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Abstract: We studied stochastic homogenization of a quasi-linear parabolic partial differential
equation (PDE) with nonlinear microscopic Robin conditions on a perforated domain. The focus
of our work lies in the underlying geometry that does not allow standard stochastic homogenization
techniques to be applied directly. Instead, we introduced a concept of regularized homogenization: We
proved homogenization on a regularized but still random geometry and demonstrated afterwards that
the form of the homogenized equation was independent from the regularization, though the explicit
values of the coefficients depended on the regularization. Then, we passed to the regularization
limit to obtain the anticipated limit equation where the coefficients were finally independent from
the intermediate regularizations. We provided evidence that the regularized homogenization and
the classical stochastic homogenization coincided on geometries that indeed allowed stochastic
homogenization. Furthermore, we showed that Boolean models of Poisson point processes were
covered by our approach.

Keywords: compensated compactness; Robin boundary condition; continuum percolation; Poisson
point process

1. Introduction

Soon after the groundbreaking introduction of stochastic homogenization by Papanicolaou and
Varadhan [22] and Kozlov [12], research developed a natural interest in the homogenization of
randomly perforated domains. A good summary of the existing methods up to 1994 can be found
in [13]. By the same time, Zhikov [28] provided a homogenization result for linear parabolic
equations on stationary randomly perforated domains. Bourgeat et al. [27] introduced a concept of
two-scale convergence in the mean for stochastic problems, where the two-scale limit is performed
simultaneously over all realizations. This method was the first to apply the two-scale convergence
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idea to a stochastic setting, but it was not capable to deal with nonlinearities that require strong
convergence of solutions (see also [10]). Hence, we cannot benefit of this approach in our work. It
then became silent for a decade. In [30], Zhikov and Piatnitsky reopened the case by introducing
stochastic two-scale convergence as a generalization of [20, 1, 29] to the stochastic setting,
particularly to random measures that comprise random perforations and random lower-dimensional
structures in a natural way. The method was generalized to various applications in discrete and
continuous homogenization [16, 3, 4] and recently also to an unfolding method [19, 10].

Concerning the homogenization on randomly perforated domains, there seems to be few results in
the literature, with [7, 5, 23] being the closest related work from the PDE point of view. We emphasize
that there is a further discipline in stochastic homogenization, studying critical regimes of scaling for
holes in a perforated domain of the Stokes equation; see [6] and references therein.

In this work, we focus on the geometric aspects in the homogenization of quasi-linear parabolic
equations and go beyond any recent assumptions on the random geometry. Given € > 0, we consider
a bounded domain Q C R? perforated by a random set G® and write Q¢ := Q\G?. Typically, G® ~ G
where G is a stationary random set and G° is additionally regularized close to dQ [7, 5, 23]. Also, we
assume that Q° is connected, for simplicity of calculations and presentation, and our geometric model
will be regularized in such a way; see also Remark 5.

We then study the following PDE on Q¢ for the time interval 1 = [0, T']:

o’ —V-(AW®)Vu®) = f inI x Q°
AW )Vu®-v=0 onl xdQ
AW’ )Vu® - v =eh(u®) onl xdQ°\0Q
u®(0,x) = up(x) in Q°

(1.1)

with v being the outer normal vector.

In case of a fully linear PDE, i.e., h(-) = const and A(-) = const, this problem was homogenized
already in the aforementioned [28] and later reconsidered in [30]. In this linear case, one benefits from
the regularity of the limit solution and the weak convergence of the e-solutions that is given a priori.

However, the nonlinear case is more difficult. Weak convergence of solutions is no longer
sufficient. Thus, one needs to establish strong convergence of the u#®. As we will discuss below, a lack
of a uniformly continuous family of extension operators or, more generally, a degeneration of the
homogenized matrix will cause the whole argumentation to break down. Hence, typical assumptions
in the literature, such as minimal smoothness (see Definition 23) of G and uniform boundedness of
the hole sizes, ensure the existence of uniformly bounded extension operators
U, : W2(Q% — W'(Q) [7]. This in turn implies weak compactness of U, ,u® in W'*(Q), a
property of uttermost importance to pass to the homogenization limit in the nonlinear terms. Other
approaches are conceivable, e.g., exploiting the Frechet—Riesz—Kolmogorov compactness theorem,
but in application the prerequisites are hard to prove.

If all limit passages go through, the homogenized limit as € — 0 reads for some positive definite
matrix A as

C],(G)a,u —div (A(M)ﬂ(g) Vl/t) - Cz,((;)h(u) = Cl,(G)f in I X Q
AW A Vi v =0 on I X 90 (1.2)
u(0, x) = Cy Gyuo(x) in O,

Networks and Heterogeneous Media Volume 20, Issue 1, 165-212.



167

which represents the macroscopic behavior of our object. We note at this point that positivity of A,
is, in general, nontrivial but can be shown for minimally smooth domain examples (see Sections 8
and 9).

Unfortunately, canonical perforation models are neither minimally smooth nor is the size of their
holes uniformly bounded. Our toy model of choice will be the Boolean model EX,,; := Uxexp(,i B,(x)
(see Definition 1) driven by a Poisson point process X,. It clearly reveals the following general issues
for the homogenization analysis:

1) EXpoiC = Rd\EXpoi 1s not connected due to areas that are encircled.
i1) Two distinct balls can lie arbitrarily close to each other or — in case they intersect — have arbitrary
small overlap. This implies that

e the connected components in ZX,; develop arbitrarily large local Lipschitz constants: Two
balls of equal radius intersecting at an angle « have the Lipschitz constant tan((mr — @)/2) at
the points of intersection, and

e there is no ¢ > 0 such that for every p € 8EXpoiC the surface Bs(p) N GEXpoiC is a graph of a
function: If x,y € X,;; with [x —y| = 2r+pand [p — x| = r, |[p —y| = r + , B5s(p) N 0EX;
can be a graph only if § < 7.

The first issue can be fixed by considering a “filled-up model” BX,,,; in Definition 1. Furthermore,
we will see that — under mild regularity conditions — the procedure of filling up a perforation does not
change the effective conductivity Ay, at all (Theorem 58). Unfortunately, the second issue poses an
actual problem. In a recent work [9], one of the authors has shown that in some cases an extension
operator U,,: W'P(Q?) — W(Q), 1 < g < p, can be constructed for some geometries including the
Boolean model (strictly speaking, this was shown for an extension from the balls to the complement in
the percolation case). However, [9] also suggests that the Boolean model for the Poisson point process
requires p > 2 in order for U, to be properly defined for some g > 1.

Due to these severe analytical difficulties, we need other approaches to the problem. We call our
approach ‘regularized homogenization’ and it consists of an approximation of the random geometry G
by G,, performing homogenization, and afterward letting n — oo. In our particular example, it consists
of the following steps:

1) Given a general stationary ergodic (admissible) random point process X, we construct a
regularization X := F,X (see Definition 3) such that the set BX™ is uniformly minimally
smooth for given n € N.

ii) Given n € N, we perform homogenization for the smoothed geometry BX™ instead of BX (see
Lemma 7).

iii) We pass to the limit » — oo along a subsequence to obtain the anticipated homogenized limit
problem (see Theorem 56), where the coefficients are independent from the intermediate
regularizations (Corollary 39). This happens under the assumption that BxC is statistically
connected (see Definition 15).

iv) We show that the Poisson point process in the subcritical regime is a valid example for our general
homogenization result (see Section 9).

We are thus in a position to prove an indirect homogenization result. This seems to us an appropriate
intermediate step on the way to a full homogenization result, which may be achieved in the future
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using further developed homogenization techniques based on a better understanding of the interaction
of geometry and homogenization. Let us note that we focus on fixed radii r > 0 for the sake of
presentation. In fact, random radii pose no issue for the procedure as briefly mentioned in Remark 18
as long as the remaining conditions are satisfied.

This paper is structured as follows:

e In Section 3, we introduce the core objects and state the main result. This includes the thinned
point processes X and its filled-up Boolean model BX™.

e In Section 4, we prove relevant properties of the thinning map and the thinned point processes,
most importantly, minimal smoothness of BX™ (Theorem 25) and BX" — BX in a certain sense
(Lemma 29).

e Section 5 deals with the cell solutions and the definition of the effective conductivity A.

e The homogenization theory for minimally smooth holes is sketched in Section 6 on the basis of
stochastic two-scale convergence. Due to the considerations in Section 5, the underlying
probability space is a compact separable metric space.

e In Section 7, we show that the homogenized solutions to Eq (1.2) for G = BX™ converge and
that their limit is a solution to the anticipated limit problem for G = BX.

e Section 8 establishes a criterion for statistical connectedness (nondegeneracy of the effective
conductivity A) using percolation channels. We follow the ideas in [13, Chapter 9] where a
discrete model was considered.

e In Section 9, we show that the Poisson point process X, is indeed admissible, which follows
from readily available percolation results. Showing statistical connectedness of EIXEOi is much
harder. We do so using the criterion established in Section 8 and a version of [11, Theorem 11.1].
As the original [11, Theorem 11.1] is a statement about percolation channels on the Z>-lattice, we
need to adjust both the statement and the proof to our setting.

2. Notation

General notation

o M(R?): Space of Radon measures on RY equipped with the vague topology

o S(RY) ¢ M(R?): Space of boundedly finite point clouds/point measures in R?
o AC: Complement of a set A

e B(X): Borel-o-algebra of the topological space X

e /% d-dimensional Lebesgue-measure

e H‘: d-dimensional Hausdorff-measure

e H: Restriction of H? to A, i.e. H*,(B) := HY (BN A)

e 0 := Oz € RY: Origin in R?

e 1,: Indicator/characteristic function of a set A
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Specific notation introduced later

B,(A): Open r-neighborhood around A. (Definition 1)

Zx and Bx: Boolean model of x and its filled version (Definition 1)

C.(x): Cluster of x in x € S(RY) (Definition 3)

x® for x € S(RY): x™ = F,x with thinning map F,, (Definition 3)

Q¢ and J°(Q, x): Perforated domain and index set generating perforations (Definition 4)
7,0 M(RY) — M(R?): Shift-operator in M(R?) (Definition 8)

e A(w): Intensity of random measure u (Definition 8)

o .. H ! restricted to d B x (Definition 30)

o A and a4: Effective conductivity and smallest eigenvalue of ‘A (Definition 37)
e U and 7 : Extension and trace operators (Theorem 43 and Theorem 51)

e 1®: Scaled measure (Assumption 46)

3. Setting and main result

3.1. Generating minimally smooth perforations

We start by introducing some concepts from the theory of point processes. We will not formulate
the concepts in full generality but only as general as needed for our purpose. Let d > 2 and let S(R¥)
be the set of boundedly finite point clouds in R? (i.e., point clouds without accumulation points) and
M(R?) the space of Radon measures with the vague topology, that is, the smallest topology on M(R?)

such that
T f fdu
Rd

is continuous for every f € C2(R?). Every x € S(R?) can be identified with a Borel measure through
the correspondence

x(A) = Z 5.(A).

XEX
Hence, we identify S(RY) ¢ M(RY).

Our perforation model of interest is the Boolean model driven by a point cloud x € S(RY). While it
is a natural way to generate perforations, we require its complement to be connected for suitable x.
Hence, the perforation Zx needs to be filled up in order to remove all finite-sized connected
components from its complement. These can be easily identified as they do not admit a path of
infinite diameter.

Definition 1 (Boolean model Z of a point cloud and filled-up model B (see Figure 1)). Let x € S(RY).
The Boolean model of x for a radius r > 0 is

Ex = B0 =B,().

XEX

where B,(x) is the open ball of radius r around x and B,(A) := |J,c4 B, (x). We define the filled-up
Boolean model Bx of x for radius r through its complement, 1.e.,

ax’ = {x e RY|3y: [0, c0) — 2xC continuous and v(0) = x, lim sup |y(t)| = oo}.

t—0o0
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Figure 1. Initial Boolean model Ex vs filled-up Boolean model Bx.

Remark 2. We observe that
Ex+x) =2 +x and B(x+Xx) =8x+x

As discussed in the introduction, we need to “smoothen” the geometry in order to be able to apply
standard homogenization methods. Given a Lipschitz domain P C R¢, we define for p € P

1
3(p) := 5 sup { P is Lipschitz-graph in By (p)},
>0

and because §: 0P — R is continuous [9], we can define for bounded P
o(P) := 11;1;(192 o(p).

Definition 3 (Thinning maps F, (see Figure 2)). Let x € S(RY) be a point cloud. We denote the cluster
of x in x by

Cx(x) :={y € x| dpath from x to y inside Ex}.

We set

Fx = {xex|Vyex:idxy) ¢ (0. H)u@r-1 27+ b, (3.1)
Faux = {x € X [#C,(x) < 1, 6(BAC(1)) 2 1}, (32)

and define the thinning map F,
F,: SRY) — SRY), x® = F,x := (F5, o F1,)x.

F, can be understood as a generalization of the classical Matérn construction [15, 26]. For an
arbitrary x € S(R?), we see that (Bx™)C is always minimally smooth (see Definition 23). Furthermore,
if X is a stationary point process (as defined later), then the same holds for X® = F,X. We note that
F, is in general not monotone in n, i.e., F,,x ¢ F,x for m < n.

Given a scale € > 0, we define the perforation domain Q? such that the perforations have some
minimal distance from the boundary dQ:
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Figure 2. Thinning of point clouds under F, pictured via the Boolean model =. From left to
right are x, x?, and x©.

Definition 4 (Perforation of domain Q°). Let x € S(R?). We set
J(x, Q) = {x ex|dist(e Cu(x), Q%) > 261}, G :=eB(S(x. Q)

as well as the perforated domain

Q¢ = 0Q\G:L.
One quickly verifies that Qf , is minimally smooth (Definition 23); see Theorem 25.
Remark 5. By construction, our perforation model G := ¢ B (J°(x, Q)) ensures connectedness of

its complement RY \ G2, resp., of Q°. We prefer this approach of “filling the holes of the holes”
because it allows for an easy use of extension operators in a way that we can safely apply compact
embeddings. Otherwise, once R? \ G¢ becomes disconnected, we would have to rely on additional
regularity assumptions on the initial data in those holes, which is then carried on by the evolution
equation and would lead to additional tedious calculations. Otherwise, we would have to introduce a
second PDE on the holes with suitable coupling boundary conditions. While we do not claim that a
treatment of such a situation is impossible, we claim that the additional effort would not be justified by
the additional expected insight.

3.2. Homogenization for minimally smooth perforations

We make the following parameter assumptions on our partial differential Eq (1.1).

Assumption 6 (Parameters of PDE). Let I = [0,T] C R and Q € RY be a bounded, connected open
domain. We assume that

o uy € W(Q)

o fel’(I;LX(Q)

e h: R — R is Lipschitz continuous with Lipschitz constant Ly,
e A: R — Ris continuous with 0 < inf(A) and sup(A) < co.

Generalized time derivatives will always be considered under the evolution triple
Wh(Q) = L(Q) — W'(Q) or W(Q2,,) = LX(Q%,,) — W"(Q%,,)" in the case of a perforated
domain Q¢ .

Networks and Heterogeneous Media Volume 20, Issue 1, 165-212.
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Lemma 7 (Solution to PDE for minimally smooth holes). Let x € S(RY) and n € N. Under
Assumption 6, we have on Q) There exists a weak solution u® € L*(I; Wl’Z(Qi w)) with generalized
time derivative d,u® € L*(I W"*(Q°,)") to Eq (1.1) on (¥, instead of Q.

This u® satisfies for some C > 0 independent of € depending only on Q,n, f and uy but not on &

€SS sup ”l/le(t)“LZ(QE(n)) + ”l/lg”LZ(I;Wl,Z(QS(n))) < C
tel x *

”atuglle(l;Wll(Q;n))*) <C.

The proof is given in Section 6 (Theorem 53).

The next step is passing to the limit &€ — 0. We do so in the case of x being a realization of a
stationary ergodic point process X as defined below:

Definition 8 (Random measure and shift-operator 7,). A random measure u, is a random variable with
values in M(RY). It induces a probability distribution P on M(R?). Given the continuous map

7.0 M(RY) — M(RY), T,6(A) == E(A + x), (3.3)

a random measure is stationary if P(F) = P(tF) for every F € B(M(R?)) and every x € R?. In line
with the above setting, a random point process X is a random measure with P(S(R?)) = 1, and one
quickly verifies that X is stationary if for every N € N, x € R?, and bounded open A C R, it holds

P (x € SRY): x(A) =N) = P(x € SRY): x(A + x) :N).

We call a stationary random measure pu, ergodic if the o-algebra of T-invariant sets is trivial under
its distribution P.

Remark 9 (Compatibility of thinning with shifts). The thinning map F, is compatible with the shift 7,,
i.e.,, on S(RY)

F,ot,=71,0F,.

Lemma 10 (Homogenized PDE for minimally smooth domains). Let X be a stationary ergodic point
process and n € N be fixed. For almost every realization x of X, we have under Assumption 6:

For g > 0, let u® € L*(I, W"(Q°,)) be a solution to Eq (1.1) on Q°,, instead of Q°. Given any
sequence € — 0, we find a subsequence (still denoted as € — 0) and corresponding ii® € L*(I; W'*(Q))
with ﬁng;Z(n) = u®, such that i — u, strongly in L*(I;L*(Q)) for some u, € L*(I; W"*(Q)) with

generalized time derivative 6,u, € L*(I; W"*(Q)*). This u, is a weak solution to

Cypo 0ty — V - (A ) A Vu,) = Crpoh(uty) = Crpo f inlxQ
Au) A Vuy, -v=0 onIxdQ (3.4)
un(0, x) = Cy pmug(x) in Q,

with constants Cipw > 0 depending on the distribution P™ of X and A™ being a symmetric positive
semi-definite matrix — the so-called effective conductivity based on the event that the origin is not
covered by BX™ (see Definition 37).
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Proof. This is shown in Section 6 (Theorem 55) using two-scale convergence.

A more general result, which immediately is implied by the proof of the previous lemma is the
following Lemma 11. There are many random geometries that do not have an extension operator
W2(Q%) — W'2(Q) but still an extension operator W!2(Q?) — W!4(Q) for some 1 < ¢ < 2, see [9].
For such geometries, the desired homogenization result could be established without the bypass that
we will take below. However, results in [9] will provide sufficient conditions for homogenization, but
they do not provide necessary conditions.

Lemma 11. Assume that Q° is such that there exists q € (1,2] such that for every family v¢ € W2(Q?)
with sup, (IIVV®|l2s) + VoIl 2(0s)) < +00, there exists a V¢ € LI(Q), such that v¢ = 1y:V® and such
that V¢ is pre-compact in L1(Q). Then, every convergent subsequence of the solutions u® of Eq (1.1)
converges to a weak solution of Eq (3.5) given below.

Remark 12 (Estimate). Observe that the situation in Lemma 7 provides us with an estimate
sup, (IIVulll2o.1ix0s) + IUlli20.1ix0s)) < +o0 on the solutions u®, and the compact operator is a
combination of the extension operator for minimally smooth domains and the standard Sobolev
embedding.

Remark 13 (Compactness). It has to be noted that the claim of compactness is somewhat natural and for
most nonlinearities, even necessary. Indeed, unless the nonlinearities are monotone operators, we are
not aware of an existence theory for equations of Type (1.1), which would not rely on compactness of
a sequence of approximate solutions in some L”-space. However, if existence theory is already heavily
relying on this compactness assumption, we have no hope that homogenization could cope with less.

3.3. Regularized homogenization for irregular perforations

When it comes to the final homogenization result, we will need the following assumptions on the
point process X.

Definition 14 (Admissible point process). We call a point cloud x € S(R?) admissible the following
holds (with r > 0 from Definition 1):

i) Equidistance Property: Vx,y € x: |x —y| # 2r.
ii) Finite Clusters: For every x € x, we have #C(x) < oo.

A stationary ergodic boundedly finite point process X is called admissible if its realizations are
almost surely admissible.

Definition 15 (Statistical connectedness). The random set BxC is statistically connected if the
effective conductivity A (Definition 37) based on the event that the origin is covered by xC is
strictly positive definite.

In our setting of Boolean models of admissible point processes, the procedure of filling up a
perforation does not change its effective conductivity ‘A (Theorem 58). In particular, BxC is
statistically connected if, and only if, the same holds for =xC.

Remark 16 (On statistical connectedness). Let us note that the existence of an infinite connected
component in BXCisa necessary requirement for A > 0, as can be seen later in Section 8. There, we

Networks and Heterogeneous Media Volume 20, Issue 1, 165-212.



174

also give a criterion for statistical connectedness: the existence of sufficiently many so-called
percolation channels. The procedure is based on [13, Lemma 9.7], which we adjust to the
continuum setting.

We may now state the main theorem of this work.

Theorem 17 (Homogenized limit for admissible point processes). Let X be an admissible point process
and BXC statistically connected. Under Assumption 6, we have for almost every realization x of X:
For every n € N, let u, be a homogenized limit in Lemma 10. For every subsequence of (u,)nen,
we can extract a subsequence (U, )ren Such that there exists a u € L*(I; W'2(Q)) with generalized
time-derivative d,u € L*(I; W'2(Q)*)

LALW'2(Q)) LIW(Q))
U, ——— u and ou, — Ou,
n—0oo n—-oo

and u is a weak solution to

Cipou —V - (A(u)AVu) — Coph(u) = Cypf inlxQ
AWwW)AVu-v=0 onlxoQ 3.5
M(Oa -x) = Cl,P”O(x) in Q9

with constants C;p > 0 only depending on the distribution P of X and A being a symmetric positive
definite matrix — the so-called effective conductivity ‘A based on the event that the origin is not covered
by BX (Definition 37). The limit u may depend on the chosen subsequence if the solution to Eq (3.5) is
not unique. Otherwise, the whole sequence (u,),cn converges to u.

Proof. This is proved in Theorem 56.

Regarding the derivation of Eq (3.5), we only need local convergence of Bx™ — Bx (Lemma 29).
Hence, Eq (3.5) is independent of the thinning procedure as long as local convergence is satisfied.

Remark 18 (Random radii). For simplicity, we have chosen the Boolean model with fixed radius r as
our underlying model. One can easily generalize the procedure to random independent radii. Given a
marked point process X = | J;(x;, ;) whose marks represent the radius r; of the ball around x;, we need
to adjust Point 1 in Definition 14 accordingly, i.e.,

Y(x,ry), 0, 1y) € Xt |x =yl # 1+ 1y

The thinning maps F, (Definition 3) also need to be modified to ensure minimal smoothness
(Definition 23), e.g., balls with especially large/small radii need to be removed. Eq (3.1) has the
purpose to ensure that two balls in the regularized geometry either have a minimal distance 1/n or, if
they intersect, the intersection angle is bounded away from 0. This also has to be modified depending
on radii r; and r, of two intersecting balls. Local convergence is preserved if all clusters remain finite.
Hence, the rest of our procedure essentially follows as is under the assumption of A > 0.

Remark 19 (Homogenization procedure). For fixed € > 0, solutions u® = uf to Eq (1.1) exist for
admissible x € S(RY) as o, = 0% for n large enough (Lemma 29). If x is a realization of some
admissible point process X, then this is still not sufficient to pass to the limit & — 0. The missing
regularity of BX still prevents us from establishing a priori estimates. All in all, our procedure yields
the following diagram:
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& 9
[/ S
el0
nToo nToo (3.6)
£
u u
n &l0 "

Statistical connectedness of BXC is crucial to establish W'2(Q)-estimates for u,. This indicates
that the direct limit passing u® — u might only rely on the statistical connectedness property, but we
cannot answer that as of now. On the other hand, if the assumptions of Lemma 11 hold, then the
diagram commutes.

3.4. Example: Poisson point processes

In order to demonstrate that the class of point process satisfying our assumptions is not empty, we
show in Section 9 that the Poisson point process X, is indeed suitable for our framework. We obtain
the following.

Theorem 20 (Admissibility and statistical connectedness for X.i). In the subcritical regime (see
Assumption 62), we have for the Poisson point process X,; that

o X,oi is an admissible point process.

° EIXEOi is statistically connected.

While admissibility is easily proven, statistical connectedness is much harder to deal with. Most
of Section 9 is dedicated to this proof. It also builds up on Section 8 in which we show that so-called
percolation channels yield statistical connectedness.

3.5. Consistency of our approach

In what follows, we collect examples where stochastic homogenization is well understood and
where our new ansatz of regularized stochastic homogenization is consistent in the sense that the
Diagram (3.6) commutes for these examples.

3.5.1. Linear equations where Q7 D Q°

Let G be a stationary ergodic random set and let G, be jointly stationary sets with G where G,, C
G =: G and where G, — G pointwise as n — oo. We then define Q% := Q \ &G as before and
additionally Q; := O\ €G,. Then, Q; D Q° by definition, and we have the following result.

Theorem 21. Under the above assumptions, let ¢ € L*(QF) be extended by 0 to Q and A > 0.
i) For each &€ > 0, assume that f7 — f2 =: f® as n — oo. Then, the solutions u;, of the problem
-V-Vu, + Au;, = f; in Q)
u: =0 onoQ (3.7)

Vu: -v=0 ondQ\oQ

satisfy u, — uZ, =: u® as n — oo, where u® is the solution to Eq (3.7) on Qf, := Q°.
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ii) For each n € N U {+o0}, there exists a positive semi-definite A™ such that f¢ — f,as & — 0
implies u® — u, in L*(Q), where u,, solves

-V - A"Vu, + Au, = f, in Q.

iii) If f, = fo =: f asn — oo, then A” — A =: A and u, — u. =: u weakly in L*(Q). Note
from Statement 2 that u solves
-V -AVu+ Au= finQ.

In other words, Diagram 3.6 commutes for linear equations.

3.6. An explicit geometry with commutative Diagram (3.6) for nonlinear problems

We now sketch the homogenization of Eq (1.1) on a geometry that is not minimally smooth but
allows for homogenization. This sample geometry was introduced in [9]: We start from a Poisson
point process and erase all points that are closer to each other than a given distance threshold s > 0.
We then construct the Delaunay triangulation and assign a pipe of random diameter 0 < D < s/2 with
a distribution P(D < x) < exp(—1/x) to every edge, for all x > 0. Furthermore, we enrich the geometry
by the balls of radius s/4 around the remaining points. This union of pipes and balls is stationary and
ergodic and we then define Q° as the intersection of Q with the system of balls and pipes scaled by a
factor . In three dimensions, the complement of Q? is pathwise connected and unbounded, but in two
dimensions, the complement consists of bounded sets, where there is no upper bound on the diameter
of these sets. Also, there is no upper bound on the local Lipschitz constant.

Writing W(lo’i BQ(QS) for the functions in W'? with value zero on 6Q then, in [9, Theorem 1.15], it is
shown that, for every 1 < g < 2, there almost-surely exists an extension operator U*: W(lo’i 20(Q%) —
WS’Q(B »#(Q)) that is continuous with 8 € (0, 1) depending only on the random geometry, such that, for
every € > 0 and u® € W(l()’iaQ(Qg), it holds that

IVU U || ey < ClIVU|l120e and U Y| fgmay < C U]l 120e) - (3.8)

An inspection of the proof of [9, Theorem 1.7] reveals that it also holds for ¢ = p = d = 2 therein,
that is, there exists a constant C > 0, independent from &, such that

”TSMSHLZ(@Q&) < C ||Vu8||L2(Qa) . (39)

The important insight is that U°u® is bounded in Wé’q(Bl(Q)) and hence, pre-compact in L*(R?),
which in turn yields two-scale pre-compactness of the traces 7 °u®, in a similar way as below. Thus,
we can argue as in our proof of Lemma 10 to obtain the respective homogenization result. The needed
two-scale convergence methods have been introduced in [8].

On the other hand, in R?, we can regularize the geometry by filling up holes with a diameter larger
than a prescribed threshold and we can additionally prescribe a minimal thickness for the pipes. Since
the generating points of the Delaunay triangulation have a minimal mutual distance, the filling of large
holes provides minimal smoothness. However, Lemma 10 guarantees homogenization. Together with
the proof of Theorem 17, we again find that Diagram 3.6 commutes.
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3.6.1. Linear equations under norm bounds

In the previous example, we explicitly constructed the approximation in a way that Q5 > Q°.
However, this is not strictly necessary. The following result shows that the homogenization limits
would also exist and look the same as above, as long as the distributions of several geometric quantities
do not worsen (significantly), with the respective conditions to be taken from [9].

Theorem 22. Let G, be jointly stationary sets with G where G,, — G pointwise as n — oco. Assume
further that there exists C > 0, independent of € and n, such that Eq (3.8) holds for every & and n.
Then, the assertion in Theorem 21 still holds.

Without going further into detail, we mention that our main results in form of Lemma 10 and
Theorem 56 can be reproduced for any family of geometries satisfying Eqs (3.8) and (3.9) using
Theorem 22.

3.6.2. Extrapolation to the Boolean model

It is currently not clear whether the Boolean model introduced above has a family of extension
operators such as in the pipe example. Furthermore, if such a family does exist, then the diagram
commutes. Hence, we propose the approximation method to derive an educated guess for a
homogenized model.

4. Thinning properties, surface measure and convergence of intensities

We first establish some properties of F,: S(RY) — S(R?), most importantly the minimal smoothness
of Bx™.

Definition 23 (Minimal smoothness [25]). An open set P C R? is called minimally smooth with
constants (0, N, M) if we may cover dP by a countable sequence of open sets (U;); such that

i) Vxe RY: #{U;|x € U} < N.
1) Yx € 0P 3AU;: Bs(x) C U,.
iii) For every i, PN U, agrees (in some Cartesian system of coordinates) with the graph of a Lipschitz
function whose Lipschitz semi-norm is at most M.

Lemma 24 (Uniform 6 on individual clusters). Let x € S(RY) be an admissible point cloud. Then, for

every x € X
6(E(Cx(x))) > 0.

Proof. Let x € S(RY) and assume 5(Z(Cx(x))) = 0 for some x € x. Then, there must be some p € 0=
with 6(p) = 0. This together with bounded finiteness gives x,,y, € x such that p € B.(x,) N B,(y,), in
particular |x, — y,| = 2r. This contradicts the equidistance property of x.

The thinning maps F, have been constructed just to yield the following theorem.

Theorem 25 (Minimal smoothness of thinned point clouds). For every x € S(R?), both (Ex")C and
(Elx("))c are minimally smooth with 6 = 1/n, M = N2nr. Furthermore, every connected component of
2x" or Bx"™ has diameter less than 2nr.
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Proof. It remains to verify the estimate on M. Let x = 0 = Oge and y = (2r -n1,0,..., 0). Then the
Lipschitz constant at the intersection of the two balls B,(x) and B,(y) is less than V2nr.

Theorem 26 (Further properties of F,). The set Sa(R?) of admissible point clouds is measurable in
the vague o-algebra. Given n € N, it holds that F,: S(RY) — S(RY) is measurable, S™ := F,S(R?) is
compact in the vague topology and the following three properties of x € S(RY) are equivalent:

i) F,x =x,
i) x € S®,
iii) Eqs (4.1) and (4.2) hold:

Vx,yex,x#y: dxy)¢(0,1/n)U2r—1/n,2r+1/n), “4.1)
Vxex: # Ci(x)<n, §(B(Cx(x)) = 1/n. 4.2)

Proof. F,x = x implies x € 8™ since F,x € 8™, and vice versa, x € S implies F,x = x by
definition of F,. By construction of F,, it follows that Eqs (4.1) and (4.2) hold if, and only if, x € S™.
Consider the space of (non-simple) counting measures N (RY) ¢ M(RY), i.e.,

NRY) := {,u e MRY: u= Z aid,, such that a; € N and x; € Rd}.
keIcN

We see, e.g., in [2], that

e S(RY) and N(R?) are both measurable w.r.t. the Borel-o-algebra of M(R?).
e SRY) c N(R?) and N(RY) is closed in M(R?). In particular, N (R?) is also complete under the
Prokhorov metric.

Now S™ is pre-compact because of the characterization of pre-compact sets in the vague topology:
For every bounded open A C R, it holds that sup,_gm x(A) < C (diam A)! with C depending only
on n. It remains to show that S® is closed as a subset of N(RY). Let (x j) o C S™ be a converging

J

sequence with limit x € N(R?). One checks that (4.1) (namely d(x,y) ¢ (0, 1/n)) ensures x € S(R?),
e.g., in a procedure similar to the proof of [2, Lemma 9.1.V]. We observe that for every x,y € x, there
exist x;,y; € x; such that x; — x, y; = y as j — oco. This implies by a limit in Eq (4.1) that x still
satisfies Eq (4.1).

For x € x, one checks that Eq (4.1) (namely d(x,y) ¢ (2r — 1/n,2r + 1/n)) implies #C(x) < n.

Let p € 0Z(x) and let {xV, ..., x®} = B,o(p) N x with sequences x;k) — x®, xgk) € x;. Given
n > 0, let J € N such that forall j > Jand k = 1,...,K it holds |x® — xi.k)l < 1. Then there exists
pj € 02(x;) such that |p; — p| < n and d=(x;) is a Lipschitz graph in the ball Bz(;(pj) forevery 6 < 1/n.
Hence 0Z(x;) is a Lipschitz graph in the ball B,s_,(p). Because the Lipschitz regularity of d=(x;)
changes continuously under slight shifts of the balls, there exists 7 such that for n < 1y and 0E(x) is a
Lipschitz graph in B,s_»,(p). Since 1 is arbitrary, we find 0Z(x) is Lipschitz graph in B,s(p) for every
6 < 1/n, implying 6(p) > 1/n. Since this holds for every p, we conclude Eq (4.2) and S™ is compact.

To see that S4(R?) is measurable, consider for x € S(RY)

Ximr = {x €x: x & Bgr(o) or d(x,y) ¢ (0,1/m)U 2r—1/m, 2r + 1/m) Vy € x},
xR := {x € x| x & Br(0) or #Cx(x) < [, 6(B,(Cx(x))) > 1/1},
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and define

FlnrX = Xy R StmR) = Fl,m,RS(Rd)

FoirX 1= X R. SEmR) = FZ,m,RS(Rd)-

We check that SU®) is a closed subset inside S(R?) (repeat the arguments above), i.e., S1mR N
S(R?Y) = SUmB In particular, S""® is measurable w.r.t. the vague topology of M(R9). Similarly,
one shows that S(RY)\S?"® is closed as a subset inside S(RY). Again, this shows that S@"® ig
measurable. Consider now the measurable sets

She.0) . ﬂ U SUmR) and S2e.) . m U SCemB)

ReN meN ReN meN
We see that

i) x € S&) if, and only if, for all x,y € x, it holds d(x, y) # 2r.
ii) x € 8@~ if, and only if, for every x € x, it holds that #Cy(x) < co and §(B,(Cx(x))) > O.

Therefore,
Sﬂ(Rd) — S(l,oo,oo) N S(Z,oo,oo)’

is measurable.
To see that F,,: S(RY) — S(R?) is measurable, recall F, = F,,, o F;, from Definition 3. It, therefore,
suffices to show that the following maps are measurable:

Fi.: SRY) — F,SRY c S(RY) and Fo,: Fi,SR?Y) — SRY).

For f € C.(R?), consider the evaluation by f, i.e.,
M;: SRY) - R, x> f fdx.
R4
If f > 0, we observe the upper semi-continuity of

M;oF,: SRy >R and  M;oF,,: F,SRY) - R.

We have lower semi-continuity for f < 0 since M_y = —M. Therefore My o F;, with i € {1,2} is
measurable in the cases f > 0 and f < 0 and hence, in general. Since the vague topology is generated
by (My) fec,rdy» W conclude that Fy , and F, are measurable.

Remark 277 (Fine details of Theorem 26).

e For S := F,S(RY), we have that

| JS™ € Sa@®?) ¢ fx: lim F,x = x} ¢ S®Y ¢ | )50 = MR,

neN neN

e M; o F,, is not upper semi-continuous on S@®Y) (in contrast to F; ,S(R?): The condition that
d(x,y) ¢ 2r—1/n, 2r + 1/n) Vx,y € F,x is crucial to ensure that clusters do not change sizes.
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Definition 28. We define the events that the origin is not covered by the filled-up Boolean model, i.e.,

G :={x e SRY|o ¢ BxX} and G, :=F, '(G) = {x € SRY) |0 ¢ Bx™).

This gives us, for x € R¢, that
Tgc () = Lg(Tax).

We will later consider the effective conductivities based on these events.
Lemma 29 (Approximation properties). Let x € S(R?) be an admissible point cloud.

i) For every bounded domain A, there exists an N(x, A) € N such that for every n > N(x, \)

xPNA=xnNA, in particular X = U x®
neN

ii) For every bounded domain A, there exists an N(x, A) € N such that for every n > N(x, A)

Bx” NA =BxNA, in particular Bx = U Bx®.
neN

iii) There exists an N = N(x) € N such that for everyn > N:

0¢Bx" — o¢Bx

In particular, (M, G,\G only consists of non-admissible point clouds.

Proof. 1) Boundedness of A implies that there are only finitely many mutually disjoint clusters
Cx(x;),i=1,..., N that intersect with A. Furthermore, because # (x N B,(A)) < oo and because

of Property 1 of admissible point clouds, we know
min{|lx —y|-2r|: x,yexNB,(A), x #y} >0

and Lemma 24 yields
min {0(EC(x)): Cx(x) NA#0} >0

This implies the first statement.

ii) By making A larger, we may assume A = [k, k] for some k € N. For n > N(Br([—k, k]d)),

[k, k]\Ex™ = [k, k]Y\=Ex.

Networks and Heterogeneous Media

[k, k]“\Ex only has finitely many connected components C;. Take one of these connected
components C; and suppose it lies in Bx. Then, it has to be encircled by finitely many balls B, (x)
in Zx. Let n; be large enough such that all these x lie in x™. Then, C; ¢ Bx"’. We may do so
for every C;. Take

N(x, A) := max {n;, N(B,([—k.k]))}.

For every n > N(x,A), the connected components C; of [—k, k]\Ex™ and [k, k]/\Ex are
identical since [k, k]Y\Ex" = [k, k]¢\Ex. Therefore, we get the claim

[~k K1\ B x" = ([~ A\Ex)\ U C;

Cicax®

= (-kk\Ex)\ | ) ¢ =[-kk\BEx

C;cBx
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iii) This is a direct consequence of Point 2. If x € ),y G,\G, then o ¢ Bx™ for every n but 0 € Bx.
Therefore, x cannot be admissible by Point 2.

Definition 30 (Surface measure of Bx). We define the surface measure for x € S(RY)

Ux(A) = HEL (A) = HT' (A NndBEx).

Loax
Note that z,,([0, 11¢) < H(B,(0)) - x(B,([0, 11%)).

Definition 31 (Intensity of random measure). Given a stationary random measure f, we define
its intensity

A(R) := E[([0, 1))].
We define the intensity of point processes by identifying them as random measures.

Lemma 32 (Convergence of intensities). Let X be an admissible stationary point process with finite
intensity A(X). Then,

lim AX™) = AX)  and lim A(uxem) = A(ux).

Proof. “Almost surely” is to be understood w.r.t. the distribution P of X.

i) By Lemma 29, we have almost surely X(”)([O, 1]") — X([O, l]d) as n — oo. Dominated
convergence with majorant X([O, l]d) yields
AX™) = B[x"([0, 11)] = BIx([0, 11*)] = AX).
ii) Again, by Lemma 29, we have almost surely BX™ N [0, 1]¢ — BX N [0, 1]¢, in particular
pon([0, 11) = HE L (10, 117) = HGa (10, 1) = px([0, 11°).
Dominated convergence yields, again, convergence of intensities.

Remark 33 (Local convergence). The convergence in Lemma 29 is much stronger than what is actually
needed to prove the convergence of intensities. Indeed, we could prove convergence even for so-
called tame and local functions f: M(RY) — R, among which the intensity A is just one special case

£6) = x([0, 11).
5. Effective conductivity and cell solutions

The structure (M(R?), B(M(R?)), P, 1) as in Definition 8 is a dynamical system:

Definition 34 (Dynamical system, stationarity, ergodicity). Let (Q,7,%) be a separable metric
probability space. A dynamical system T = (T,)re 15 a family of measurable mappings
7, Q — Q satisfying

e Group property: 7y = idg and 7,4, = 7, o 7, for any x, y € R%.
e Measure preserving: For any x € R? and any F € ¥, we have P (r(F)) = P (F).
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e Continuity: The map 7 : Q x R? — Q, (w, x) — 7.(w) is continuous w.r.t. the product topology
on Q x RY.

7 is called ergodic if the o-algebra of T-invariant sets is trivial under #.

Our practical setting will always be some Q ¢ M(R9), but we will still work with abstract dynamical
systems in Sections 5 and 6. In this context, let us mention that continuity of 7 was not needed in the
first place [22], but turned out to be very useful in the proofs concerning two-scale convergence [30].
Since we frequently use results from [30] and since we get continuity of 7 for free in our applied
setting, we will simply rely on this property.

5.1. Potentials and solenoidals

Let (Q, B(Q), P, 1) be a dynamical system. We write L2(Q) := L*(Q, ). The dynamical system T
introduces a strongly continuous group action on L*(Q) — L*(Q) through T, f(w) := f(r.w) with the
d independent generators

Dif = lim — (f (@e®)

d
HY(Q) := ﬂ D, c LAQ),

and the gradient V, f := (D, f,...,D,f)", we can define the space of potential vector fields

V2(Q) = (Vof | f € H'(Q) and f Vo f dP(w) = Opal.

Q

Defining Lsol(Q) = (Vgot(Q)l, we find with u,,(x) := u(t,w) that

L3,(Q) = {u € L(QRY): u,, € L)1, (R for P —ae. w € Qf,

L2,(Q) = {u e L(Q:RY: u, € L, (RY) for P —ae. w € Q, (5.1)

sol,loc

V2 Q) = {u e L2, (©): f udp =0},
o)
because Q is a separable metric [8] where

L2

‘pot.,loc

®RY) :={ue L},

(R%R%: YU bounded domain 3o € W'(U): u = V(p} ,

sol loc loc

R :=f{ue L, ®RERY: | u-Vodr=0 Ve e CIRY).

R4

For A c Q measurable, we define
V2 (AIQ) 1= clpuy {v,: v € Vi ().
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5.2. Cell solutions and effective conductivity

Definition 35 (Cell solutions). Let (€2, B(€2), ) be a separable metric probability space with dynamical
system 7 and let Q € B(2). We notice that for every unit vector ¢;, the map

VB —fel' . Vdp(w) = —<ei, v>L2(Q)d’
Q

is a bounded linear functional on the Hilbert space "Vgot(QlQ). Using the Riesz representation theorem,
we obtain a unique w; € V> (QIQ) such that (w;, v),, @ = —(ei, V) 2qu OF equivalently
po

Yy € V2 (Q): f [w; + €] - vdP(w) = 0.
Q

w; is called the i-th cell solution. The cell solutions satisfy

Wil < VP(@Q) < 1,

and can be grouped in the matrix
WQ = (W], e ,Wd).

Remark 36. We observe that by definition, w; is the minimizer in "Vgot(QIQ) of the functional

Eiw) = f %(wi+ei)2d7’. (5.2)
Q

Definition 37 (Effective conductivity A). Let w; be the cell solution on @ € B(Q). The effective
conductivity A based on the event Q is defined as

A = f(ld + Wo)'(I; + Wo) dP(w), (5.3)
Q
with 7, being the identity matrix. We observe for the entries (ﬂ[, j)i o of A that
Aij = f [ei + wi(w)] - [e; + w(w)| dP(w) = f le; + wiw)] - ¢; dP(w). (5.4)
Q Q

We write a4 > 0 for its smallest eigenvalue.

Lemma 38 (Convergence of cell solutions). Let (Q,),en € B(Q) and Q € B(Q) such that 19, — 1q
P-almost everywhere as n — oo and

o cither Q, O Q for every n, or
e there exist C > 0, r € (1,2] independent from n and continuous operators U, : (Vﬁot(QIQ) —
Voo (2) such that, for every n and every w € (Vgot(QnIQ), it holds that || U,wl|;rq) < C ||w||(v§m@n|g).

Then, the sequence of cell solutions wﬁ") to the cell problem on Q, satisfies
wl(.") — W in L>(Q)? as n — oo,

where w; € (Vgot(QIQ) is the i-th cell solution on Q

Vv € V2 (Q): f [w; + e;] - vdP(w) = 0.
Q
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Proof. We first check that the limit satisfies fa [w; + ¢;] - vdP(w) = 0 and then w; € (Vgot(QIQ).

i) In both cases, the a priori estimate yields an L>-weakly convergent subsequence of wﬁ") — w; €
L*(Q)? after extending wE”) to the whole of Q via 0. Letv € (Vgot(Q). We have 145, — 14 P-almost
everywhere, so dominated convergence yields

lim e, -vdP(w) = fei -vdP(w),
Q. Q

n—oo

while weak convergence yields

lim f w v dP(w) = f w; v dP(w).
n Q

n—oo

We also have
LZ(Q)d
Tow"” = w" —— w;,
n—00

which implies
]lQW,- = W;.

Therefore, with w; € L*(Q)%:

0=1lim | [(w" +e]-vdP(w) = f [wi + ¢;] - vdP(w).
Q

n—oo
n

ii) In both cases of the lemma, the space (ng(QIQ) c L*(Q) is closed and convex, so it is also
weakly closed. We construct a weakly converging sequence in (Vgot(QlQ) that converges to w;. Since
wi" € V2 (Q,IQ), we find v € V2 (Q) such that

1
I = T,z < .

Since wE") — w;, we get
LZ(Q)d

]la V(n)

w;.

n—oo

Note that (1g, — 1g) v\ is a bounded sequence that is weakly converging to 0 because for every
¢ € L*(Q) we find by dominated convergence that (1o, — 1g) ¢ — 0 strongly in L*(Q). Therefore, we

also obtain
(n) LZ(Q)U’

]lQV Wi.

n—oo

In the first case of the lemma, 1ov™ € V7 (QIQ), so we get that w; € V7 (QIQ). In the second case,
we obtain Iov™ € V;,(QIQ) and hence w; € V;,,(QIQ). Since being a Lj,-function is distinguished
from being a pure L’-function only by the Condition (5.1), the integrability of w; then yields w; €

V2 (QQ).

Corollary 39 (Convergence of effective conductivities). Let (Q,),cn C B(Q) and Q € B(Q) such that
1q, — 1q P-almost surely and

e cither Q, O Q for every n, or
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e there exist C > 0, r € (1,2] independent from n and continuous operators U, ‘Vgot(QIQ) -
Vio(L2) such that, for every n and every w € (Vgot(QHIQ), it holds that || U,wl|;rq) < C IIWII(V;[(QMQ).

Let A™ be the effective conductivity of Q, and A be the effective conductivity of Q. Then,

Aamn =2 q

(n)

Proof. This follows from Eq (5.4) and weak convergence w;” — w;.

Remark 40 (Variational formulation). There is another way to define A: For n € RY, Wgn (see
Definition 35) is the unique minimizer to

min f |n + cp|2 dP(w),
Q

V2, (@

and therefore
2 ) 2
n' An = f (s + Won|” dP(w) = min f 7+ ¢| dP(w).
Q eV (@) JQ

pot

This equality is related to Theorem 57.

5.3. Proof of Theorems 21 and 22

We will prove both theorems at once. The first part follows using the weak formulation, weak
convergence of both u and Vu’ as n — oo as well as standard PDE arguments. The second part is
proved in [30] using our notation and also before in [28]. The convergence of A™ in Part three is given
by Corollary 39. Hence, it only remains to prove the convergence of u,,.

When it comes to the latter, we have to distinguish between three cases:

i) There exists Cy > 0 such that, for every & € R? \ {0} and every n € N U {co}, it holds
P < Cof - AME.

Then, the proof is straightforward using the resulting uniform estimates on ||Vul|2 () + llull12(g)-
ii) A = 0: Then, convergence follows after assuming that f, € H'(Q) is uniformly bounded as well
as testing with Au, — f,,. This will eventually lead to an estimate

C
2 ()
”ﬂun - ﬁl”Lz(Q) < I (L Vﬁl - A an) — 0.

Afterward, we may use an approximation argument for f, bounded in L*(Q) using a standard
mollifier: f2 = f, = ns with [la — a * nsll;2(0) < dllall;2g). Then,

A 1
o _ (n) o _ S 2 140 2
fQV(l’tn un)ﬂ V(un uﬂ) + 2”14” u””LZ(Q) S 2A‘”f‘n f;’l”LZ(Q)-

iii) & - A¢ = 0 along some ¢ € R?\ {0}. Then, these & form a linear subspace and we may restrict
our testing functions to a dependence in the orthogonal direction, only. More precisely, we can
consider testing functions with support concentrated on the orthogonal plane to & as n — oo.
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5.4. Pull-back for thinning maps

In Section 6, we will use two-scale convergence to homogenize Eq (1.1) for fixed n. This process is
more convenient to handle if the underlying probability space is compact. Here we show that we may
take F,S(RY) as the underlying probability space instead of S(RY).

Lemma 41. Let P be a distribution on S(RY) and let S™ = F S(Rd) with the push-forward measure
P, :=PoF,. Recall G, := {x e SRY: o ¢ Elx(”)} and let G, {x eSM:0¢ Elx} =F,G,. Let w"

be the cell solutions on G, and w(") the cell solutions on G, for their respective dynamical systems.

Then, for every i, j€{l,...,d}, it holds that
f (W + e e;dP = f (7" + e - e;dP,. (5.5)
G, Gy

Lemma 42 (Properties of pull-back functions). Let (Q, %, P, 1), (Q, F, P, T) be dynamical systems,
¢: Q — Q measurable such that P = P o ¢~" and such that for every x € R?
poT,=T,0¢. (5.6)

Then, the following holds: For every f € L*(Q)?, we have f := fo ¢ € L*(Q)! with ||fll2qp =
WPl I € V2L, then £ € V2(Q). If f € [2,(Q), then f € I2,(Q). [ is called the pull-back
of f.

Proof. Due to ® = P o ¢!, we immediately obtain for arbitrary measurable g € L'(Q)¢ and its pull-

back g
fgdi):fgoqsdsozfgdp (5.7)
Q Q Q

Therefore || fll2@p = IIfll2@q and (5.6) yields f € V2 (Q) = f € V2 (Q). For f € L2 (D),
f € L2 (Q), follows from ¢ o 7, = 7, o ¢ and checking

f f@w) - Vo(x)dx = f f@.w) - Vp(x)dx =0
A A
for P-almost every w and every ¢ € C!(A) on a bounded domain A C R%.

Proof of Lemma 41. We use Lemma 42 for ¢ = F, with (Q, 7, P, 1) = (S(R?), B(S(R?)), P, T), where
7, is the shift-operator on S(R) and B(S(R?)) is the Borel-o-algebra generated by the vague topology,
and (Q,7,P,7) = (S™), B(S™),P o F;!,7) again with shift-operator and Borel-o-algebra. Let w;
be the pull-back of WE") according to Lemma 42. We see F,;I(}n = G, so w; has support in G,,. Let
B € V2,(S™) with [W{"” = %ll,2, 0 < +. The pull-back v € V2 (Q) of ¥y satisfies |[W; — vell 2, < 1
and hence, w; € V2, (G,IS(R)). We observe (WE”) +e;)lg, € L2 (S™) with the pull-back (w;+e¢;)1¢, €
L (S(RY)). This implies w; = WE"). Eq (5.7) yields Eq (5.5).

6. Proof of Lemmas 7 and 10

We first collect all the tools needed to prove the homogenization result for minimally smooth
domains (Lemma 10).
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6.1. Extensions and traces for thinned point clouds

Theorem 43 (Extending beyond holes and trace operator). There exists a constant C > 0 depending
only on n € N and My > 1 such that the following holds: Assume that Q C R? is a bounded Lipschitz
domain with Lipschitz constant My, x< € F,S(R?) and xy C x such that for every x € xg it holds
B,,(x) C Q. Then, there exists an extension operator

Us,: W0\ Bxg) —» W),
such that (Usx,u)p\ax, = u and

Ut 2y < Clillzomsgy s (VU < ClIVull2\axp) - 6.1)

Q”“LZ(Q)

Furthermore, there exists a trace operator
Txo: W0\ Bxp) > LA(0Bxg) = LX(0Bxq, H'™),

such that T ,u = ulsgx, for every u € Ccl.(Q) and

||7-xQM||L2(aE|xQ) <C (”u”LZ(Q\E(XQ)) + ||Vu||L2(Q\EXQ))' (6.2)

Proof. For every xp C x withx € F,S(R?), the set O\ Bx, 18 minimally smooth with 6 = min {1/n, r}
and, M = max{\/%, MO}. Furthermore, the connected components of Bx, have a diameter less
than 2nr. The existence of U, satisfying Eq (6.1) follows from [5, Lemma 2.4] (actually, this was
pointed out before by [7, Section 3], but the implications there are not obvious). The existence of 7,
satisfying Eq (6.2) is provided in [9].

6.2. Stochastic two-scale convergence
Definition 44 (Stationary and ergodic random measures). A random measure y,: Q — M(R?) with

underlying dynamical system (Q, ¥, P, 1) is called stationary if

Hr,w(A) = (A + ),

for every measurable A C R?, x € R?, and P-almost every w € Q. u, is called ergodic if it is stationary
and 7 is ergodic.

Definition 44 is compatible with Definition 8 given in Section 3 by considering the canonical
underlying probability space (M(R4), BIM(RY)), P,, ) with P, being the distribution of .

Theorem 45 (Palm theorem (for finite intensity) [17]). Let u. be a stationary random measure with
underlying dynamical system (Q, F, P, T) of finite intensity A(iL).

Then, there exists a unique finite measure pp on (Q,F) such that for every g: R x Q — R
measurable and either g > 0 or g € L! (Rd xQ, L4 ®/J7>).'

f f ¢, 720) dpty () dP() = f f ¢(x, ) dup(w) dx.
Q JRA R JQ
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For arbitrary f € L'(R?) with fRd fdx =1, we have that

ur) = [ [ oo duto dr)
Q JRra
in particular, up(Q) = A(u). Furthermore, for every ¢ € C.(R?) and g € L'(Q; up), the ergodic limit

tim [ 00 5(r:0) duot = [ [ 609@) dun(@) o, 63)
R4 R4

-0
holds for P-almost every w. We call up the Palm measure of .
For the rest of this subsection, we use the following assumptions.

Assumption 46. Q is a compact metric space with a probability measure P and continuous dynamical
system (T)ega. Furthermore, p,: Q — MR?) is a stationary ergodic random measure with Palm
measure pp. We define ué (A) := g, (e7'A).

According to [30] (by an application of Eq (6.3)), almost every w € Q is typical, i.e., for such an w,

it holds for every ¢ € C(QQ) that
lim|Q|™" f $(r:w)dx = f ¢ dP.
=0 0 € Q

Definition 47 (Two-scale convergence). Let Assumption 46 hold and let w € Q be typical. Let (1°),..
be a sequence u® € L*(Q, u®) and let u € L*(Q; L*(, up)) such that

sup ||ME||L2(Q,;43) < 0o,
&0

and such that for every ¢ € C°(Q), ¢ € C(Q2)

i [ wCopu(r:0) 40 = [ [ o e00@) dur(@) . (64)
E— Q Q

L ) 2
Then, u® is said to be (weakly) two-scale convergent to u, written u® 2
Remark 48 (Extending the space of test functions).

e For K € N, let y1,...,xx € L*(Q,up). The original proof of the following Lemma 49 in [30]
shows that we can equally define two-scale convergence additionally claiming Eq (6.4) has to hold
for every ¢ € C(Q) and y =y, where iy € C(Q). In particular, given a fixed y € L*(Q, up), we

can w.l.o.g. say that two-scale convergence of u® 2y implies u*x(7:w) it uy.

e Using a standard approximation argument, we can extend the class of test functions from ¢ €
C2(Q) to ¢ € L*(Q), provided p,, is uniformly continuous w.r.t. the Lebesgue measure. Then,
strong L?(Q)-convergence implies two-scale convergence for u,, = £

Lemma 49 ([30, Lemma 5.1]). Let Assumption 46 hold. Let w € Q be typical and u® € L*(Q, i) be a
sequence of functions such that |[u®|| 2oy < C for some C > 0 independent of €. Then, there exists a

subsequence of (U)o and u € L*(Q; L*(Q, up)) such that u® 2 yand

el 2 0:r2 ) < ligl_glf”us 220 (6.5)
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Theorem 50 (Two-scale convergence in W"2(Q) [30]). Under Assumption 46, for every typical w € Q
the following holds: If u® € W'(Q;R?) for all & and if

sup (1420 + IVU°ll 20y ) < 00,

>0

then, there exists a u € W"(Q) with u® — u weakly in W'*(Q) and there exists v € LZ(Q;(Vgot(Q))

2
such that Vu® = Vu +v weakly in two scales.

6.3. Two-scale convergence on perforated domains

Due to Theorem 26, the set F,S(R?Y) ¢ M(RY) is compact, hence the above two-scale convergence
method can be applied for the stationary ergodic point process X™ taking values in F,S(R?) only.
To be more precise, we consider the compact metric probability space Q = F,S(R?) and a random
variable X": Q — S(RY) such that X" and X have the same distribution. By the considerations made
in Subsection 5.4, they will both result in the same partial differential equation.

Theorem 51 (Extension and trace estimates on Q% for x € F,S(RY)). Let Q C RY be a bounded
domain, n € N be fixed. Let X be an admissible point process with values in F,S(R?). For almost every
realization x of X, we have: Let Q%, and GZ be defined according to Definition 4.

i) There exists a C > 0 depending only on Q and n and a family of extension and trace operators
Usx: WO - W), Tex: WHHQ5) = LX(OG?),
such that for every u € W'2(Q%) it holds

|[Uesctt]] 12, < € Mitllwrzgoe)

W12(Q)
2 2 2 2
Tsx”“mmc;;) < C(”””LZ(Q;) te ”V””B(Q;))'

|
i) If u® € W'2(Q%) is a sequence satisfying sup, ||u®llwizgs) < oo, then, there exists a u € W'2(Q)

and a subsequence still indexed by € such that U, u® — u weakly in W'*(Q) and there exists
veLXQ; (Vgot(Q)) such that

VU 2 Vu+v, Vit 21 (Vu+v),
where G, := {x €eF,SRY|o ¢ Elx}. Furthermore, for some C > 0 depending only on Q and n

2
L2(Q)

T oxu® — ”)”;(acg) <C (”(ng,xug - u” + & ||V(ng,xu‘9 - Vu”2 ) . (6.6)

| 12(0)

Proof. 1) follows from using Theorem 43 on £™!G¢ and rescaling the inequalities (6.1) and (6.2).
ii) is a bit more lengthy. The existence of a subsequence and u € W'*(Q) and v € L*(Q; L}, (Q))

such that U .u® — wu and VU u® = Vu + v follows from Theorem 50. We observe that
lo,(rx) = Tgo(0 and Tgc(f) = T,c(x). Therefore, 1o cVUs® = (Vu+v)lg,
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(Remark 48(i)). Furthermore, we observe with Q5 . := {x € Q: dist(x, dQ) < enr} such that we have
(eB8xNQO)\Gi C Q) , and

e—0 . .
< 1y:, — 0 pointwise a.e..

]laax - 1G§

Ther_efore, 1.ax — 1z — O strongly in LP(Q), p € [1, 00), and hence, taking any arbitrary ¢ € C(Q),
v e C(Q), we find

f (Lo = Loz ) VUt 32300 dx < || Lo = Lz [ 12 ) IV Uett®]] 2 ) 1610 W1 = O,
0

which means that 1,5 VU, -u® and Vu® = 15 VU, u® have the same two-scale limit
2s
Vu?® — Ig,(Vu +v).
E—

Due to the absolutely bounded diameter of the connected components of Bx, there exists a domain
B D Q big enough such that, with the notation of Definition 4,

Oned(J,(x,B)=0neBx VYee(0,1).
Now let Uy : W'*(Q) — W'2(B) be the canonical extension operator satisfying

|[Uot]| o, < Clltllizgy  and  ||[VUu||,, ) < ClIVull2(g) -

(B)
Reapplying Theorem 43 to the trace on &' (B\e B (Ji(x, B))), we find for some constant C
independent from & and X but depending on Q, B, and n and varying from line to line:

2
L2(£08(J4(x,B)))

Tt = )| 1250e) < & [T UoUett® = Ugu)|

< C ([t Ut = Ugul[} 5, + & [VUUsae® = VUl

d

2

L2(Q)

<C (”(H&X”s - u” L2(0)

+ & ||V(Ll,;,xu‘9 - Vu”2 ),
as desired.

6.4. Existence of solution on perforated domains (Lemma 7)

Due to the perforations, d,u° cannot be embedded in a common space in a convenient way for
the application of the Aubin—Lions theorem. Hence, we use the following general characterization of
compact sets.

Theorem 52 (Characterization of compact sets in L”(I; V) [24, Theorem 1]). Let V be a Banach space,
p €[l,00)and A C LP(I; V). A is relatively compact in LP(1; V) if, and only if,

15}
{f v(r)de|v e A} is relatively compactin VV0<t; <t, <T, (6.7)
n
sup |Isx[v] = Vllzr©,7-nvy — 0 as h — 0, (6.8)
ved

where s,[v(-)] := v(- + h) is the shift by h € (0, T).
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We can now establish the existence of a solution for fixed £ > 0 to our partial differential equation.

Theorem 53 (Existence of solution on perforated domains and a priori estimate). Let x € F,S(RY).
Under Assumption 6 and with Q% as defined in Definition 4, we have that there exists a solution
u® € LX(I; W'2(Q?)), with generalized time derivative d,u® € L*(I; W*(Q%)*), to Eq (1.1), i.e.,

o’ =V -(AW®)Vu®) = f inlx Q5
AW )Vu® -v =0 onlxoQ 6.9)
AW®)Vu® -v = eh(u®) onlxdQ5\00 ’
u®(0,x) = uop(x) in OF,
which satisfies the following a priori estimates for & small enough
esssup (I, < EXpClluolZ: g, + C:]
tel
1
£112 2
”Vu ||L2(I;L2(Q§§)) S m(]‘ + Cl exp(cl))[lluolle(Q) + C2] (610)
||6l‘u€||[2‘2(1;wl¢2(Q§§)*) S C’

where
Cr:=T(+3CL)  and  Cy:=TLAOYLYD) + I} 1120

C is from Theorem 51 depending only on Q and n and where C > 0 is independent of &.

Proof. We will only sketch the proof. There are 3 main steps: Deriving a priori estimates, existence of
Galerkin solutions and the limit passing.
1) Testing Eq (6.9) with ©® and using

1d .,
Ot uhwragzy gz = 5 3 M M2 g
yields
1d £112 & £112 & & &
EE”u ”LZ(Q‘;) +A(u )”Vl/l ||L2(QFX) - S(h(l/l )7 u )Lz(aGi{) = (f’ u )Lz(st)

The a priori estimate then follows from the Gronwall inequality and the trace estimate in
Theorem 51. For the a priori estimate in d,u®, one simply uses

Ou®, ) = (A(Ms) Vu©, V‘P)LZ(Q;) + S(h(us)’ 90)L2(6G§;) + (fa SO)LZ(Q;)-

ii) Let (V,))men be a family of finite-dimensional vector spaces, V,, ,/ W'(Q%?). Solutions to
Eq (1.1) exist in V,,, that is,

ity =V - (A, Vut,)) = Py f inlxQr
Aug,,) Vg, v =0 on I X 0Q
Al Vg, - v = eh(ug,) on I X 00°\0Q
UG (0, x) = Ptg(x) in Q°,
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where P,,: Wl’z(Qi) — V,, is the orthogonal projection. This can be shown via, e.g., [21,
Theorem 3.7] which yields solutions for some I’ := [0,7'] c [0,7T]. In this reference, their
y € WHP(I') corresponds to the parameters of the Galerkin approximation, i.e., UGy = >y yivi with
vi € V, being fixed orthonormal base vectors. These solutions ug, satisfy the a priori estimate in
Eq (6.10) as well as

sup ||(9zu‘(€m)||l_2(1';v,;) < 00, (6.11)

meN
in particular, we may extend the solution u{, ) to the whole time interval / (with still uniform bounds
in m).

iii) The a priori estimates yield a L*(I; L*(Q%))-weakly convergent subsequence to some
u® € L*(I; L*(Q%)). Theorem 52 and Eq (6.11) imply pre-compactness of (uf, )new C L*(I; L*(0%)) as
well as pre-compactness of (7 xuf,, Jmen © L*(I; L*(3G)), see Remark 54. Testing with functions in
L*(I; V,,) and passing to the limit m — oo finishes the proof since |, V. is dense in W2(Q2).

Remark 54 (Procedure of Simon’s theorem). We will use Simon’s theorem (Theorem 52) on multiple
occasions. The general procedure will always be the same. We will exemplaily prove the following
result: Let I = [0,T], U c R? be some bounded Lipschitz-domain and 7 : W'3(U) — L*(dU)
the trace operator. For each k € N, let u; € L*(I; W'*(U)) with generalized time-derivative ,u; €
LX(I; Wh(U)*) via W2(U) — LX(U) — WH(U)*. Assume that

C = sup |lugll 2wz < and C :=sup ||(9tuk||Lz<1;V;) < 00,
keN keN

for either the situation that W'2(U) c V, ¢ L*(U) with |lly, < [lly2, and uniformly continuous
injective maps Uy : Vy — W'2(U) or for the situation that V, ¢ W'?(U). We further claim u(¢) € Vy
for almost every ¢ € 1. Then,

(Upi e © LA(U) resp. (uran © LAU)  and (T uen C LA@U),
are relatively compact.

Exemplarily proof for the procedure of Simon’s theorem. We need to show Conditions (6.7) and (6.8)
from Theorem 52.

1) Condition (6.7) usually relies on compactness results for the stationary setting. Since

5]
f uy, dt
n

compactness of 7 yields pre-compactness of ( ft fz T udt) oy = (T ft ltz u dr), oy € L*(0U), so we
have shown Condition (6.7).
ii) Condition (6.8) will additionally require some a priori estimate on d,u;. We have

< sup VT lugllzgwraqy < o0
wi2Q) kel

sup
keN

15}
ur(ty) = w(ty) + f Oguy ds,
n

as elements of W!*(U)*. Using the Cauchy—Schwarz inequality twice, we get for i € (0, T):
T—h
llsp[ur] — uk”iz((o,T_h);Lz(U)) = [) (ur(t + h) — (0, wi(t + h) — (1)) 2y, dt
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T—h t+h
= f < f 8tuk(s) dsa Mk(t + h) - uk(l.)>W1f2(U)*,W]‘2(U) dt
0 t

T—h t+h
< f I A () dsllp2vey Uit + h) — U (Ol lwr2 ) dt
0

t
< hlOauallzzqrvey 2Nz w2y < 2hCC.

Compactness of 7 implies that for every 6 > 0, there exists a Cs > 0 such that

2 2 2 1,2
”TVHLZ([)U) S C(S”v”Lz(U) + 5||VV||L2(U) VV € W (U)

Therefore,

2 2
||5h[Tl/lk] - Tuk”Lz((O,T—h);Lz(aU)) = ”T[Shuk - uk]”LZ((O,T—h);LZ(aU))
2 2
<Csllsnttr = ugll72 ) + ONVSnue = Virgll

L2(U)
<2hCsCC +26C.
The estimate is independent of the chosen u;, and Condition (6.8) holds.

We have shown both conditions and concluded.

6.5. Homogenization for minimally smooth domains (Lemma 10)

We can now pass to the limit € — 0 for the homogenized system. Some extra care has to be taken
since Q% # Q\& B x, especially in the boundary term. However, we show that the difference becomes
negligible for the two-scale convergence as € — 0.

Theorem 55 (Homogenized system for BX™). Let X be a stationary ergodic point process with values
in F,S(RY). Recall the surface measure ity from Definition 30

P = HLD

LoBx*

Under Assumption 6, we have for almost every realization x of X and with Q% as defined in
Definition 4: Let u® be a solution to Eq (6.9) and let U, be given as in Theorem 51. There exists a
u, € L*(I;W"(Q)) with generalized time derivative du, € L*(I;W"(Q)*) such that for
a subsequence

e LALAQ) LALW'2(Q)")

U i ——— u, and ou’ —o\ P(G,)0,u,,

e—0 &>

and u,, is a (not necessarily unique) solution to

P(Gn)atun - V : (A(un)ﬂ Vun) - /l(,uX)h(un) = P(Gn)f ll’l I X Q
A(u,)A™ Vu, -v =0 onIxdQ (6.12)
u, (0, x) = P(G,)up(x) in Q,

with A" being the effective conductivity based on the event G, = {x € F,S(RY) |0 ¢ Bx/ defined in
Definition 37. Furthermore, u, satisfies the following a priori estimates

2 2
€ss Sup ||un(t)||L2(Q) S eXp(Cin))[”M()”LZ(Q) + C;")]
tel
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V2122112000 < %(1 + € exp(Cy")lluoll 7 g, + €5,
for
C\":=T(1 + I;El(l}i))(l +2Ly)  and  CY = Ifla g + 2T IE»E’L(ff))|h(0)|
Proof. The a priori estimates in Eq (6.10) and Theorem 51 tell us that
U, u® 2 U, VU, u° A Vu, +v, u’® e 2 1g,un, Vu?® X 1g,(Vu, +v),

for some u, € L*(I; W'*(Q)) and v € L*(I; L*(Q; V7, (Q))) where the two-scale convergence is with
respect to the Lebesgue measure £¢. The uniform bound for 8, in Eq (6.10) together with Theorem 52
yields (for yet another subsequence)

L2(I;L%(Q))
U, xu® — u,, (6.13)

-0

compared to, e.g., Remark 54.

For ¢1,¢, € C([0,T] x Q) with ¢y(T,-) = 0 and ¢ € H'(Q) with [ Vo dP = 0, we use
e(t,x) == @1t,x) + epa(t, Y(T:x) as a test function and pass to the limit using two-scale
convergence. Furthermore, we use

AWV 2 Al Vi +v)  and k() 225 hiuy), (6.14)

which we will prove below. We then obtain the two equations

T T
—f f u,0py dx dr + f upp dx + f f f Vo,-A(u,) (Vu, +v) dP(x) dx dr
0 0 o 0 0 JG,
T T
+f fh(u,,)(pl dxdtfd,up(x) = f ffgol dxds, (6.15)
0 0] Q 0 0

T
f f f eV - A(u,) (Vu, +v) dP(x)dxdr = 0. (6.16)
0 JoJg,

The second equation holds true for every choice of ¢, and i as above if we make the standard
ansatz v = 3%, Qu,w (”) (see the remark following this proof), where w(") are the cell solutions from
Definition 35 for Q = F S(RY) and P = P being the distribution of X. Plugging this information into
the first equation yields (6.12). The a priori estimate follows from testing Eq (6.12) with u, and the
Gronwall inequality (see, e.g., the proof of Theorem 53). It only remains to prove Eq (6.14).

Now, we show the first part of Eq (6.14). By Remark 48, we know that

Alu) Vit 2_0\ 16, At (Vity + v).

Using dominated convergence and Eq (6.13) yields a subsequenge such that A(U,xu®) = A(u,) in
LP(0,T; LP(Q)) for every 1 < p < co. Using test functions ¢ € C(Q) and ¥ € C(€2), we observe that

(AU i) — Au)) Ve 220, 50 AWVt 2 1, AGun) (Vi +v).
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The second part of Eq (6.14) is more difficult. Given ¢ € C 1(@) and ¥ € C(Q), we set y**(x) :=
Y(7:x) and find

e fa M @M (dH ) = |

. fg h(un(x)) (%) Y(x) dpp () dx

= Lcs R ()™ (x)dH ™ (x) - & j;(;a h(u4, ()= (x)dH ™ (x)
oo [ et e [ hesen e
o ONedBx
" gf M) COdH () - f fgh(unw) () Y() dap () d].
ONedBax 0

We will show that all these terms go to 0 as € — 0. Due to the Lipschitz continuity of 4 and
Stampacchia’s lemma, we find

”Vh(ug)”H(Q;) < [1Allcos ||VM€||L2(Q§K) s ||h(ug)||L2(Q;) < [1Allco (||M8||L2(Q;) + 1),

IVAu)l12¢0) < NlAllcor [[Vitnllz2g) » 12Cu)ll20) < [IAllcos (IlunllL2<Q) + 1)-

Furthermore, U, u® — u, strongly in L*(I; L*(Q)) and weakly in L*(I; W!'*(Q)) implies that
h(U.5u®) — h(u,) in the same topologies. GZ as in Definition 4 fulfills 0G% = 905\00. Eq (6.6)
together with the strong convergence of U, ,.u® tells us

2

& [|A(Tescte®) = W(T o) (112065 =

LhS |

7.:5,3&(”8 - un)

0,

2
L(ILI20GE)

which already shows convergence in the first summand. Similar considerations to the proof of Eq (6.6)
tell us that 7  : W1’2(Q§) — L*(e8BxN Q) is a bounded linear operator, so we can consider the trace
not only on dGZ but even for clusters close to the boundary. We have, with C > 0 changing from line
to line but independent of &,

|8 ff(]leaax - ]lﬁGg)h(Mg)QOIﬂg’X dH! (‘],l‘|2
1Y
< CellhGO)l; el

LX(I L2 ((£08x)\0G%)) L2 L2 ((£08x)\0G%)
2 2 d
< C{”]lQﬁ,h(ug)”LZ(LLZ(Q» + 8||]1Qf;’rVh(ug)”LZ([;Lz(Q))} . L (Qir)a

where
Qs , = {x € Q|dist(x,0Q) < enr}.

We observe that LY(Q%,) — Oas & — 0, i.e., 1g:, — 0 point-wise L?-almost everywhere. We know
that 2(u®) — h(u) strongly in L>(1; L*(Q)), so dominated convergence yields that the second summand
also converges to 0.

2 bl X
The third summand follows from two-scale convergence, i.e., h(u,) N h(u,) for almost every x.
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Remark (On the special solution of Eq (6.16)). Our special ansatz v = Zle Biunwgn) as a solution to
Eq (6.16) for a fixed, given u has a long tradition, where we mention [5] for perforated domains or the
more ‘“historical” papers [22, 30]. For readers familiar with periodic homogenization, let us mention
that due to v being (ng(Q) problem (6.16) is the probabilistic equivalent of

Vo € C(Q),y € H,,([0, 1)?): f f e(X)V W (NA(Vu + Vyup) dxdy = 0.
o.n¢ Jo

Now given a u, € L*(I; W'*(Q)), we are looking for a solution v € L*(I; L*(Q; V5, (Q))) to

T
f f f e Vo - A(u,) (Vu, +v) dP(x)dxdt = 0,
0 0 JG,

for arbitrary ¢, € C'([0,T] x Q) and ¥ € H'(Q) with fQ Vo dP = 0. Since functions of the form
Valg,are dense in V2, (G,|Q) for y € H'(Q) with fQ Vi = 0 (by definition of V7 (), this equation
actually has to hold for arbitrary ¢ € (Vgot(G,ZlQ). By the fundamental lemma of calculus of variations,
this solution must satisfy for almost every ¢ € I and almost every x € Q

¢ € V2 (G,I): f ¢ - AQu,) (Vi +v) dP = 0.
Gn

Next, we see that v := Y7 du,w™ € L2(I; L*(Q; V2u(G4lQ))) is indeed a solution since the w
are cell solutions

d
f ¢ - AGu,) (Vu, +v) dP = Z ity Ay f [e; + wi] - ¢dP = 0.
G, Py G,

On the other hand, such a solution is unique: First, observe that functions of the form ¢, - Vi are
dense in L*(I; L*(Q; V3,(Q))). Then, we consider the coercive bilinear form on L*(I; L*(Q; V5, (Q))):

T
B(vi,vy) ::f ff V1 - A(u,)v, dP(x) dx dr.
0 0 JG,

Lax-Milgram tells us that the solution v € L*(I; L*(Q; V3,(G,|Q))) to

T
B(-,v):[le- f f f v1~A(un)Vund]P(x)dxdt],
0o JoJaG,

is unique, which is equivalent to

T T
0= B(¢’ V) + f f f ¢ : A(un)vun = f f f ¢ : A(Mn)[vun + V],
0 JoJG, 0 voJG,

which justifies the standard ansatz.
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7. Proof of main theorem (Theorem 17)

Theorem 17 is a consequence of the following.

Theorem 56 (Main theorem: homogenized limit of admissible point processes). Let X be a stationary
ergodic admissible point process with distribution P such that axC is statistically connected. Under
Assumption 6, let u, € L*(I, W'*(Q)) be a homogenized solution from Theorem 55 for the thinned point
process X™.

For any subsequence of (u,),cn, we are able to extract yet another subsequence that converges to a
u € L*(I; WY(Q)). This u is a (not necessarily unique) weak solution to the initial value problem

P(G)ou — V - (A(u)A Vu) — A(ux)h(u) = P(G) f inlxQ,
Aw)AVu-v=20 onlxdQ,
u(0, x) = P(G)up(x) in Q.

Here A is the effective conductivity defined in Definition 37 based on the event Q = G = {x €

SRY) o ¢ Bx}, Q = SRY), P = P and ANux) is the intensity of ux := Wdaéx

aq > 0 being the smallest eigenvalue of ‘A and L, being the Lipschitz constant of h

Furthermore, with

ess sup (D)l g, < exp(C)llaal g, + Col

P(G)

2
||VM||L2(1 [2(Q) = m(l + eXp(Cl))[”uO“LZ(Q) + C2]9
where ) Aux)
Cl = T(l + P(GX) (1 + 2Lh)) and 2 = ”f”iz(l;H(Q)) +2 P(é) |h(0)|

Proof. We note that A™ from Theorem 55 is defined with cell solutions on Q = F,S(R¢) and the
push-forward measure P o F,!. We use the pull-back result from Lemma 41 to obtain a representation
of A™ in terms of Q = S(RY) and the original probability distribution.

Lemmas 32 and 29 and Corollary 39 yield respectively

Alpgw) = Aux), P(G,) — P(G) > 0, A - A, @am = @z >0,
for G, := {x|o ¢ Bx"} and G := {x|o ¢ Bx}. From the a priori estimates in Theorem 55, we
furthermore find
hm Sup (”un(t)”L‘x’(OT L2(Q)) + ||Vun||L2(I L2(Q))) < 0,

n—oo

lim sup (|0, unllz2 w120y < o0,

and Aubin—Lions (or more general, Theorem 52) yields pre-compactness. These uniform bounds
together with compactness arguments yield the existence of u € L*(I; W'?(Q)) with generalized time
derivative d,u € L*>(I; W'2(Q))*, such that for a subsequence

LALW(Q)) LW Q) LX(I;L4(0)) L1 LZ(Q))
U, —————u, O, ————— O, u, ———— u, h(u,) ———— h(u),

n—o0o n—o0o n—oo

as well as

2
A, APV, ﬂ\A( AV .

From here we conclude.
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8. Criterion for non-degeneracy of effective conductivity

In this chapter, we will establish a criterion for BXC to be statistically connected (Definition 15),
that is Theorem 60. To be precise, we will show that

e\ Ae; > 0,

as all other directions 7 € R? can be shown analogously via rotation. The procedure will be based
on [13, Chapter 9]. The matrix A corresponds to the matrix A° there. We will also see that axC is
statistically connected if 2xC is statistically connected.

Notation. Given a fixed admissible point process X, we write in this section
8 :=8X =2:==EX

Most arguments work for more general random perforations Z and their filled-up versions as long as
= has no infinite connected component (Theorem 58 needs additionally that almost surely, the bounded
connected components of R?\Z have non-zero distance to the infinite connected components). We
refrain from doing so since we would need to introduce the notion of stationary random sets and the
main focus here lies on point processes.

8.1. Variational formulation

The following theorem gives us a different point of view on the effective conductivity A:

Theorem 57 (Variational formulation [13, Theorem 9.1]). For every ergodic admissible point process,
we have almost surely and for every n € R%:

Ay =limn™? inf f |77 - Vv|2 dx,
[0,2]N\E

n—e yeC([0.n1d)
where A is the effective conductivity based on the event {o & =}.

The first observation we can make is that the effective conductivity depends monotonously on the
domain: The larger the set of holes, the lower the effective conductivity. The question arises in which
cases this term becomes 0. This should only happen if R‘\Z is “insufficiently connected”. Intuitively,
we want v & —1- x +const, but at the same time, v needs to be 0 at the boundaries. If our region is badly
connected, we can hide large gradients inside the holes, see, e.g., Figure 3. As in [13], we will see that
the existence of sufficiently many “channels” connecting the left to the right side of a box [0, n]¢ will
ensure e} Ae; > 0. Before we do that, we establish an important fact:

We have defined statistical connectedness (Definition 15) via the filled-up Boolean model B.
Unfortunately, filling up holes is non-local (depending on the size of holes), which is troublesome on
the stochastic side. However, an analogue of [13, Lemma 9.7] tells us that the effective conductivity
of both the Boolean model = and its filled-up version B are the same.

Theorem 58 (Filling up holes preserves the effective conductivity). For every ergodic admissible point
process, we have almost surely

N A = limn™? inff |17 - Vv|2 dx = lim n™ inff |17 - Vv|2 dx,
n—oo [0.21\8 [0,n]\E

v n—oo v

where the infimum is over v € C7([0, nl9).
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Figure 3. High versus low conductivity. The balls represent Z. The white area corresponds
o o 2
to v ~ —n - x + const. Black lines indicate large contributions to f[o a2 |17 + Vv| dx.

Proof. As mentioned before, this is a variation of [13, Lemma 9.7] fitted to our purpose. Let

e K be the set of islands (i.e., connected components in R?\E of finite diameter) of diameter < s
that intersect but do not lie inside [0, n]¢.

e L’ be the set of islands of diameter > s that do not completely lie inside [0,7n]¢ and that are
encircled by a Z-cluster of size larger than s.

All the islands in K¢ and L} belong to connected components of R*\Z different from &C (the unique
unbounded connected component). Since X is admissible, almost surely they all have non-zero distance
to &C. Therefore, the following infimum decomposes, with all the infima being over v € C7([0, n]?)

. 2 . 2 . 2
1nff |77 - Vv| dx = 1nff |17 - Vv| dx + mff |17 - Vv| dx
"o Jon\E " J0nN\ENKRULY) b IR

n

. 2 . 2
= 1nff |n - Vv| dx + 1nff |n - Vv| dx
Y J(0n\B)\(KUL) v JkuL

= inf f - vy dx+ C,
[0,n1\&

v

with )

| < |n | £k + L)
and where the second equality comes from the fact that filling up islands that lie completely inside
[0, n]¢ does not change the value of the infimum. Now, we observe

o LYUK?) ~ O(ni™) for fixed s, so lim, ., n™?LYK?) = 0 and
e denoting by L all islands of diameter greater than s, we have almost surely

lim n~¢ LYLE) < lim n™9 LYL* N [0,n]?) =: density(L*) = P(o € L*).

All islands are of finite size, yielding (), L* = 0. Hence, lim,_,., density(L*) = 0.

Choosing s sufficiently large finishes the proof.
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Figure 4. Percolation channels for different k.

8.2. Percolation channels

Definition 59 (Percolation channels (see Figure 4)). Fix a ky . € N. We consider the lattice Z¢ ¢ Z¢
and the cube with corner z = (zy, . .., 24) € Z¢

d
z¢:=79n[0,n) and K, := Xz, z + 1]
=1

and call two vertices z, 7’ neighbors if their ['-distance is equal to 1.
We call z open if
= ~ -1
E Nk K. = 0.
An open left-right crossing y = (z\1, ..., z?) of Z¢ is called a percolation channel in Z¢, i.e.,
i) 2, z0*D are neighbors for each i < I,
ii) all the 7' are open, and

i) 2" =0andz" =n - 1.

We define the quantity (depending on the random = and on k)

N(n) : = max {j|yi,...,y; are disjoint percolation channels in Z¢}

= “maximal number of disjoint percolation channels in Z*”

and the tube L(y) corresponding to the pathy = (z",...,z?) as

L(y) = | kKo

i<l

Statistical connectedness of RY\= then reads as follows:
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Theorem 60 (Percolation channels imply conductivity). For almost every realization x of an ergodic
admissible point process, we have for E = Ex

n—eo yeC([0.n])

limn™  inf ler - Vv| dx > hm sup( (n)) .
[0,)\E

In particular, the effective conductivity is strictly positive if almost surely

N(n)

nd—l

lim sup

n—oo

> 0. (8.1)

Proof. This is an analogue of [13, Theorem 9.11] and relies on defining a suitable vector field

7 o - i .
F,: [0,k7} n]¢ — RY inside channels y = (z', ..., z") on Z¢. We want F, to satisfy the following

scale

° |77)y(x)| = 1 for every x inside the tube L(y) and ?y(x) = 0 outside.

° 77)7 is parallel to dL(y) except on corners as well as dL(y)- := Ko N {x; = 0} and IL(y), :=
(](Z(l) N {xl ksclale }

o F(x) = e, for x € OL(y)_ U OL(Y)s.
e For the standard normal vector v to dL(y):

— — -1
(e1—=Vv)- F,dx = (x; =V)F, - vdH" (x). (8.2)
L(y) OL(y)
Thus, the vector field was deliberately chosen such that the Gaul divergence theorem only yields

o ) . . . -
contributions from the “starting” and “ending” surfaces. Figure 5 illustrates how F',, can be chosen to
satisfy these properties.

The rest is simple. Take i, . . ., Yn@) disjoint nonself-intersecting channels in Z%. Set
- —
T:=| ) Lo cl0kgenl’,  Fi= ) F,.
i<N(n) i<N(n)
Then,

f |el Vv| dx>f|el Vv| dx>f|(el W) - F| dx
[0k2L n)d\=

= scale - ’
ij;(el—Vv)~Fdx Zvﬁ(el—Vv)-Fdx .

For a fixed tube L = L(y;), we have
f 1=V Fdv= | (a=nF vdH ) = f (11 = WE - vdH ()
L L OL_UOL,

:f kscalenel e;d Wd 1()6)_ scale 7_{d l(aL+)_ scale
oL,
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Figure S. The vector field F simply follows along the direction of the path y. Whenever the
tube makes a turn, we divide the corresponding cube diagonally as depicted with the vector
field remaining constant in each respective half. The resulting F is piecewise constant and
Eq (8.2) holds via the Gaul3 divergence theorem as contributions on the diagonal surfaces
cancel out: We have a positive contribution from the incoming arrows and a negative
contribution from the outgoing one.

Therefore,
2 kd 2
f ler = V| dx > 8L (k4 nN(m))’,
[0k Len1\E) n
and so )
1 \-d 2 N(n)
(kscalen) |€1 - VV| dx > ( d-1 :
[0,k nld\E n

scale

Passing to the lim sup finishes the proof.

Remark 61 (d = 2 and bottom-top crossings). Let L(n) be the minimal number of open vertices that a
[®-bottom-top crossing of Z2 must have. It turns out that in d = 2

L(n) = N(n)

(see Lemma 73). We will use this to show Eq (8.1) for the Poisson point process X;.
9. Example: Poisson point processes

The driving force behind this work has been a stationary Poisson point process X,;. It is known
that the Poisson point process is ergodic (even mixing) and its high spatial independence makes it the
canonical random point process. As pointed out before though, =ZX,,,; gives rise to numerous analytical
issues which prevent the usage of the usual homogenization tools.

The main theorem (Theorem 56) tells us that homogenization is still reasonable for highly irregular
filled-up Boolean models BX driven by admissible point processes X.

It is known for X,,;; that there exists some critical radius r. := r.[A(X,;;)] € (0, c0) such that

e BX,,; only consists of finite clusters for r < r. (subcritical regime) and
e BX,; has a unique infinite cluster for » > r, (supercritical regime).
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The behavior at criticality r = r, is still a point of research. For details, we refer to [14] for the
Poisson point process X,; and [18, Chapter 3] for the Boolean model ZX,;.
We will see in the subcritical regime that

1) X, 1s an ergodic admissible point process and
ii) EXpoiC is statistically connected, which is equivalent to EIXPOiC being statistically connected (see
Theorem 58).

We therefore make the following assumption for the rest of this section:

Assumption 62 (subcritical regime). We assume that
r<re.
Remark 63 (Scaling relation). r. has the following scaling relation

rc[kd : /I(Xpoi)] = rc[/l(k_lxpoi)] = k_lrc[/l(Xpoi)]-

9.1. Admissibility of Poisson point processes

The Mecke-Slivnyak theorem tells us that the Palm probability measure (Theorem 45) of a
stationary Poisson point process is just a Poisson point process with a point added in the origin. This
gives us the following lemma:

Lemma 64 (Equidistance property). The stationary Poisson point process X, satisfies the
equidistance property for arbitrary r > 0, i.e.,

P(3x,y € Xpoi | d(x,y) = 2r) = 0.
Proof. This follows from using the Palm theorem Theorem 45 on

foox) = ) T{d(x, x) = 2r),
XiEX
and the Mecke—Slivnyak theorem [14, Theorem 9.4].

Corollary 65 (X, is admissible). Under Assumption 62, X, is an admissible point process.

Proof. X, is not just ergodic, but even mixing (see [14, Theorem 8.13]). The equidistance property
has been proven in Corollary 64. Finiteness of clusters follows from the subcritical regime
(Assumption 62).

9.2. Statistical connectedness for Poisson point processes

Proving the statistical connectedness of EXpoiC (Definition 15) is much harder and does not
immediately follow from readily available results. Our procedure is as follows:

i) We employ the criterion from Section 8. Therefore, we will check that there are sufficiently many
percolation channels for =X,;.

i) Using the spatial independence of the Poisson point process X,,,;, we show that it is sufficient to
only consider 2-dimensional slices.
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111) We show the statement in d = 2 using ideas in [11, Chapter 11]. There, the result has been proven
for certain iid fields on planar graphs, including Z2.

Additionally to Assumption 62, we need sufficient discretization for the percolation channels:

Assumption 66 (Sufficient scaling). Let k., € N be large enough such that, for the critical radius r,,

(r. — r)/2 > Vdk:!

scale?

eg., kgcate 1= [2 \H-l + 1.

re—r

Definition 67 (Recap and random field (X;).cz«). Recall Definition 59, most importantly
' . ' d
Z, :=7Z'n[0,n) and K, = Xlzi,z + 11,
i=1
as well as the notion of percolation channels for k., and
N(n) : = “maximal number of disjoint percolation channels in Z%”.

We define the random field

(Xo)zeze = (HEKpoi N kg K = 0}z

scale ” *2

We say that z € Z¢ is blocked if X. = 0 and open if X. = 1 (this is consistent with Definition 59).

Theorem 68 (Percolation channels of the Poisson point process). Under Assumptions 62 and 66, there
isa C > 0 such that Eq (8.1) holds, i.e.,

P(limsupn'“N(n) > C) = 1.

n—oo

In particular, EXpoiC is statistically connected (see Theorem 60).

The rest of the section deals with the proof of Theorem 68. It will follow as a direct consequence
of Lemma 70 (reduction to d = 2) and Lemma 74 (main result for d = 2) which are given later.

9.2.1. Spatial independence and moving to d = 2

For disjoint U;, Us,... € R? and events A; only depending on Xpoi inside U;, we know that (A));
is an independent family. This is one of the striking properties of a Poisson point process and we will
heavily make use of it. The Boolean model ZX,,,; for radius r still retains this property in a slightly
weaker form and correspondingly the random field (X)) cz4:

Lemma 69 (Independence in large distances). Let A, B C Z¢ such that

d”(A,B) = lzp = Zalleo = 2rkscare + 1. O.1)

min
2a€AZbEB
Then, (X,),ca and (X,),cp are independent.
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Proof. (X;).ea 1s only affected by points of X, inside

UA - U B scale

Z€EA

The same holds for (X,).cp and we check that Eq (9.1) implies Uy N Up = 0.

Lemma 70 (2-dimensional percolation channels imply channel property for d > 2). For z € Z%2, we
define (compare to Definition 59)

QN . _ o« . . . R
N"(n) : = “maximal number of disjoint percolation channels in Z, X 7”.
If there are C, py > 0 such that for some 7 € 7472,

lim sup P(N(n) > Cn) > py > 0, 9.2)

n—oo

then there exists a C > 0 such that

lim sup P(N(n) > Cnd_l) = P(limsupn'"N(n) > C > 0) = 1.

n—oo n—oo
(This proof heavily relies on the independence structure of the Poisson point process, i.e., Lemma 69.)

Proof. X, is stationary, so for distinct Z;, Z, € 2972,
pn) = ]P’(Ng)(n) > (:’n) = P(Ng)(n) > (:’n).

Let k := [2rkgae] + 1. By Lemma 69, the events on Z*> x (k%) are independent from the events
on Z? x (k%,). Therefore, (]l{Ng)(kn) > é”})zezd-Z is an iid family of Bernoulli random variables with
parameter p(n). Then,

P(N(kn) > PO jny- E P(For at least po/2 of the 7 € Z9"?: N (kn) > Ckn)

de 2
1
= # e >, UNZGn) = Cn) = 5 po).

erld 2

By Eq (9.2) and the law of large numbers, we get

. C :
hrnn_illp P(N ) > 2kfl?o2 i 1) > hrnn_> sozlp P(N(kn) > 2k d 5

(k )d 1)

Setting C = we obtain Eq (8.1) after checking

de 2,

P(lim supn'™“N(n) > C) = limsupP(n'“N(n) > C) = 1,

n—oo n—o0

which finishes the proof.

Remark 71. Spatial independence is needed to move from d = 2 to d > 3. The strong independence
properties of X, allow far weaker conditions on N®(n) (positive probability) than on N(n)
(probability 1). Either way, Lemma 74 shows that P(N®(n) < Cn) drops exponentially in 7.
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Figure 6. Disjoint percolation channels vs. vertical crossings. On the left side, we see that we
can only have at most two /'-channels. The right figure shows that any /*-vertical crossing
must contain at least two open vertices.

9.2.2. d = 2: Definitions and preliminary results

As shown before, we may limit ourselves to a fixed lattice Z? x 042 ~ Z2. Therefore, we will often
suppress the “anchor point” 0z« and just act like we are in Z2. Our random field from Definition 67 is
then by abuse of notation

(Xz)z622 = (Xz)zez2xozd,2 .

Definition 72 (Vertical crossings). Consider the (Z2,[°)-lattice, that is z,z7’ are neighbors if
lz —Zllo = 1.

An [®-bottom-top crossing in Z?2 is called a vertical crossing. We call a path blocked if all its vertices
are blocked. We define the quantity

L(n) := “minimal number of open vertices in a vertical crossing in Z2”.
(The percolation channels lie on the /!'-graph, while the vertical crossings lie on the [*-graph.)
We may work with single vertical crossings instead of collections of percolation channels:
Lemma 73 (Percolation channels vs vertical crossings (see Figure 6)). It holds that

N(n) = L(n).

Proof. See the proof of [11, Theorem 11.1] based on Menger’s theorem and [11, Proposition 2.2].
The main work is proving the following equivalent of [11, Proposition 11.1]:

Lemma 74 (Open vertices in vertical crossings). Under Assumptions 62 and 66, there are C; > 0
such that

P(F0 ~ Z X {n} with at most Cin open vertices) < C, exp ( — Cs3n),

in particular,
P(N(n) > Cin) > 1 — Conexp(—Csn).

The proof relies on a reduction scheme of the path y: o ~ Z X {n}. We divide y into several
segments which must either contain an open vertex or contain a blocked path of large diameter. Since
we are in the subcritical regime, the probability of such paths decreases exponentially in their diameter:
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Lemma 75 (Diameter of blocked paths). Let z € Z>. Under Assumption 62 and kyy. € N as in
Assumption 66, there are C; > 0 such that

P(3blocked path vy, z € y, diam(y) > n) < Cyexp ( — C,n),

where
diam(y) := max ||z; — z2ll.
21,22€Y

Proof. Consider the Boolean model for radius R := %(r +r)<r.le.,
E® X poi 1= Br(Xpoi)-

Lety = (z'V,...,z?") be a blocked path in Z? containing z with diameter > n. Since v is blocked
andR —r > \/Eks‘cl (Assumption 66), we find for every 1 < i < /some x; € X,; such that

ale
Ko Nkscale B (x;) # 0,
and therefore
Ko C kscaeBr(x).
Connecting all the z¥ by a straight line, we obtain a continuous path inside kueE®0X,0. In

particular, they all belong to the same kscaleE<R)Xpoi—cluster. Then,

P(3closed path y, z € y and diam(y) > n)
< P(z lies in a cluster in ke ZXX,; of diameter > n)
< Cl exp(—Czn),

since the occurrence of large clusters drops exponentially in the diameter ([18, Lemma 2.4]).

9.2.3. Proof of Lemma 74 (open vertices in vertical crossings)

Let n € N. As pointed out before, we follow the procedure in [11, Proposition 11.1] adjusted to the
continuum setting. We define A(z, k) for z € Z? and k € N as

A(z, k) := {3l”-path z ~ Z x {n} with at most k open vertices}.

The idea is to break up the path 0 ~ Z X {n} into multiple segments (see Figure 7). In each segment,
we can either reduce k by 1 or employ Lemma 75. We set

§:= rzrkscale-l +1
BY(z,5): ={ve Z*|llz = Vllw < s
BY(z,8): = {veZ’|llz - vllw < 5 + 3}

D™(z,5) : = {veZ*|llz = VIl = s + § + 1} = “boundary of By (z,5)”.

These boxes are defined so that the following holds: For fixed z € Z*, we have by Lemma 69 that the
random variables (X)veB=(2.5) and (X, )yez2\ BY(z.s) A€ independent. That means the state of the vertices
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in B°(z, s) is independent from the state of the vertices in ZZ\B;’(z, s) = BY(z, s)C. Additionally, we
define the probability

g(z, 5) :=P(3z ~ BX(z, 5)* blocked inside B(z, ).
The key inequality for the iteration in k is the following

PAGK) S Y e 9BAX. b)) +BAX. k- D)), 9.3)

veD*(z,s)
for z = (z;,20) € Z* whenever z, < n — (s + 5).

Proof of Eq (9.3). Consider the event that for some v € D*(z, 5), we find a path v ~ Z X {n} that has at
most k — 1 open vertices, i.e.,

E:= U AW,k - 1).

veD™(z,s)

Now assume that the event A(z, k)\E happens. Take a path y = (z,v",...,v")) with v(zj) = n and
at most k of the v\ being open. Let i; be the last index with vV € D™(z,s). This i; exists since
72 < n— (s + 3), soy has to pass by D*(z, s) to reach Z x {n}. For this i;, we know that (v, ... ,v\))
completely lies in BY(z, 5)C. Since E does not happen, it must have k open vertices. (z,v", ..., v) is
a path from z to By’(z, 5)C that is blocked everywhere except its end. Therefore,

A(z, k)\E C U {3z ~ B{(z, s)c blocked in B{’(z, s) and

veD™(z,s)

Av ~ Z x {n} in By (z, s)C with at most k open vertices}.

As previously mentioned, the events in BY’(z, s) and B5(z, s)C are independent from each other. This
gives us

P(A(z, k)\E) < Z P(3z ~ B (z, 5) blocked in B(z, 5) and
veD™(z,s)

Av ~ Z X {n} in B (z, s)C with at most k open vertices)
= > P(Az~ By(z5)" blocked in By, 5))

veD>(z,s)

XP(Jv ~ Z X {n} in B3 (z, s)C with at most k open vertices)

< D 8@ IPAWK).

veD>(z,s)

Now,

P(A(z. k) < PAGO\E) + P(E) < > |2z 9IP(AM, k) + PAW, k - 1)],

veD™(z,s)

concludes the proof of Eq (9.3).
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Figure 7. B, By, D* and decomposition of paths (left-right crossing instead of top-
bottom).

Observe that the reduction in k can only happen until £ = 0, so more g(z, s)-terms have to show
up at some point. Since any path z ~ B{(z, 5)C has diameter of at least s, Lemma 75 tells us that
g(z,8) < Crexp(— Cys) for Cy, C, > 0 independent of z and 5. Choose s large such that

g(z,8) - #D%(z,5) < Crexp(—Cas) -8(s+ 5+ 1)< 1/4.
For simplicity, we introduce

gz, s) ify=0

D* := D%(o, s and h(z,y) :=
(0,9) @) {1 o

and rewrite Eq (9.3) into

PAGK) S > hEyOPAG+v" k=), 9.4)

viDeD>, y1€{0,1}

We now iteratively use Eq (9.4) up to [ times as it is only applicable when z; < n — (s + §). All the
v® are summed over D™ and all the y; over {0, 1}.

P(A(0, k))
< ZP(A(V(]) ot VW =y = —y)) l_[ O IR

i<ly®.y; m<l

v(21)+ +v(l)<n (s+3)
it +y1<k

+ STBAGD 49Dk =y ==y [ [ OO+,
st iy Oy m<j
(l)+ +v(j 1)<n (s+35)

(1)+ +v(2 >n—(s+5)

yi+ety;<k
J
< > (w0 sup h(v, ym) Y :E: DY sup  h(v.ya)).
Vil n=(5+8) iy Vi vez?
yi+-+y<k v2<n (s+s) ST SIS y1+ +y,<k Vo <n—(s+5)
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) ) ) )

We iterate as long as 0 + v(1 -+ v2 < n—(s+ 3); otherwise, we stop for 0 + v(1 “+ v
land in the second summand. Only yi +---+y; < k matters since A(z,m) = 0 whenever m < 0. Also,
observe that v(zl) + - <]) > n — (s + §) can only happen if

and

n—(s+5§
S (~ )’
s+5+1
since we “gain” at most s + § + 1 to the second component in each v,
Let @ > 0 be large enough such that

1 1
da): = Z sup #D% - h(z,y) e < 1 +#D% - < 5
ZZ
yelo.l) Zz<§l€—(s+§)
Then,
1
P(A(0,k)) < % Z (#D°° sup  h(v, ym)) l_l e Wi
VsVl vez? i<l
yi+-+y<k vy <n—(s+3) -
J .
oS o e ) ]
n=(s+%) i op Voo i veZ? i<j
ST SIS )’1+ +y <k vy <n—(s+5)

< @)+ e Z oy < (27! + 2R,

S = (s+5)
]— s+5+1

Since / € N was arbitrary, we get

n—(s+5)

P(A(0,k)) < ™ - 27551 1 = o e L = Cze™Can,

Now we finally make use of k. Setting Cs := % and k := Csn, the claim follows:

P(A(0,Csn)) < Czexp (— Cy4n/2).
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