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Abstract: In this paper, we investigated the nonlinear dynamics and pattern formation of a fractional-
order three-variable Oregonator model. We first performed a linear stability analysis of the model
without diffusion, deriving equilibrium points and Jacobian eigenvalues, and verified Matignon’s
stability conditions. A high-precision numerical scheme was developed, and simulations revealed that
even tiny variations in fractional order produce significant changes in long-term trajectories. For the
reaction-diffusion model, we analyzed Turing instability under integer-order diffusion and derived
the critical wave-number conditions via Routh-Hurwitz criteria. Weakly nonlinear analysis near the
Turing threshold yielded coupled amplitude equations whose coefficients predicted stripe, hexagon, and
mixed patterns. Extensive two-dimensional numerical experiments confirmed the theoretical predictions:
Depending on diffusion coefficients and other parameters, the model evolved into bullseye, spiral,
labyrinthine, or spot-stripe mixtures.
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spatiotemporal patterns; weakly nonlinear analysis

1. Introduction

The Oregonator model is the mathematical dynamic that describes the Field–Körös–Noyes mechanics
of the famous Belousov–Zhabotinsky reaction. As the classic theoretical framework for the Belousov-
Zhabotinsky reaction, the Oregonator model has been widely studied for its chaotic dynamics [1–4].
Due to the fact that fractional-order differential equations can more accurately describe the dynamic
characteristics of complex systems, many researchers have devoted themselves to the study of fractional-
order models [5–7]. On one hand, fractional calculus [8,9] has demonstrated unique advantages in
describing the dynamic behaviors of complex systems [10,11]. For instance, Diethelm et al. [12,13]

https://https://www.aimspress.com/journal/nhm
https://dx.doi.org/10.3934/nhm.2025052


1202

conducted a systematic analysis of the theory and numerical methods of fractional differential equations,
laying a solid foundation for subsequent research. Li et al. [14,15] further summarized the fractional-
order numerical approximation methods, promoting the application of fractional-order models in
high-precision simulations. In the reaction-diffusion system, Zhang et al. [16, 17] studied the fractional
dynamics and pattern formation of vegetation-water models, the Hastings-Powell model, and the
phytoplankton-zooplankton model, demonstrating the wide application of fractional derivatives in
ecological models. Moreover, Petráš [18] systematically expounded the modeling and simulation
methods of fractional nonlinear systems, providing theoretical support for the construction of the model
in this paper.

On the other hand, the research on fractional-order models and fractional-order dynamical systems
has been continuously deepening. Fractional-order models have achieved significant progress in various
fields due to their ability to effectively capture the memory and hereditary characteristics of complex
systems: In chemical reaction kinetics, they are used to describe the glycerol hydrolysis process [19]; in
infectious disease modeling, fractional operators are employed to analyze the transmission patterns of
multi-stage infections [20]; and in neural networks, related studies involve the passivity of coupled
systems [21], the synchronization of bidirectional ring systems [22], and the finite-time control of
time-delay memristive networks [23]. Additionally, the solvability of fractional-order boundary value
problems [24,25] and the bifurcation analysis of multi-delay neural networks [26] have enriched the
theory of system dynamics. Furthermore, there are researchers, such as Du et al., who analyze the
stability of time-delay fractional large-scale double-ring neural networks [27]; Wang et al. studied the
improvement of fractional-order PD control on the dynamics of integer-order small-world
networks [28]; and Li et al. explored the complex dynamics of fractional-delay plankton models [29].
These achievements and works have jointly promoted the development of fractional-order
system theory.

In the field of fractional-order Oregonator model research, Yang et al. first extended the classical
model and proposed a three-variable Oregonator model, revealing rich pattern formation phenomena
within this nonlinear framework [30]. Subsequently, Peng et al. confirmed in the field of pattern
dynamics that this model can exhibit Turing patterns under certain parameter conditions [31]. Jia
et al. analyzed the model based on Riemann–Liouville fractional derivatives [32]. Studies have shown
that the introduction of fractional differential significantly enhances the sensitivity of the system to
initial conditions, making the chaotic attractor structure more complex. In recent years, Xu et al.
further introduced a fractional-order Oregonator model with time delay [33,34]. Moreover Li et al.’s
research indicates that its pattern types include Turing structures and spatiotemporal oscillation patterns,
and the formation mechanism is closely related to reaction rates, diffusion coefficients, and control
parameters [35].

In this paper, we introduce fractional-order derivatives into the three-variable Oregonator model [36]
study the dynamic characteristics of the following fractional-order Oregonator model.

Dα1
t F =

1
ϵ

[
F − F2 − fG

F − q
F + q

− (cF − dH)
]
+ DF∇

2F,

Dα2
t G = F −G + DG∇

2G,

Dα3
t H =

1
δ

(cF − dH) + DH∇
2H,

(1.1)

where F(x, y, t),G(x, y, t), and H(x, y, t) represent the biomass of shallow-rooted herbaceous plants,
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deep-rooted shrubs, and the moisture content of the shallow soil at time t, respectively. DF , DG, and
DH respectively represent the diffusion coefficients in the model. ∇2F = ∂2F

∂x2 +
∂2F
∂y2 is the Laplacian

operator. αi(i = 1, 2, 3) indicates the order of the Grünwald-Letnikov differential fractional derivative,
Dα1

t F,Dα2
t G, and Dα3

t H denote the Grünwald-Letnikov fractional derivative, and t is the time variable.
The meanings of parameters in this model are shown in Table 1.

Table 1. Parameter and biological significance in the model.

Parameter Ecological significance
ϵ The time scale of changes in grass biomass
δ The time scale of soil moisture variation
f The intensity of competition between shrubs and herbaceous plants
q The threshold for the transformation of competition forms
c The rate at which grass consumes water
d The coefficient of natural regeneration rate of water

The major contributions of this paper are as follows:
(1) Fractional-order extension: First to incorporate independent Grünwald–Letnikov derivatives into

the three-variable Oregonator, establishing eigenvalue-based stability criteria that reveal how fractional
order modulates chaos and bifurcation thresholds.

(2) High-precision numerical method: Develop and validate a short-memory, high-order
Grünwald–Letnikov scheme, enabling reliable long-time simulation of stiff fractional kinetics.

(3) Novel pattern discovery: Predict and observe unreported “bullseye-maze” and multi-layer
spiral–stripe mixed Turing patterns whose morphology is jointly dictated by diffusion coefficients and
fractional exponents, confirmed through 2-D weakly nonlinear analysis.

This paper is structured as follows: In Section 2, the dynamic behavior of the model under non-
diffusive conditions is analyzed; a high-precision Grünwald–Letnikov numerical algorithm is proposed.
In Section 3, we explore Turing instability and derive the critical wave-number conditions via Routh-
Hurwitz analysis; we perform extensive two-dimensional numerical simulations that verify the theory
and exhibit the dynamic evolution of patterns under varying fractional orders, diffusion coefficients, and
initial conditions; and several novel patterns are revealed. Section 4 is the conclusion.

2. Dynamical behavior of the model without diffusion

2.1. Stability analysis

In this section, the stability of model (1.1) without diffusion is analyzed by finding the equilibrium
point of the model, the Jacobian matrix, and the characteristic equation. Model (1.1) is changed
as follows: 

Dα1
t F =

1
ϵ

[
F − F2 − fG

F − q
F + q

− (cF − dH)
]
,

Dα2
t G = F −G,

Dα3
t H =

1
δ

(cF − dH).

(2.1)
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Letting
f1 = 0, f2 = 0, f3 = 0, (2.2)

where 
f1 =

1
ϵ

[
F − F2 − fG

F − q
F + q

− (cF − dH)
]
,

f2 = F −G,

f3 =
1
δ

(cF − dH).

(2.3)

We can get the following equilibrium point of model (2.3).

E0 (0, 0, 0) , E1 (F1,G1,H1) , E2 (F2,G2,H2) , (2.4)

where
F1 =

−( f+q−1)+
√

( f+q−1)2+4q( f+1)
2 , G1 =

−( f+q−1)+
√

( f+q−1)2+4q( f+1)
2 , H1 =

−c( f+q−1)+c
√

( f+q−1)2+4q( f+1)
2d ,

F2 =
−( f+q−1)−

√
( f+q−1)2+4q( f+1)

2 , G2 =
−( f+q−1)−

√
( f+q−1)2+4q( f+1)

2 , H2 =
−c( f+q−1)−c

√
( f+q−1)2+4q( f+1)
2d .

The Jacobian matrix of the model (2.3) at the equilibrium (F∗,G∗,H∗) is

J (F∗,G∗,H∗) =


f1F f1G f1H

f2F f2G f2H

f3F f3G f3H

 , (2.5)

where

f1F =
1
ϵ

(
1 − 2F∗ − c −

2q fG∗

(F∗ + q)2

)
, f1G = −

f (F∗ − q)
ϵ(F∗ + q)

, f1H =
d
ϵ
,

f2F = 1, f2G = −1, f2H = 0, f3F =
c
δ
, f3G = 0, f3H = −

d
δ
.

The characteristic equation is

λα1+α2+α3 + A1λ
α1+α2 + A2λ

α1+α3 + A3λ
α2+α3 + A4λ

α1 + A5λ
α2 + A6λ

α3 + A7 = 0, (2.6)

where

A1 = − f3H, A2 = − f2G, A3 = − f1F ,

A4 = f2G f3H − f2H f3G − f1G f2F , A5 = f1F f3H − f1H f3F , A6 = f1F f2G − f1G f2F ,

A7 = f1F( f2G f3H − f2H f3G) − f1G( f2F f3H − f2H f3F) + f1H( f2F f3G − f2G f3F).

According to the Matignon’s conditions, the necessary condition for the stability of the Oregonator
model is that all eigenvalues λ are satisfied:

|arg (λ) | >
απ

2
,

where α = max{αi | i = 1, 2, 3}. If one of the eigenvalues λ satisfies |arg (λ) | = απ
2 , then the model

shows Turing bifurcation.
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Next, we select two sets of parameters and calculate the eigenvalues and argument at the
corresponding equilibrium points to conduct the stability analysis. The equilibrium points and
corresponding eigenvalues at (α1, α2, α3) = (1, 1, 1), ϵ = 0.2, f = 0.2, q = 0.1, d = 2, and
c = 0.2, δ = 1.2 are shown in Table 2.

Table 2. Equilibrium point, eigenvalue, and angle at (α1, α2, α3) = (1, 1, 1), ϵ = 0.2, f =
0.2, q = 0.1, d = 2, c = 0.2, and δ = 1.2.

Equilibrium point Eigenvalues of Jacobian matrix |Arg(eig(J))|

0 0 0 4.4555 −1.1222 −2 0 3.1416 3.1416
−0.1424 −0.1424 −0.0142 21.0535 −0.7604 −1.7206 0 3.1416 3.1416
0.8424 0.8424 0.0842 −1.1779 − 0.3196i −1.1779 − 0.3196i −4.9249 2.8766 2.8766 3.1416

The eigenvalues at different fractional orders and the equilibrium point (0.8424, 0.8424, 0.0842) are
shown in Table 3.

Table 3. Eigenvalues and angles at different fractional-order derivatives.

Fractional order Eigenvalues of Jacobian matrix |Arg(eig(J))|

(α1, α2, α3) = (1.2, 1.2, 1.2) −0.8684 ± 0.7999i −3.2699 ± 1.8879i −1.1269 ± 0.3521i 2.3972 2.6180 2.8388
(α1, α2, α3) = (1.5, 1.5, 1.5) −1.4473 ± 2.5069i −0.3884 ± 1.0740i −0.7360 ± 0.8733i 2.0944 1.9178 2.2710
(α1, α2, α3) = (0.555, 1.112, 1.999) −1.0951 ± 0.3967i −0.0093 ± 1.1713i 2.7940 1.5787

(α1, α2, α3) = (1, 1, 1) (α1, α2, α3) =

(1.2, 1.2, 1.2)
(α1, α2, α3) =

(1.5, 1.5, 1.5)

Figure 1. The distribution of equilibrium point eigenvalues under different
(α1, α2, α3) conditions.

We select the second set of parameters. The equilibrium points and corresponding eigenvalues at
(α1, α2, α3) = (1, 1, 1), ϵ = 0.1, f = 10, q = 0.3, d = 0.5, c = 1.5, and δ = 0.1 are shown in Table 4.

The eigenvalues at different fractional orders and the equilibrium point (0.3422, 0.3422, 1.0267) are
shown in Table 5.

Table 4. Equilibrium point, eigenvalue, and angle at (α1, α2, α3) = (1, 1, 1), ϵ = 0.1, f =
10, q = 0.3, d = 0.5, c = 1.5, and δ = 0.1.

Equilibrium Point Eigenvalues of Jacobian matrix |Arg(eig(J))|

0 0 0 9.5870 −17.2640 −3.3230 0 3.1416 3.1416
−9.6422 −9.6422 −28.9267 194.3050 −5.3343 −0.4971 0 3.1416 3.1416
0.3422 0.3422 1.0267 −1.1607 −3.6486 −62.8193 3.1416 3.1416 3.1416
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Table 5. Eigenvalues and angles at different fractional-order derivatives.
Fractional order Eigenvalues of Jacobian matrix |Arg(eig(J))|
(α1, α2, α3) = (1.2, 1.2, 1.2) −2.5466 ± 1.4703i −27.2861 ± 15.7536i −0.9805 ± 0.5661i 2.6180 2.6180 2.6180
(α1, α2, α3) = (1.5, 1.5, 1.5) −0.5522 ± 0.9565i −1.1850 ± 2.0525i −7.9013 ± 13.6855i 2.0944 2.0944 2.0944
(α1, α2, α3) = (1.8, 1.9, 1.65) −0.7176 + 2.0766i −0.0848 − 1.0763i −1.7873 + 9.8615i 1.9035 1.6494 1.7501

(α1, α2, α3) = (1, 1, 1) (α1, α2, α3) =

(1.2, 1.2, 1.2)
(α1, α2, α3) =

(1.5, 1.5, 1.5)

Figure 2. The distribution of equilibrium point eigenvalues under different
(α1, α2, α3) conditions.

Figures 1 and 2 demonstrate the impact of changing the fractional derivative on the stability of the
system at the equilibrium point. Among them, the green part represents the stable area, and the pink
part represents the unstable area. By comparing these figures, it can be observed that the change in the
fractional-order derivative (α1, α2, α3) leads to the variation of the eigenvalues on the complex plane,
thereby affecting the stability of the system. As the fractional derivative parameter α increases within a
certain range, the distribution of eigenvalues will undergo significant changes, and some eigenvalues
may shift from the stable region to the unstable region.

2.2. Numerical method

Next, we numerically simulate its dynamic behavior. For this purpose, we introduce a higher-order
numerical method.

Definition 2.1. The Grünwald-Letnikov fractional derivative of the α-order for a function f (t) is defined
as [37]:

Dα
t f (t) = lim

h→0

1
hα

⌊(t−t0)/h⌋∑
k=0

(−1)k

(
α

k

)
f (t − kh),

where the binomial coefficient can be expressed as

(−1)k

(
α

k

)
=

(−1)kΓ(α + 1)
Γ(k + 1)Γ(α − k + 1)

,

and ⌊·⌋ denotes the floor function, which takes the greatest integer less than or equal to the argument.

Definition 2.2. The high-precision Grünwald-Letnikov fractional derivative of the α-order for a function
f (t) is given by [38–41]

Dα
t f (t) = lim

h→0

1
hα

⌊(t−t0)/h⌋∑
k=0

Ξ
(α,ω)
k f (t − kh),
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where Ξ(α,ω) = [Ξ(α,ω)
0 ,Ξ(α,ω)

1 ,Ξ(α,ω)
2 , · · · ] are the Taylor series expansion coefficients of the generating

function gαω(z).

The high-precision Grünwald-Letnikov fractional calculus can be approximated by:

Dα
t f (t) ≈

1
hα

[(t−t0)/h]∑
k=0

Ξ
(α,ω)
k f (t − kh),

where the vector Ξ(α,ω) consists of the coefficients of the Taylor series expansion of the generating
function. The Taylor series coefficients Ξ(α,ω)

k can be computed recursively as:

Ξ
(α,ω)
k =

1
g0

p∑
i=1

gi

(
1 − i

1 + α
k

)
Ξ

(α,ω)
k−i , if k = ω,ω + 1, ω + 2, · · · .

For m = 1, 2, · · · , ω − 1, the initial coefficients are computed as:

Ξ(α,ω)
m =

1
g0

m−1∑
i=1

gi

(
1 − i

1 + α
m

)
Ξ

(α,ω)
m−i ,

with Ξ(α,ω)
0 = gα0 . Where the coefficients gk can be computed directly from the following equation:

1 1 1 · · · 1
1 2 3 · · · ω + 1
1 22 32 · · · (ω + 1)2

...
...

...
. . .

...

1 2ω 3ω · · · (ω + 1)ω





g0

g1

g2
...

gω


= −



0
1
2
...

ω


.

If the number of simulation points is large, the short-memory effect can be utilized to approximate the
summation terms, assuming only the most recent L0 samples are retained. Therefore, a high-precision
numerical method for the model (2.3) is the following

Fk = hα1 1
ϵ

(
Fk−1 − F2

k−1 − fGk−1
Fk−1−q
Fk−1+q − (cFk−1 − dHk−1)

)
+ F0 −

∑min(L0,k)
j=1 Ξ

(α,ω)
j

(
Fk− j − F0

)
,

Gk = hα2 (Fk −Gk−1) +G0 −
∑min(L0,k)

j=1 Ξ
(α,ω)
j

(
Gk− j −G0

)
,

Hk = hα3 1
δ

(cFk − dHk−1) + H0 −
∑min(L0,k)

j=1 Ξ
(α,ω)
j

(
Hk− j − H0

)
.

(2.7)

2.3. Numerical simulation of dynamic behaviors

In this section, in order to verify the effectiveness of this high-precision numerical method, we
compare it with the Runge-Kutta (ode45) method and the closed-form solution. In simulations of this
section, let parameters (ϵ, f , c, q, d, δ) = (0.01, 0.1, 0.08, 0.1, 2, 2) and initial conditions (F0,G0,H0) =
(1, 1, 1). We set the time step size h = 0.01, and the time is T = 500 for the simulations.

Networks and Heterogeneous Media Volume 20, Issue 4, 1201–1229.
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(a) Error comparison
between high-precision
numerical method and
runge-kutta (ode45)
method.

(b) Error comparison
between runge-kutta
(ode45) method and
closed-from solution.

(c) Error comparison
between high-precision
numerical method and
closed-from solution.

Figure 3. Comparative numerical result of the three methods of the model.

Figure 3 shows the numerical simulations conducted for the problem. Compared with the ode 45 and
the closed-from solution, it is found that the simulation results of the high-precision numerical method
are in good agreement with the simulation results of other methods, and the accuracy is higher, which
verifies the effectiveness of the high-precision numerical method.

We set parameters ϵ = 0.2, c = 1.9, f = 0.2, d = 2, and δ = 1.2, the fractional order value is
(α1, α2, α3) = (0.555, 1.112, 1.999), time step size h = 0.01, and time T = 500. Under these parameters,
there is a relatively weak competitive and highly water-renewable ecosystem. The growth of herbaceous
plants and shrubs is less restricted by water, and the system is more likely to reach a stable state or
undergo periodic oscillations. The simulation results are shown in Figures 4 and 5.

(a) F − G phase
diagram.

(b) F − G time series
plots.

(c) Time series plots.

Figure 4. Comparison of the phase diagrams and time series plots at different parameter
values q.

Figure 4 shows the comparison of the phase diagrams and time series plots at different parameter
values q.

Figure 5(a) shows the F − G phase diagram at different fractional-orders. It is found that the
trajectories converge to a stable state and perform simple periodic motions. Figure 5(b) shows the F −G
time series diagrams under different fractional orders. It is found that at the initial moment, the different
fractional order values have a relatively small impact on the system, and the dynamic behavior of the
system is relatively consistent. However, as time progresses, the differences in the trajectories under

Networks and Heterogeneous Media Volume 20, Issue 4, 1201–1229.



1209

different orders become more obvious, indicating that the fractional order parameters have a significant
influence on the long-term dynamic behavior of the system.

(a) F −G phase diagram. (b) F −G time series plots.

Figure 5. Comparison of dynamical behaviors under different fractional-order derivatives.

Next, we conduct a numerical simulation comparison when the orders of the fractional calculus are
different. We set parameters ϵ = 0.1, c = 1.5, f = 10, q = 0.3, d = 0.5, and δ = 0.1, time step size
h = 0.01, and time T = 500. Under these parameters, there is a system with high competition, high
water consumption, and a low water reclamation rate. This is prone to cause rapid water depletion, and
the system may exhibit chaotic or complex oscillatory behaviors. The simulation results are shown in
Figure 6.

(a) F − G phase
diagram.

(b) F − H phase
diagram.

(c) G − H phase
diagram.

(d) F − G time series
plots.

(e) F − H time series
plots.

(f) G − H time series
plots.

Figure 6. Phase diagram and time series plots of the model at (α1, α2, α3) = (1.8, 1.9, 1.65).

Figure 6(a) shows the dynamic relationship between F and G. The complex folding and entanglement
of the trajectory indicate that the system exhibits non-periodic motion in the phase space. Figure 6(b)
shows the dynamic relationship between F and H. The trajectory forms complex curves and loops,
indicating that the system rapidly switches between states. Figure 6(c) shows the dynamic relationship
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between G and H, and the trajectory exhibits complex folding and entanglement. Figure 6(d)–(f) present
time series graphs. It can be observed that F,G, and H exhibit periodic fluctuations, and then tend to
stabilize over time.

(a) Comparison of F−G
phase diagram.

(b) Comparison of F −
H phase diagram.

(c) Comparison of G −
H phase diagram.

Figure 7. Comparison of dynamical behaviors at different fractional-order derivatives.

Figure 7 shows that the trajectories with different fractional order values α form a complex attractor
structure in the phase space. It is found that a slight change in the fractional order value leads to
significant changes in the system behavior.

(a) Comparison of F − G − H phase
diagram.

(b) Comparison of three phase diagrams.

Figure 8. Comparison of dynamical behaviors under different fractional-order derivatives.

Figure 8(a) shows a F−G−H phase diagram. It is observed that although the change in the fractional
order is relatively small, there are significant differences in the shapes of the trajectories within the phase
diagram. This indicates that the system has a high sensitivity to the fractional order. Figure 8(b) shows
the comparison of three phase diagrams. When α = [1.8, 1.9, 1.4], it presents the G − H − F phase
diagram; when α = [1.8, 1.9, 1.56], it presents the F −G − H phase diagram; and when α = [1.8, 1.9,
1.65], it presents the H −G − F phase diagram. All these demonstrate that even a slight change in the
fractional order can have a significant impact on the system. The introduction of fractional derivatives
causes the system to exhibit oscillation patterns different from those of integer-order models.
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3. Dynamical behavior of the model with diffusion

3.1. Turing instability

In this section, we discuss the local stability of the model (1.1) at αi = 1(i = 1, 2, 3). We analyze the
Turing instability of the model (1.1) at αi = 1(i = 1, 2, 3).

∂F
∂t
=

1
ϵ

[
F − F2 − fG

F − q
F + q

− (cF − dH)
]
+ DF∇

2F,

∂G
∂t
= F −G + DG∇

2G,

∂H
∂t
=

1
δ

(cF − dH) + DH∇
2H.

(3.1)

Introducing a small disturbance, we get the following:

F = F∗ + F̃, G = G∗ + G̃, H = H∗ + H̃. (3.2)

By substituting these perturbations into the model (3.1) and ignoring the higher order terms, we get
a system:

∂F̃
∂t
=

1
ϵ

[
F̃ − F̃2 − f G̃

F̃ − q
F̃ + q

− (cF̃ − dH̃)
]
+ DF∇

2F̃,

∂G̃
∂t
= F̃ − G̃ + DG∇

2G̃,

∂H̃
∂t
=

1
δ

(cF̃ − dH̃) + DH∇
2H̃.

(3.3)

The equation can be written in matrix form:

∂

∂t


F̃
G̃
H̃

 = J


F̃
G̃
H̃

 + D∇2


F̃
G̃
H̃

 , (3.4)

where J is the Jacobian matrix about E∗ and D = diag(DF ,DG,DH) is the diffusion coefficient matrix. By
expanding the perturbation variable in Fourier space and substituting F̃ = c1eλt+ikx, G̃ = c1eλt+ikx, H̃ =
c1eλt+ikx into the perturbation equation (3.4), the characteristic equation is:

λ


c1

c2

c3

 =


1
ϵ

(
1 − 2F∗ − c − 2q fG∗

(F∗+q)2

)
− DFk2 −

f (F∗−q)
ϵ(F∗+q)

d
ϵ

1 −1 − DGk2 0
c
δ

0 −d
δ
− DHk2




c1

c2

c3

 , (3.5)

where, λk is wavelength and λkx, λky are components of wave number k in the x and y directions,
respectively, given by the relation k2 = k2

x + k2
y . We solve the characteristic equation (3.5) to get

λ3
k + I1

(
k2

)
λ2

k + I2

(
k2

)
λk + I3

(
k2

)
= 0, (3.6)

where

I1(k2) =(DF + DG + DH)k2 +C2,
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I2(k2) =(DF DG + DGDH + DF DH)k4 − ( f1F(DG + DH) + f2G(DF + DH) + f3H(DF + DG))k2 +C1,

I3(k2) =DF DGDHk6 − ( f1F DGDH + f2GDF DH + f3HDF DG)k4

+ (DF( f2G f3H − f2H f3G) + DH( f1F f2G − f1G f2F) + DG f1F f3H)k2 +C0,

where, C2 = −( f1F + f2G + f3H), C1 = −( f1F f2G + f1F f3H + f2G f3H − f1G f2F − f1H f3F − f2H f3G),
C0 = f1F f2H f3G + f1G f2F f3H + f1H f2G f3F − f1F f2G f3H − f1G f2H f3F − f1H f2F f3G.

I1

(
k2

)
I2

(
k2

)
− I3

(
k2

)
= ρ0 + ρ1k2 + ρ2k4 + ρ3k6, (3.7)

where

ρ0 = C1C2 −C0,

ρ1 = C1(DF + DG + DH) + DF( f2H f3G − f2G f3H −C2( f2G + f3H))
− DN(C2( f1F + f3H) + f1F f3H) + DP( f1G f2F −C2( f1F + f2G) − f1F f2G),

ρ2 = C2(DGDH + DF(DG + DH)) + DGDH f1F + DF DH f2G + DF DG f3H

− (DF + DG + DH) × (DF( f2G + f3H) + DG( f1F + f3H) + DH( f1F + f2G)),
ρ3 = (DF + DG)(DF + DH)(DG + DH).

According to the Routh-Hurwitz criterion [42], model (3.1) is unstable if it satisfies any of the
following conditions.

I2

(
k2

)
< 0, I3

(
k2

)
< 0, I1

(
k2

)
I2

(
k2

)
− I3

(
k2

)
< 0.

(1) I2

(
k2

)
< 0. Let us suppose that m = k2, and we get:

I2 (m) = q1m2 + q2m + q3, (3.8)

where

q1 = DF DG + DGDH + DF DH,

q2 = (DG + DH) + f2G(DF + DH) + f3H(DF + DG)),
q3 = C1,

Equation (3.8) has two positive roots:

m1,2 =
−q2 ±

√
q2

2 − 4q1q3

2q1
.

Here, q1 > 0. Turing instability occurs for the range m1 < k2 < m2 when q2 > 0, q2
2 − 4q1q3 > 0.

(2) I3

(
k2

)
< 0. Similarly, we have

I3 (m) = β1m3 + β2m2 + β3m + β4,

where

β1 = DF DGDH,
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β2 = − ( f1F DGDH + f2GDF DH + f3HDF DG) ,
β3 = DF ( f2G f3H − f2H f3G) + DG f1F f3H + DH ( f1F f2G − f1G f2F) ,
β4 = C1.

To show that I3(m) has a minimum, we need to do the following calculations

dI3

dm
= 3β1m2 + 2β2m + β3, k2

c =
−β2 ±

√
β2

2 − 3β1β3

3β1
.

When d2I3
dm2 = 6β1m + 2β2 > 0, we get β2 < 0, β2

2 − 3β1β3 > 0. System (3.1) is unstable if

I3

(
k2

c

)
=

2β3
2 − 9β1β2β3 + 27β2

1β4 − 2
(
β2

2 − 3β1β3

) 3
2

27β3
1

< 0.

(3) Now, for the third condition, we take I1

(
k2

)
I2

(
k2

)
− I3

(
k2

)
< 0, for some wave number k ≥ 0.

From Eq (3.7), we get

ξ (m) = ρ3m3 + ρ2m2 + ρ1m + ρ0 < 0.

In the same way, the Turing instability may occur if we choose ρ2 < 0 and ρ1 < 0 along with
the condition

ξ
(
k2

c

)
=

2ρ2
2 − 9ρ1ρ2ρ3 + 27ρ0ρ

2
3 − 2

(
ρ2

2 − 3ρ1ρ3

) 3
2

27ρ3
3

< 0.

Example 2.1. The geometric shape or structure of the model system is not the determining factor of
Turing instability. What really plays a decisive role is the diffusion coefficient within the system. We
adopt the same parameter values as the time model and introduce the diffusion coefficient to study the
Turing instability of the spatial model. The values of the parameters and the diffusion coefficient are
as follows:

ϵ = 0.2, f = 1.91, q = 0.0015, d = 1, c = 0.2, δ = 1, DF = 0.081, DG = 0.099, and DH = 0.096.

From these parameter values, we obtain the equilibrium point and the corresponding variational
matrix as follows:

J (E1) =


0.4738 −4.9762 5

1 −1 0
0.2 0 −1

 .
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(a)I1

(
k2

)
I2

(
k2

)
− I3

(
k2

)
at different DF . (b) Re (λ) at different DF .

Figure 9. Variations of I1

(
k2

)
I2

(
k2

)
− I3

(
k2

)
and max(Re(k2)) with k2.

Figure 9(a) shows that as the diffusion coefficient DF gradually decreases, the negative space
gradually expands, and the critical value of k2 also increases. Figure 9(b) shows the relationship between
the wave number k2 and the real part of the eigenvalue λ under different diffusion coefficients DF .

Next, we analyze the local stability of model (1.1). The characteristic equation (JP) of the Jacobian
matrix is

λα1+α2+α3 + N1λ
α1+α2 + N2λ

α1+α3 + N3λ
α2+α3 + N4λ

α1 + N5λ
α2 + N6λ

α3 + N7 = 0, (3.9)

where

N1 = −( f3H − DHk2),
N2 = −( f2G − DGk2),
N3 = −( f1F − DFk2) + f1H f3F ,

N4 = ( f2G − DGk2)( f3H − DHk2) − f2H f3G − f1G f2F ,

N5 = ( f1F − DFk2)( f3H − DHk2) f1H f3F ,

N6 =
[
( f1F − DFk2)( f2G − DGk2) − f1G f2F − f2H f3G

]
,

N7 = ( f1F − DFk2)( f2G − DGk2)( f3H − DHk2) − f2H f3G( f1F − DFk2)
− f1H f3F( f2G − DGk2) − f1G f2F( f3H − DHk2) − f1G f2H f3F − f1H f2F f3G.

According to Matignon’s conditions, the necessary condition for the stability of the three-variable
Oregonator model is that all eigenvalues λ are satisfied:

|arg (λ) | >
απ

2
,

where, α is the highest order of the fractional derivative. If the order αi(i = 1, 2, 3) is determined, the
model will undergo Turing bifurcation when one of the eigenvalues λ satisfies |arg (λ) | = απ

2 .
Particularly, when α1 = α2 = α3 = α, the characteristic equation (3.9) can be transformed into

λ3α + (N1 + N2 + N3)λ2α + (N4 + N5 + N6)λα + N7 = 0,

at this case, it can be converted into a polynomial equation through variable substitution s = λα:

s3 + M1s2 + M2s + M3 = 0,

where, M1 = (N1 +N2 +N3),M2 = (N3 +N4 +N5),M3 = N7. The stability can be judged in combination
with the Routh-Hurwitz criterion.
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3.2. Weakly nonlinear analysis

In this section, we adopt a multi-time-scale standard method [43–45] to drive the coefficients of
the amplitude equation in the Oregonator model. We apply weak nonlinear analysis to calculate the
amplitude equation near the Turing instability threshold DF = Dc

F .

f1F =
1
ϵ

(
1 − 2F∗ − c −

2q fG∗

(F∗ + q)2

)
, f1G = −

f (F∗ − q)
ϵ(F∗ + q)

, f1H =
d
ϵ
,

f1FF = −

(
2G∗ f (F∗ − q)

(F∗ + q)3 −
2G∗ f

(F∗ + q)2 + 2
)

1
ϵ
,

f1FFF = −

(
6G∗ f

(F∗ + q)3 −
6G∗ f (F∗ − q)

(F∗ + q)4

)
1
ϵ
, f1FG = −

(
f

F∗ + q
−

f (F∗ − q)
(F∗ + q)2

)
1
ϵ
,

f1FFG =

(
2 f

(F∗ + q)2 −
2 f (F∗ − q)
(F∗ + q)3

)
1
ϵ
,

f1GG = f1HH = f1GH = f1FH = f1GGG = f1HHH = f1FHH = f1GGH = f1GHH = f1FGH = 0,
f2F = 1, f2G = −1, f2H = f2FF = f2FFF = f2GG = f2GGG = f2HH = f2HHH = f2FH = f2FG = 0,
f2GH = f2FFG = f2FGG = f2FFH = f2FHH = f2GGH = f2GHH = f2FGH = 0,

f3F =
c
δ
, f3G = 0, f3H = −

d
δ
, f3FF = 0, f3FFF = 0, f3GG = 0, f3GGG = 0, f3HH = 0, f3HHH = 0,

f3FH = f3FG = f3GH = f3FFG = f3FGG = f3FFH = f3FHH = f3GGH = f3GHH = f3FGH = 0.

Let U = (F,G,H)T and the linearized form of model (3.1) at equilibrium E∗ = (F∗,G∗,H∗) be
written as follows:

∂U
∂t
= LU + N1 + N2, (3.10)

where

L =


f1F + DF∇

2 f1G f1H

f2F f2G + DG∇
2 f2H

f3F f3G f3H + DH∇
2

 , (3.11)

N1 =

(
2qG∗ f

(F∗ + q)3ϵ
−

1
ϵ

)
F2 −

2q f FG
(F∗ + q)2ϵ

+ d
(
1
ϵ
−

1
δ

)
FH, (3.12)

N2 =
1
6

(
−

12qG∗ f
(F∗ + q)4

F3

ϵ
+

12q f
(F∗ + q)3

F2G
ϵ
−

6q f
(F∗ + q)2

FG2

ϵ
+

3dF2H
ϵ
+

6dFH2

ϵ
+

cF3

δ
−

dH3

δ

)
. (3.13)

The linear operator L can be decomposed as follows

L = LcU + (DF − Dc
F)M, (3.14)

where

Lc =


f1F + Dc

F∇
2 f1G f1H

f2F f2G + DG∇
2 f2H

f3F f3G f3H + DH∇
2

 , M =


∇2 0 0
0 0 0
0 0 0

 .
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According to the small parameter ε, variable U and the nonlinear term N are expanded as follows:

U = εU1 + ε
2U2 + ε

3U3 + o(ε3). (3.15)

Considering only the behavior of the control parameter near the bifurcation point, then the control
parameter DF can be expanded as:

DF − Dc
F = εD(1)

F + ε
2D(2)

F + ε
3D(3)

F + o(ε3). (3.16)

We divide the time scale of the system into independent T0 = t,T1 = εt,T2 = ε
2t, and, T3 = ε

3t.
Therefore, the time derivative with respect to t can be expressed as follows:

∂

∂t
= ε

∂

∂T1
+ ε2 ∂

∂T2
+ ε3 ∂

∂T3
+ o(ε3). (3.17)

By inserting Eqs (3.15) − (3.17) into Eq (3.14), we can get the various orders of ε such as

Lc


F1

G1

H1

 = 0, (3.18)

Lc


F2

G2

H2

 = ∂

∂T1


F1

G1

H1

 − D(1)
F M


F1

G1

H1

 − h2, (3.19)

Lc


F3

G3

H3

 = ∂

∂T1


F2

G2

H2

 + ∂

∂T2


F1

G1

H1

 − D(2)
F M


F1

G1

H1

 − D(1)
F M


F2

G2

H2

 − h3, (3.20)

where

h2 =

(
2qG∗ f

(F∗ + q)3ϵ
−

1
ϵ

)
F2

1 −
2q f F1G1

(F∗ + q)2ϵ
+ d

(
1
ϵ
−

1
δ

)
F1H1,

h3 =
1
2

[ ( 4qG∗ f
(F∗ + q)3 − 2

)
F1F2

ϵ
−

2q f (F1G2 + F2G1)
(F∗ + q)2ϵ

+ d
(
1
ϵ
−

1
δ

)
(F1H2 + F2H1)

]
+

1
6

[
−

12qG∗ f F3
1

(F∗ + q)4ϵ
+

12q f F2
1G1

(F∗ + q)3ϵ
−

6q f F1G2
1

(F∗ + q)2ϵ
+

3dF2
1H1

ϵ
+

6dF1H2
1

ϵ
+

cF3
1

δ
−

dH3
1

δ

]
.

Since Lc is defined as the linear operator of the model at the Turing bifurcation threshold DF = Dc
F ,

the solution of Eq (3.18) can be expressed in the following form.
F1

G1

H1

 =

φ1

φ2

1


 3∑

j=1

W j exp
(
ik jr

)
+ c.c.

 , (3.21)
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where, φ1 = −
f1G(DHk2

c− f3H)
f3G( f1F−DFk2

c) , φ2 =
DHk2

c− f3H

f3G
, and |k j| = kc, W j represents the amplitude of exp(ik jr), and

c.c. is the complex conjugate of this form.
To ensure that Eq (3.19) has non-trivial solutions, the vector function on the right side of the equation

must be orthogonal to the zero eigenvector of operator Lc+ and the zero eigenvector of the adjoint
operator Lc. Therefore, Lc+ is defined as the zero eigenvector of the operator as

1
ξ1

ξ2

 exp(−ik j · r) + c.c., (3.22)

where ξ1 = −
DFk2

c− f1F

f2F
, ξ2 = −

f2H(DFk2
c− f1F)

f2F( f3H−DHk2
c) , orthogonal conditions as

(
1 ξ1 ξ2

) 
F j

x

F j
y

F j
z

 = 0,

where F j
x, F

j
y, and F j

z are defined as the coefficients corresponding to exp(ik jr) into terms of Fx, Fy, and
Fz. Substituting Eq (3.21) into Eq (3.19) and comparing the coefficients of exp(ik jr), we have

F1
x

F1
y

F1
z

 =

ξ1

ξ2

1

 ∂W1

∂t1
+


m1Dc

Fk2

0
0

 W1 −


Q1N

Q1G

Q1H

 W̄2W̄3,

where

Q1N =
2d
ϵ
φ1 −

2 f (F∗ − q)
ϵ(F∗ + q)2 φ1φ2 −

(
2G∗ f (F∗ − q)
ϵ(F∗ + q)3 −

2G∗ f
ϵ(F∗ + q)2 +

2
ϵ

)
φ2

1,

Q1G = 0,Q1Z = −
2d
δ
φ1.

According to the Fredholm solubility conditions [46], we get
(φ1 + φ2ξ1 + ξ2) ∂W1

∂T1
= −D(1)

F ξ2k2
cW1 + (Q1N + ξ1Q1T + ξ2Q1Z) W2W̄3,

(φ1 + φ2ξ1 + ξ2) ∂W2
∂T1
= −D(1)

F ξ2k2
cW2 + (Q1N + ξ1Q1T + ξ2Q1Z) W̄1W3,

(φ1 + φ2ξ1 + ξ2) ∂W3
∂T1
= −D(1)

F ξ2k2
cW3 + (Q1N + ξ1Q1T + ξ2Q1Z) W̄1W̄2.

Then, we introduce higher order perturbations. We solve Eq (3.19) to get
F2

G2

H2

 =


X00

Y00

Z00

 + 3∑
j=1


X j

Y j

Z j

 exp
(
ik jr

)
+

3∑
j=1


X j j

Y j j

Z j j

 exp
(
i2k jr

)
+


X12

Y12

Z12

 exp (i (k1 − k2) r)

+


X23

Y23

Z23

 exp (i (k2 − k3) r) +


X31

Y31

Z31

 exp (i (k3 − k1) r) + c.c.

(3.23)
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Substituting Eq (3.23) into Eq (3.19) and collecting the coefficients of exp(0), exp(ik jr), exp(2ik jr),
and exp(i(k j − kl)r), we have

X00

Y00

Z00

 =


f1F f1G f1H

f2F f2G f2H

f3F f3G f3H


−1 

Q1F

Q1G

Q1H

 (|W1|
2 + |W2|

2 + |W3|
2
)
=


Zxx0

Zyy0

Zzz0

 (|W1|
2 + |W2|

2 + |W3|
2
)
,

X j = φ1Z j,Y j = φ2Z j, j = 1, 2, 3,
X11

Y11

Z11

 = −1
2


f1F − 4k2

c f1G f1H

f2F f2G − 4k2
c f2H

f3F f3G f3H − 4k2
c


−1 

Q1F

Q1G

Q1H

 W2
1 =


Zxx1

Zyy1

Zzz1

 W2
1 ,


X12

Y12

Z12

 = −1
2


f1F − 3k2

c f1G f1H

f2F f2G − 3k2
c f2H

f3F f3G f3H − 3k2
c


−1 

Q1F

Q1G

Q1H

 W1W̄2 =


Zxx2

Zyy2

Zzz2

 W1W̄2.

Considering coefficients of terms Eq (3.20), and collecting the coefficients of exp(ik1r), we get


R1

x

R1
y

R1
z

 =

φ1

φ2

1


(
∂W1

∂T2
+
∂Y1

∂T1

)
+

D(2)
F 0 0
0 0 0
0 0 0



φ1

φ2

1

 W1 +

D(1)
F 0 0
0 0 0
0 0 0



φ1

φ2

1

 Y1

−


Q1F

Q1G

Q1H

 (W̄2Ȳ3 + W̄3Ȳ2

)
−


Q2F

Q2G

Q2H

 (|W1|)2 W1 −


Q3F

Q3G

Q3H

 (|W2|
2 + |W3|

2
)

W1,

Q2G = 0,Q2H = −
d
δ

zxx0 −
d
δ

zxx1,Q3G = 0,Q3H = −
d
δ

zxx0 −
d
δ

zxx2,

Q2F =
d
ϵ

zxx0 +
d
ϵ

zxx1 −
f (F∗ − q)
ϵ(F∗ + q)2 zyy0φ1 −

f (F∗ − q)
ϵ(F∗ + q)2 zyy1φ1 −

(
2G∗ f (F∗ − q)
ϵ(F∗ + q)3 −

2G∗ f
ϵ(F∗ + q)2 +

2
ϵ

)
zxx0φ1

−

(
2G∗ f (F∗ − q)
ϵ(F∗ + q)3 −

2G∗ f
ϵ(F∗ + q)2 +

2
ϵ

)
zxx1φ1 +

1
2

[
−

12qG∗ f
ϵ(F∗ + q)4φ

3
1 +

12q f
ϵ(F∗ + q)3φ

2
1φ2 −

6q f
ϵ(F∗ + q)2φ1φ

2
2

]
,

Q3F =
d
ϵ

zxx0 +
d
ϵ

zxx2 −
f (F∗ − q)
ϵ(F∗ + q)2 zyy0φ1 −

f (F∗ − q)
ϵ(F∗ + q)2 zyy2φ1 −

(
2G∗ f (F∗ − q)
ϵ(F∗ + q)3 −

2G∗ f
ϵ(F∗ + q)2 +

2
ϵ

)
zxx0φ1

−

(
2G∗ f (F∗ − q)
ϵ(F∗ + q)3 −

2G∗ f
ϵ(F∗ + q)2 +

2
ϵ

)
zxx2φ1 +

[
−

12qG∗ f
ϵ(F∗ + q)4φ

3
1 +

12q f
ϵ(F∗ + q)3φ

2
1φ2 −

6q f
ϵ(F∗ + q)2φ1φ

2
2

]
.

According to the Fredholm solubility condition of Eq (3.20), it can be obtained that

(φ1 + φ2ξ1 + ξ2)
(
∂W1

∂t2
+
∂Y1

∂t1

)
= − k2

cφ2ξ1

(
D(2)

F W1 + D(1)
F Y1

)
+ (Q1F + ξ1Q1G + ξ2Q1H)

(
W̄2Ȳ3 + W̄3Ȳ2

)
+ (Q2F + ξ1Q2G + ξ2Q2H) |W1|

2 W1

+ (Q3F + s1Q3G + s2Q3H)
(
|W2|

2 + |W3|
2
)

W1.
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The other two equations can be obtained through the transformation of the subscript of W and Y.
Moreover, the amplitude of A j can be expanded as follows

∂A j

∂t
= ε

∂A j

∂T1
+ ε2∂A j

∂T2
+ o(ε2). (3.24)

Based on the above results, we can get the equation about A j
τ∂A1

∂t = µA1 + hĀ2Ā3 −
(
γ1 |A1|

2 + γ2

(
|A2|

2 + |A3|
2
))

A1,

τ∂A2
∂t = µA2 + hĀ3Ā1 −

(
γ1 |A1|

2 + γ2

(
|A2|

2 + |A3|
2
))

A2,

τ∂A3
∂t = µA3 + hĀ1Ā2 −

(
γ1 |A1|

2 + γ2

(
|A2|

2 + |A3|
2
))

A3,

(3.25)

where

µ =
Dc

F − DF

Dc
F

, τ =
φ1 + φ2ξ1 + ξ2

Dc
Fk2

cφ2ξ1
, h =

Q1F + ξ1Q1G + ξ2Q1H

Dc
Fk2

cφ2ξ1
,

γ1 = −
Q2F + ξ1Q2G + ξ2Q2H

Dc
Fk2

cφ2ξ1
, γ2 = −

Q3F + ξ1Q3G + ξ2Q3H

Dc
Fk2

cφ2ξ1
.

The amplitude equation can be decomposed into phase angles ψ j by the mode ρ j = |A j|. Substituting
A j = ρ jexp(iψ j) in Eq (3.25) and separating the real and imaginary parts, four differential equations
with real variables are obtained

∂ψ

∂t = −hρ2
1ρ

2
2+ρ

2
1ρ

2
3+ρ

2
2ρ

2
3

ρ1ρ2ρ3
,

τ∂ρ1
∂t = µρ1 + hρ2ρ3 cosψ − γ1ρ

3
1 − γ2

(
ρ2

2 + ρ
2
3

)
ρ1,

τ∂ρ2
∂t = µρ2 + hρ1ρ3 cosψ − γ1ρ

3
2 − γ2

(
ρ2

1 + ρ
2
3

)
ρ2,

τ∂ρ3
∂t = µρ3 + hρ1ρ2 cosψ − γ1ρ

3
3 − γ2

(
ρ2

1 + ρ
2
2

)
ρ3,

(3.26)

where ψ = ψ1 + ψ2 + ψ3. The dynamical system (3.24) possesses the following:
(1) Stationary state:

ρ1 = ρ2 = ρ3 = 0.

Stable when µ < µ2 = 0, unstable when µ > µ2 = 0.
(2) Strip pattern:

ρ1 =

√
µ

γ1
, 0, ρ2 = ρ3 = 0.

Stable when µ > µ3 =
h2γ1

(γ2−γ1)2 , unstable when µ < µ3 =
h2γ1

(γ2−γ1)2 .
(3) Hexagon pattern:

ρ1 = ρ2 = ρ3 =
|h| ±

√
h2 + 4(γ1 + 2γ2)µ
2(γ1 + 2γ2)

.

When µ > µ1 = −
h2

4(γ1+2γ2) , ρ+ =
|h|+
√

h2+4(γ1+2γ2)µ
2(γ1+2γ2) , is stable and µ < µ4 =

2γ1+γ2
(γ2−γ1)2 h2,

ρ− =
|h|−
√

h2+4(γ1+2γ2)µ
2(γ1+2γ2) is always unstable.

(4) Mixed state:

ρ1 =
|h|

γ2 − γ1
, ρ2 = ρ3 =

√
µ − γ1ρ

2
1

γ1 + γ2
,

it is always unstable with γ1 < γ2.
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3.3. Numerical simulation

In this section, we introduce the numerical method. If 0 < αi < 1(i = 1, 2, 3), the time derivative is
expressed by formula, and the space derivative is expressed by a formula. If αi = 1(i = 1, 2, 3), we use the
Euler discrete method for numerical simulation in two-dimensional spaceΩ = [0, Lx]×

[
0, Ly

]
. Choosing

Lx = 1000, Lx = 200, time step ∆t = 0.25, and space step ∆h = 0.89, we define Fn
pq = F

(
xp, yq, n∆t

)
,

Gn
pq = G

(
xp, yq, n∆t

)
, and Hn

pq = H
(
xp, yq, n∆t

)
. Model (3.1) is discretized by the Euler method

as follows: 
Fn+1

pq −Fn
pq

∆t = 1
ϵ

[
Fn

pq − Fn
pq

2 − fGn
pq

Fn
pq−q

Fn
pq+q − (cFn

pq − dHn
pq)

]
+ DF∇

2Fn
pq,

Gn+1
pq −Gn

pq

∆t = Fn
pq −Gn

pq + DG∇
2Gn

pq,
Hn+1

pq −Hn
pq

∆t = 1
δ
(cFn

pq − dHn
pq) + DH∇

2Hn
pq,

where

∇2Fpq =
Fp+1,q+1 + Fp−1,q−1 + Fp+1,q−1 + Fp−1,q+1 + 4

(
Fp+1,q + Fp−1,q + Fp,q+1 + Fp,q−1

)
− 20Mpq

6h2 ,

∇2Gpq =
Gp+1,q+1 +Gp−1,q−1 +Gp+1,q−1 +Gp−1,q+1 + 4

(
Gp+1,q +Gp−1,q +Gp,q+1 +Gp,q−1

)
− 20Npq

6h2 ,

∇2Hpq =
Hp+1,q+1 + Hp−1,q−1 + Hp+1,q−1 + Hp−1,q+1 + 4

(
Hp+1,q + Hp−1,q + Hp,q+1 + Hp,q−1

)
− 20Ppq

6h2 .

Table 6. The parameter values for the numerical study of model (3.1).

ϵ f q d c δ DF DG DH Dc
F

0.2 1.91 0.0015 1 0.2 1 0.081 0.099 0.96 0.0217

For the parameter values given in Table 6, we obtain

E∗ = (0.0048, 0.0048, 0.001) ,
µ = 0.9988 − 0.0656i, µ1 = −0.0002 − 0.0125i, µ2 = 0, µ3 = 0.0015 + 0.0847i,
µ4 = 6.0683, γ1 = 121.44 + 6907.7i, γ2 = 370.40 + 21069i, h = 0.8720 + 49.6002i, k = 3.050.

(3.27)

From the calculation results, it can be seen that γ2 > γ1, and a set of mixed structure solutions is
obtained, indicating that this data will produce a mixed pattern under these parameter conditions. We
select the following initial conditions

F (x, y, 0) = F∗ (1 + 0.1 (rand − 0.5)) ,
G (x, y, 0) = G∗ (1 + 0.1 (rand − 0.5)) ,
H (x, y, 0) = H∗ (1 + 0.1 (rand − 0.5)) .
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Figure 10. The labyrinthine diagram of the model.

The numerical simulation results in Figure 10, show that a mixed pattern consisting of spots and
stripes has emerged in the pattern. The simulation results are in agreement with the aforementioned
numerical calculations, thereby verifying the correctness of the theory.

We select the following initial conditions for numerical simulations:

F (x, y, 0) =
{

F∗, x, y ∈ (80, 120) ,
F∗ − 0.001, other,

G (x, y, 0) =
{

G∗, x, y ∈ (80, 120) ,
G∗ − 0.001, other,

H (x, y, 0) =
{

H∗, x, y ∈ (80, 120) ,
H∗ − 0.001, other.

When the diffusion coefficient is set to DF = 0.081,DG = 0.099, and DH = 0.96, we adopt the
nine-point difference method for numerical simulations.

Table 7. The parameter values for the numerical study of model (3.1).

ϵ f q d c δ DF DG DH Dc
F

0.2 1.91 0.0015 1 0.2 1 0.081 0.099 0.96 0.0217

Based on the parameter values in Table 7, the calculated results are as follows:

E∗ = (0.0048, 0.0048, 0.001) ,
µ = 0.9988 − 0.0656i, µ1 = −0.0002 − 0.0125i, µ2 = 0, µ3 = 0.0015 + 0.0847i,
µ4 = 6.0683, γ1 = 121.44 + 6907.7i, γ2 = 370.40 + 21069i, h = 0.8720 + 49.6002i, k = 3.0500.

(3.28)

Figure 11 is the diffusion plot of parameters F,G, and H at different times. Under these parameters,
there is a highly competitive and rapidly water-diffusing system, which simulates the influence of water
distribution in the real ecosystem on the vegetation pattern. At the beginning, the spot pattern shows
a distinct aggregation phenomenon in the central area, forming a pattern similar to the bulldog, with
irregular point-like and ring-shaped structures distributed around it. As time goes by, the periodicity
of the pattern becomes more obvious, and the ring structure becomes tighter and more regular. The
bullseye pattern in the central area forms a complex nested structure with the surrounding ring-shaped
structures. Finally, the circular structure becomes more complex, with more layers and details emerging.
The circular structures in some areas interweave with each other, forming a pattern similar to a maze.
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t = 5000 t = 10000 t = 15000 t = 20000

Figure 11. Pattern dynamic behavior of F,G, and H at different times (t =

5000, 10000, 15000, 20000), with diffusion coefficients DF = 0.0081,DG = 0.099, and
DH = 0.96.

f = 1.87 f = 1.89 f = 1.91 f = 1.93

Figure 12. Pattern dynamic behavior of F,G, and H over f (0.87, 0.89, 0.91, 0.93) at times
(t=10000), with diffusion coefficients DF = 0.0081,DG = 0.099, and DH = 0.96.

Table 8. The parameter values for the numerical study of model (3.1).

ϵ f q d c δ DF DG DH Dc
F

0.2 1.91 0.0015 1 0.2 1 0.046 0.066 0.66 0.067

Figure 12 shows that as parameter f increases, the structure of the pattern becomes more complex,
indicating that the system is highly sensitive to changes in parameter f .
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When the diffusion coefficient is set to DF = 0.046,DG = 0.066, and DH = 0.66, we adopt the
nine-point difference method for numerical simulations.

Based on the parameter values in Table 8, the calculated results are as follows:

E∗ = (0.0048, 0.0048, 0.001) ,
µ = 0.9976 − 0.0404i, µ1 = −0.0009 − 0.0147i, µ2 = 0, µ3 = 0.0035 + 0.0589i,
µ4 = 3.9968, γ1 = 197.19 + 3343.2i, γ2 = 789.24 + 13381i, h = 2.4840 + 42.1139i, k = 4.0024.

(3.29)

t = 3000 t = 6000 t = 12000 t = 20000

Figure 13. Pattern dynamic behavior of F,G, and H at different times
(t=3000,6000,12000,20000), with diffusion coefficients DF = 0.046,DG = 0.066, and
DH = 0.66.

Figure 13 is the diffusion plot of parameters F,G, and H at different times. At the beginning, the
pattern presents a ring-shaped structure with central symmetry. As time goes by, the ring-shaped structure
becames more complex, and spiral branches begin to appear. These branches are interwoven with each
other in space, and the spiral structure further developes, becoming more regular and symmetrical. The
spacing of the spirals and the shape of the branches tend to stabilize, forming a neat spiral pattern.
Finally, it turns into a complex spiral pattern and reaches a stable and ordered state.

When the diffusion coefficient is set to DF = 0.091,DG = 0.056, and DH = 0.96. We adopt the
nine-point difference method for numerical simulations.

Table 9. The parameter values for the numerical study of model (3.1).

ϵ f q d c δ DF DG DH Dc
F

0.2 0.91 0.009 1 0.2 2 0.091 0.056 0.96 0.1067

Based on the parameter values in Table 9, the calculated results are as follows:

E∗ = (0.1777, 0.1777, 0.0355) ,
µ = 0.9923 − 0.0809i, µ1 = 0.0003 + 0.0031i, µ2 = 0, µ3 = −0.0028 − 0.0290i,
µ4 = 7.926, γ1 = −0.1003 − 1.0474i, γ2 = −0.2659 − 2.7785i, h = −0.0276 − 0.2881i, k = 2.6526.

(3.30)
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t = 4000 t = 6000 t = 8000 t = 10000

Figure 14. Pattern dynamic behavior of F,G, and H at different times
(t=4000,6000,8000,10000), with diffusion coefficients DF = 0.091,DG = 0.056, and
DH = 0.96.

Figure 14 is the diffusion plot of parameters F,G, and H at different times. Under these parameters,
there is a system where shrubs spread slowly and soil moisture changes slowly. It is prone to form
concentric circular layered structures or target-like spot patterns, simulating the periodic distribution of
vegetation in space. At the beginning, the pattern presents a concentric circular layered structure. The
color in the central part is darker and gradually transitions to a lighter color outward. As time goes by,
the concentric circle structure in the central area gradually becomes blurred, replaced by more local
spots and stripes, indicating the instability of the system during the process of time evolution. Finally,
the spot distribution is more uniform but maintains a certain symmetry and periodicity, indicating that
the system has reached a dynamic equilibrium state after a long period of evolution.

4. Conclusions

In this paper, we mostly focus on the chaotic dynamic behavior and pattern dynamic behavior of the
three-variable Oregonator model. At the beginning of the study, we solved the equilibrium points of the
deterministic model and analyzed their stability at those points, thereby laying a theoretical foundation
for the subsequent studies. In the field of numerical simulation, for the Oregonator model without
diffusion terms, we adopted a high-precision numerical calculation method. The simulation results
showed that changes in parameters and the values of fractional derivatives would cause the model to
exhibit different dynamic behaviors. This discovery fully indicates that the model is highly sensitive to
parameters. Furthermore, the introduction of different fractional order values provides new approaches
and possibilities for model optimization. Subsequently, we expanded the research to the three-variable
Oregonator model with diffusion terms. To explore the Turing instability of the model, we applied a
small perturbation to the model and deeply analyzed its impact. Through this process, we gradually
revealed the important role of the diffusion term in the model’s dynamic behavior. In the study of
pattern formation mechanisms, we derived the coefficients of the amplitude equation through weak
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linear analysis. Based on specific parameter values and diffusion coefficients for each group, we used
the nine-point difference method to conduct numerical simulations of the model. The simulation results
presented a rich variety of pattern forms. Through detailed numerical calculations of these patterns
and analysis of their shapes, we successfully verified the correctness of the theoretical derivation and
further deepened our understanding of the pattern dynamic behavior of the three-variable Oregonator
model. During this process, we discovered a large number of novel and interesting patterns, which
greatly expanded our understanding of the diversity of patterns in reaction-diffusion systems.

These research results have broad potential for practical applications. In ecosystem modeling, the
model reveals how fractional-order parameters and diffusion coefficients jointly determine the evolution
of vegetation spatial patterns, providing a more precise mathematical framework for understanding self-
organizing phenomena such as “tiger-striped” vegetation in arid areas. In the fields of materials science
and chemical engineering, this model can be applied to describe the formation of microstructures and
non-standard dynamic processes on catalytic reaction surfaces. Moreover, the in-depth understanding
of the mechanism of system parameter influence provides a theoretical basis for designing control
strategies. In future work, we will incorporate the time-delay effect and study the pattern dynamics
in non-uniform environments. We will apply this high-precision numerical framework to other more
complex fractional-order biochemical systems, further exploring the significant potential of fractional
calculus in describing complex phenomena in the real world.
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