሺ𝓈)𝓅ሺ𝓈ಿ) 𝓅ሺ𝓈ಿ)𝓅ሺ𝓈ಿషభ) 𝓅ሺ𝓈ಿషభ)𝓅ሺ𝓈ಿషమ) 𝒰൫𝓂ሺ𝓈ேିଶ)൯= 𝑒ି௔ಿ𝑒ି௔ಿషభ 𝓅ሺ𝓈)𝓅ሺ𝓈ಿ) 𝓅ሺ𝓈ಿ)𝓅ሺ𝓈ಿషభ) 𝓅ሺ𝓈ಿషభ)𝓅ሺ𝓈ಿషమ) 𝒰 ቀℊேିଶ൫𝓂ሺ𝓈ேିଶି )൯ቁ≤ 𝑒ି௔ಿ𝑒ି௔ಿషభ𝑒ି௔ಿషమ 𝓅ሺ𝓈)𝓅ሺ𝓈ಿ) 𝓅ሺ𝓈ಿ)𝓅ሺ𝓈ಿషభ) 𝓅ሺ𝓈ಿషభ)𝓅ሺ𝓈ಿషమ) 𝒰൫𝓂ሺ𝓈ேିଶି )൯≤ ⋯≤ 𝑒ିሺ௔ಿା௔ಿషభା⋯ା௔భ) 𝓅ሺ𝓈)𝓅ሺ𝓈ಿ) 𝓅ሺ𝓈ಿ)𝓅ሺ𝓈ಿషభ) 𝓅ሺ𝓈ಿషభ)𝓅ሺ𝓈ಿషమ) ⋯ 𝓅ሺ𝓈భ)𝓅ሺ𝓈బ) 𝒰൫𝓂ሺ𝓈଴)൯≤ 𝑒ିሺ௔ಿା௔ಿషభା⋯ା௔భ) 𝓅ሺ𝓈భ)𝓅ሺ𝓈బ) 𝒰൫𝓂ሺ𝓈଴)൯,

  (21) 

which implies that 

 
𝒰൫𝓂ሺ𝓈)൯ ≤ 𝑒ିሺ௔ಿା௔ಿషభା⋯ା௔భ) 𝓅ሺ𝓈)𝓅ሺ𝓈బ) 𝒰൫𝓂ሺ𝓈଴)൯= 𝑒ିሺ௔ಿା௔ಿషభା⋯ା௔భ) ఈ௟௡ሺଵା்∗ି𝓈)ఈ௟௡ሺଵା்∗) 𝒰൫𝓂ሺ𝓈଴)൯.   (22) 

Since the Zeno behavior has been excluded on [𝓈଴,𝑇∗), the triggering number 𝑁 within any 
finite time interval must be finite (i.e., 𝑁 < +∞). For 𝑎௜ being a positive constant, the finiteness of 𝑁  directly implies ∑ 𝑎௜ே௜ୀଵ < +∞ . It guarantees that the term 𝑒ିሺ௔ಿା௔ಿషభା⋯ା௔భ)  in the stability 
analysis remains strictly positive and does not tend to zero as 𝓈 → 𝑇∗. Based on the continuity and the 
monotonically decreasing property of 𝒰൫𝓂ሺ𝓈)൯ , it can be derived that 0 ≤ 𝒰൫𝓂ሺ𝑇∗)൯ ≤lim𝓈→்∗ష 𝒰൫𝓂ሺ𝓈)൯ = 0. Therefore, lim𝓈→்∗ 𝒰൫𝓂ሺ𝓈)൯ = 0 and lim𝓈→்∗ 𝓂ሺ𝓈) = 0. 

Step 2. Consider 𝓈 ∈ [𝑇∗, + ∞). From Eq (7), (8) and the monotonically decreasing property of 𝒰൫𝓂ሺ𝓈)൯, it follows that 𝓂ሺ𝓈) ≡ 0 for all 𝓈 > 𝑇∗. 
Consequently, by combining the above two steps, system (1) attains global PTS within the 𝑇∗. 

This completes the proof. 
Remark 2. 𝑇∗ is user-defined and preselected based on practical requirements, independent of the 

system parameters and initial conditions. Unlike [30], which mainly focused on pre-fixed or periodically 
designed impulsive triggering instants, this paper proposes a DETIC mechanism, and our method enables 
the impulsive triggering instants to be dynamically adjusted, thus providing greater flexibility. 

Remark 3. 𝒸ሺ𝓈)  is a negative bounded time-dependent function, that is, 𝒸ሺ𝓈)  has a lower 
bound as 𝓈 → 𝑇∗ . Unlike [30], whose Lyapunov derivative tends to −∞  as 𝓈 → 𝑇∗ , this paper 
avoids the singularity issue of unbounded control gains near 𝑇∗ . In particular, 𝒸ሺ𝓈)  ensures the 
monotonic decreasing property of 𝒰൫𝓂ሺ𝓈)൯ and plays a role in eliminating the Zeno behavior, thus 
enabling the system to be stable within the prescribed-time while maintaining good engineering 
feasibility. Therefore, the condition adopted here achieves a balance between the convergence rate and 
the practical stability. 

Remark 4. Unlike a fixed-threshold ETM, our DETM avoids premature triggering or lagging 
caused by static thresholds. Compared to the exponential decay trigger in [18–20], our proposed 
piecewise function 𝓅ሺ𝓈)  is two-stage time-dependent. It accelerates the convergence rate in a 
prescribed-time, and improves the performance of the traditional method which relies on a single 
attenuation mode and lacks dynamics. 
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4. Synchronization in master-slave frameworks 

The following analysis applies the proposed ETIC strategy to achieve prescribed-time 
synchronization for master-slave systems as follows: 

 ቊሺℳ)𝓂ሶ ሺ𝓈) = ℋ𝓂ሺ𝓈) − ℊ൫𝓂ሺ𝓈)൯ሺ𝑆)𝓏ሶሺ𝓈) = ℋ𝓏ሺ𝓈) − ℊ൫𝓏ሺ𝓈)൯ + 𝓋ሺ𝓈) ,     (23) 

where the master system is 𝓂ሺ𝓈) ∈ ℝ௡, and the slave system is 𝓏ሺ𝓈) ∈ ℝ௡. The hybrid control input 
is described by 𝓋ሺ𝓈). To analyze synchronization, define the error as 𝓌ሺ𝓈) = 𝓏ሺ𝓈) − 𝓂ሺ𝓈), and its 
dynamic behavior evolves as follows: 

 

𝓌ሶ ሺ𝓈) = 𝓏ሶሺ𝓈) − 𝓂ሶ ሺ𝓈)= ℋ൫𝓏ሺ𝓈) − 𝓂ሺ𝓈)൯ − ቀℊ൫𝓏ሺ𝓈)൯ − ℊ൫𝓂ሺ𝓈)൯ቁ + 𝓋ሺ𝓈)= ℋ𝓌ሺ𝓈) − 𝒢൫𝓌ሺ𝓈)൯ + 𝓋ሺ𝓈),
  (24) 

where 𝒢൫𝓌ሺ𝓈)൯ = ℊ൫𝓏ሺ𝓈)൯ − ℊ൫𝓂ሺ𝓈)൯. 

Definition 5. [31,32] Given 𝑇∗ > 0, the global prescribed-time synchronization of system (23) 
is achieved under the designed controller 𝓋ሺ𝓈) if 

 ቊ lim𝓈→்∗ 𝓌ሺ𝓈) = 0,𝓈 ∈ [0,𝑇∗),𝓌ሺ𝓈) ≡ 0,𝓈 ∈ [𝑇∗, + ∞).         (25) 

Assumption 1. Function ℊ: ℝ௡ → ℝ௡ is QUADሺ∆,℧), i.e., there exist 𝑛 × 𝑛 diagonal matrices ∆ and a scalar ℧ > 0 such that, for any 𝓂, 𝓏 ∈ ℝ௡, ሺ𝓏 − 𝓂)்൫ℊሺ𝓏) − ℊሺ𝓂)൯ ≤ ሺ𝓏 − 𝓂)்ሺ∆ − ℧𝛪௡)ሺ𝓏 − 𝓂).    

Similarly to Eq (6), design the following DETM: 

 𝓈𝓀 = 𝑖𝑛𝑓 ቄ𝓈 ≥ 𝓈𝓀ିଵ, 𝒰൫𝓌ሺ𝓈)൯ ≥ 𝓅ሺ𝓈)𝓅ሺ𝓈𝓀షభ) 𝒰൫𝓌ሺ𝓈𝓀ିଵ)൯ቅ ,  (26) 

and the hybrid control is as follows: 

 𝓋ሺ𝓈) = ൜𝓋ଵሺ𝓈) = −𝛫𝓌ሺ𝓈) + 𝛽𝒸ሺ𝓈)𝓌ሺ𝓈),𝓈 ≠ 𝓈𝓀,𝓋ଶሺ𝓈) = 𝐷𝓌ሺ𝓈)𝛿ሺ𝓈 − 𝓈𝓀), 𝓈 = 𝓈𝓀.   (27) 

Here, 𝛽 > 0 , 𝐾 ∈ ℝ௡×௡  is a gain matrix, and 𝐷 ∈ ℝ௡×௡  is an impulsive gain matrix which 
satisfies 𝜆௠௔௫ሼ[ሺ𝐼 + 𝐷)ିଵ]்ሺ𝐼 + 𝐷)ିଵሽ ≤ 𝑒ି௔𝓀  , and the Dirac impulsive 𝛿ሺ𝓈 − 𝓈𝓀)  introduces an 
instantaneous impulsive effect at 𝓈 = 𝓈𝓀  and causes a discontinuous jump. Let 𝓌ሺ𝓈𝓀)  denote the 
pre-jump state immediately before 𝓈 = 𝓈𝓀, and 𝓌ሺ𝓈𝓀ା) denote the post-jump state immediately after 𝓈 = 𝓈𝓀. To characterize the state jump, we integrate both sides of Eq (24) over [𝓈𝓀 ,𝓈𝓀ା] and obtain 
the following: 

׬  𝓌ሶ ሺ𝓈) 𝑑𝓈 =𝓈𝓀శ𝓈𝓀ష ׬ ቀℋ𝓌ሺ𝓈) − 𝒢൫𝓌ሺ𝓈)൯ + 𝐷𝓌ሺ𝓈)𝛿ሺ𝓈 − 𝓈𝓀)ቁ 𝑑𝓈𝓈𝓀శ𝓈𝓀ష .  (28) 
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Since ℋ𝓌ሺ𝓈) and 𝒢൫𝓌ሺ𝓈)൯ are continuous at 𝓈𝓀, their instantaneous change at 𝓈𝓀 is zero. 

For 𝐷𝓌ሺ𝓈)𝛿ሺ𝓈 − 𝓈𝓀) , by the property of the Dirac delta impulsive, ׬ 𝐷𝓌ሺ𝓈)𝛿ሺ𝓈 −𝓈𝓀శ𝓈𝓀ష𝓈𝓀) 𝑑𝓈 = 𝐷𝓌ሺ𝓈𝓀). Then, Eq (24) is rewritten in the following form: 

 ቊ𝓌ሶ ሺ𝓈) = ℋ𝓌ሺ𝓈) − 𝒢൫𝓌ሺ𝓈)൯ + 𝓋ଵሺ𝓈), 𝓈 ≠ 𝓈𝓀,𝓌ሺ𝓈𝓀) = ሺ𝐼 − 𝐷)𝓌ሺ𝓈𝓀), 𝓈 = 𝓈𝓀.    (29) 

Theorem 2. Given that Assumption 1 holds, if there exist constants 𝑎𝓀 > 0, matrices ℋ, and 𝐾 
such that 𝜆௠௔௫ሼ[ሺ𝐼 − 𝐷)ିଵ]்ሺ𝐼 − 𝐷)ିଵሽ ≤ 𝑒ି௔𝓀   and 𝜆௠௔௫ሺℋ − ሺ∆ − ℧𝛪௡) − 𝐾) ≤ 0  hold, then 
the error system (29) is globally PTS under the DETM (26) and controller (27). 

Proof. Consider 𝒰൫𝓌ሺ𝓈)൯ = ଵଶ 𝓌்ሺ𝓈)𝓌ሺ𝓈) and its following derivative: 

 𝒰ሶ ൫𝓌ሺ𝓈)൯ = 𝓌்ሺ𝓈)𝓌ሶ ሺ𝓈).       (30) 

Next, we consider two scenarios: 𝓈 ≠ 𝓈𝓀 and 𝓈 = 𝓈𝓀. 
Case 1: 𝓼 ≠ 𝓼𝓴. Substituting 𝓋ଵሺ𝓈) into Eq (29) yields the following: 

 𝓌ሶ ሺ𝓈) = ℋ𝓌ሺ𝓈) − 𝒢൫𝓌ሺ𝓈)൯ − 𝐾𝓌ሺ𝓈) + 𝛽𝒸ሺ𝓈)𝓌ሺ𝓈), (31) 

Then, from Eq (30) and Assumption 1, 𝒰ሶ ൫𝓌ሺ𝓈)൯ = 𝓌்ሺ𝓈)ൣℋ𝓌ሺ𝓈) − 𝒢൫𝓌ሺ𝓈)൯ − 𝐾𝓌ሺ𝓈) + 𝛽𝒸ሺ𝓈)𝓌ሺ𝓈)൧= 𝓌்ሺ𝓈)ℋ𝓌ሺ𝓈) − 𝓌்ሺ𝓈)𝒢൫𝓌ሺ𝓈)൯ − 𝓌்ሺ𝓈)𝐾𝓌ሺ𝓈) + 𝛽𝒸ሺ𝓈)𝓌்ሺ𝓈)𝓌ሺ𝓈)≤ 𝓌்ሺ𝓈)ℋ𝓌ሺ𝓈) − 𝓌்ሺ𝓉)ሺ∆ − ℧𝛪௡)𝓌ሺ𝓈) − 𝓌்ሺ𝓈)𝐾𝓌ሺ𝓈)+𝛽𝒸ሺ𝓈)𝓌்ሺ𝓈)𝓌ሺ𝓈)= 𝓌்ሺ𝓈)ሺℋ − ሺ∆ − ℧𝛪௡) − 𝐾)𝓌ሺ𝓈) + 𝛽𝒸ሺ𝓈)𝓌்ሺ𝓈)𝓌ሺ𝓈)≤ 𝜆௠௔௫ሺℋ − ሺ∆ − ℧𝛪௡) − 𝐾) ∥ 𝓌ሺ𝓈) ∥ଶ+ 𝛽𝒸ሺ𝓈) ∥ 𝓌ሺ𝓈) ∥ଶ≤ 𝛽𝒸ሺ𝓈) ∥ 𝓌ሺ𝓈) ∥ଶ= 𝜏𝒸ሺ𝓈)𝒰൫𝓌ሺ𝓈)൯.
(32) 

Here, 𝜏 = 2𝛽. 
Case 2: 𝓼 = 𝓼𝓴. From Eq (29), 

 

𝒰൫𝓌ሺ𝓈𝓀)൯ = ଵଶ 𝓌்ሺ𝓈𝓀)𝓌ሺ𝓈𝓀)= ଵଶ 𝓌்ሺ𝓈𝓀)[ሺ𝐼 − 𝐷)ିଵ]்ሺ𝐼 − 𝐷)ିଵ𝓌ሺ𝓈𝓀)≤ 𝑒ି௔𝓀𝒰ቀ𝜔ሺ𝓈𝓀)ቁ.     (33) 

According to the above two cases, Theorem 1 is satisfied. Then, by the DETM (26) and Theorem 1, 
the error system (29) is globally PTS. 

Remark 5. Theorem 2 indicates that system (23) achieves global prescribed-time synchronization 
under a user-defined settling time 𝑇∗ . Moreover, Theorem 2 can be regarded as an application of 
Theorem 1. 
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Remark 6. In essence, the triggering mechanism (26) directly adopts the triggering logic of 
Theorem 1. Condition 𝜆௠௔௫ሺℋ − ሺ∆ − ℧𝛪௡) − 𝐾) ≤ 0 in Theorem 2 essentially embeds condition (7) 
of Theorem 1 into the master-slave system (23). The QUAD assumption on 𝒢൫𝓌ሺ𝓈)൯ and the design 
of continuous control gain 𝐾 are to ensure that the error energy monotonically decreases on impulsive 
intervals. Furthermore, the nonlinear characteristics of the master-slave system (23) further test the 
robustness of our DETM, indicating that Theorem 1 can adapt to complex dynamic environments. 

Remark 7. Different from the hybrid ETM based on state threshold which switched to either 
continuous control or impulsive control in [25], the DETM proposed here is specifically designed for 
impulsive control triggering, while the continuous control operates independently on impulsive 
intervals. This design decouples the triggering logic of continuous and impulsive control, thus 
eliminating the computational burden of real-time switching decisions. It ensures a rapid response for 
large deviations via impulsive control and maintains continuous suppression for minor disturbances. 

5. An example 

A simulation example of the chaotic Lorenz system confirms the validity of the proposed scheme. 
Consider the following master-slave chaotic Lorentz system: 

 ቊሺℳ)𝓂ሶ ሺ𝓈) = ℋ𝓂ሺ𝓈) − ℊ൫𝓂ሺ𝓈)൯ሺ𝑆)𝓏ሶሺ𝓈) = ℋ𝓏ሺ𝓈) − ℊ൫𝓏ሺ𝓈)൯ + 𝓋ሺ𝓈) ,    (34) 

where 𝓂ሺ𝓈),𝓏ሺ𝓈) ∈ ℝଷ , ℊ൫𝓂ሺ𝓈)൯ = [0, − 𝓂ଵሺ𝓈)𝓂ଷሺ𝓈),𝓂ଵሺ𝓈)𝓂ଶሺ𝓈)]் , ℊ൫𝓏ሺ𝓈)൯ = [0, −𝓏ଵሺ𝓈)𝓏ଷሺ𝓈),𝓏ଵሺ𝓈)𝓏ଶሺ𝓈)]୘ , and ℋ = ቌ−10 10 028 −1 00 0 − ଷ଼ቍ . Assumption 1 holds for ∆ − ℧𝛪ଷ =
൭31.8 0 00 35 00 0 32.5൱ . Assume 𝓂ሺ0) = [−10,12,6]்  and 𝓏ሺ0) = [6, − 1,16]் ; then, for the error 

system (24), 𝓌ሺ0) = [16, − 13,10]். 
From computer simulations (Figures 1 and 2), system (34) is not prescribed-time synchronous 

with 𝑇∗ = 2. To achieve prescribed-time synchronization for system (34), we set the parameters as 𝛼 = 3  and 𝜃 = 2  for 𝓅ሺ𝓈) , and the import controller (27) with 𝒸ሺ𝓈) = −0.1𝓈𝑒ି଴.ଵ𝓈 , 𝐾 =൭3 0 00 3 00 0 3൱, 𝛽 = 1.5, and D = ൭0.6 0 00 0.6 00 0 0.6൱. 
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(a) (b) 

(c) (d) 
Figure 1. 3D phase space trajectories of system (34): (a) No control; (b) DETIC only; (c) 
Continuous control only; (d) Hybrid control. 

Figure 1(a)–(d) depict the 3D chaotic phase diagrams of system (34) with no control, only DETIC, 
only continuous control, and hybrid control, respectively. Specifically speaking, only continuous 
control refers to solely having 𝓋ଵሺ𝓈) be imported for system (34). Only DETIC control means that 
only the discrete control term 𝓋ଶሺ𝓈) based on the DETM (26) is imported for system (34). Hybrid 
control means that 𝓋ሺ𝓈) based on both continuous control and DETIC is imported for system (34). 

Figure 2(a)–(d) depict the 2D trajectories of system (34). Figure 2(b) shows that under the 
DETM (26), the control signal only acts at 23 specific triggering instants on [0,5] marked with asterisks. 
Figure 2(c) shows that when only 𝓋ଵሺ𝓉) is available, the trajectory can be effectively smoothed, thus 
significantly reducing oscillations and gradually stabilizing the system. The hybrid control in Figure 2(d) 
combines the advantages of continuous control and DETIC. The system is continuously adjusted under 
smooth control 𝓋ଵሺ𝓉), while the impulsive control is applied for intervention at triggering instants. 
Remarkably, the hybrid control strategy reduces the triggering frequency by 47.8% (from 23 triggering 
numbers to 12 ones) compared to only DETIC; as shown in Figure 3, in comparison with the scenario 
using only DETIC, the hybrid control significantly reduces the number triggering, thus optimizing the 
responsiveness and stability of the system. 
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(a) (b) 

(c) (d) 
Figure 2. 2D trajectories of system (34): (a) No control; (b) DETIC only; (c) Continuous 
control only; (d) Hybrid control. 

 

Figure 3. Triggering instants of DETIC only and hybrid control. 
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Figure 4 shows the trajectories of the error system (24) for system (34) with the above four cases. 
It is illustrated that only DETIC can achieve the sudden drop of error, but the oscillation is large. Only 
continuous control can achieve a smooth convergence, but the speed is relatively slow. Hybrid 
control maintains a higher steady-state accuracy. Specifically, hybrid control achieves a convergence 
time of 1.567 seconds, which is 21.3% faster than that of only DETIC (1.992 seconds). Moreover, 
at 1.0 second, the error of hybrid control is 0.4881 and represents a 77.1% reduction compared to that 
of only DETIC (2.1273 seconds), thus revealing the superiority of hybrid control. 

(a) (b) 

(c) (d) 

Figure 4. Trajectories of error system (24) for system (34): (a) No control; (b) DETIC only; 
(c) Continuous control only; (d) Hybrid control. 

Figure 5 shows energy evolutions of the error system (24) for system (34) under logarithmic 
coordinates for the above four cases. Under only continuous control, the error shows a slow decreasing 
trend, thus exhibiting slow convergence. Under only DETIC, the error significantly decreases at each 
triggering instant and converges faster than that under only continuous control. The hybrid control not 
only reduces the error energy quickly when the error is large, but also maintains its stability through 
continuous control on the triggering intervals, thus achieving the best performance. Here, all control 
strategies ultimately achieve a zero steady-state error, but the hybrid control accomplishes this with 47.8% 
fewer triggering numbers, thus highlighting its advantage in the control efficiency. 
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Figure 5. Logarithmic-scale error energy evolution of error system (24) for system (34). 

In conclusion, the hybrid control strategy achieves a comprehensive improvement in the control 
efficiency, dynamic performance, convergence speed, and other aspects while maintaining a good 
synchronization accuracy, and has significant superiority in the control of complex systems. 

6. Conclusions 

A DETIC strategy, coordinated with continuous control, was designed to resolve the PTS problem 
in nonlinear systems. Furthermore, the method was extended to the master-slave synchronization 
problem and validated through simulations of chaotic Lorenz system. Although our DETM showed 
significantly improvements over the traditional method and performed well in adapting to system state 
changes and ensuring the stability of the specified time, there remains room for further optimization. 

Future work will focus on the design of a self-triggered impulsive control strategy. Specifically, 
we will construct an analytical function, from the perspectives of system’s Lyapunov function and 
prescribed-time stability requirements, to directly compute the next triggering interval. This approach 
is designed to fundamentally eliminate the need for continuous state monitoring, thereby resolving the 
persistent monitoring overhead inherent in current dynamic event-triggered mechanisms. Moreover, 
we plan to verify the superiority of this self-triggering mechanism in the control performance and 
resource efficiency in complex environments with more demanding communication resources (such 
as bandwidth limitations and packet loss) or unknown disturbances. 
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