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Abstract: We studied stochastic homogenization of a quasi-linear parabolic partial differential
equation (PDE) with nonlinear microscopic Robin conditions on a perforated domain. The focus
of our work lies in the underlying geometry that does not allow standard stochastic homogenization
techniques to be applied directly. Instead, we introduced a concept of regularized homogenization: We
proved homogenization on a regularized but still random geometry and demonstrated afterwards that
the form of the homogenized equation was independent from the regularization, though the explicit
values of the coefficients depended on the regularization. Then, we passed to the regularization
limit to obtain the anticipated limit equation where the coefficients were finally independent from
the intermediate regularizations. We provided evidence that the regularized homogenization and
the classical stochastic homogenization coincided on geometries that indeed allowed stochastic
homogenization. Furthermore, we showed that Boolean models of Poisson point processes were
covered by our approach.
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1. Introduction

Soon after the groundbreaking introduction of stochastic homogenization by Papanicolaou and
Varadhan [22] and Kozlov [12], research developed a natural interest in the homogenization of
randomly perforated domains. A good summary of the existing methods up to 1994 can be found
in [13]. By the same time, Zhikov [28] provided a homogenization result for linear parabolic
equations on stationary randomly perforated domains. Bourgeat et al. [27] introduced a concept of
two-scale convergence in the mean for stochastic problems, where the two-scale limit is performed
simultaneously over all realizations. This method was the first to apply the two-scale convergence
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idea to a stochastic setting, but it was not capable to deal with nonlinearities that require strong
convergence of solutions (see also [10]). Hence, we cannot benefit of this approach in our work. It
then became silent for a decade. In [30], Zhikov and Piatnitsky reopened the case by introducing
stochastic two-scale convergence as a generalization of [20, 1, 29] to the stochastic setting,
particularly to random measures that comprise random perforations and random lower-dimensional
structures in a natural way. The method was generalized to various applications in discrete and
continuous homogenization [16, 3, 4] and recently also to an unfolding method [19, 10].

Concerning the homogenization on randomly perforated domains, there seems to be few results in
the literature, with [7, 5, 23] being the closest related work from the PDE point of view. We emphasize
that there is a further discipline in stochastic homogenization, studying critical regimes of scaling for
holes in a perforated domain of the Stokes equation; see [6] and references therein.

In this work, we focus on the geometric aspects in the homogenization of quasi-linear parabolic
equations and go beyond any recent assumptions on the random geometry. Given ε > 0, we consider
a bounded domain Q ⊂ Rd perforated by a random set Gε and write Qε := Q\Gε. Typically, Gε ≈ εG
where G is a stationary random set and Gε is additionally regularized close to ∂Q [7, 5, 23]. Also, we
assume that Qε is connected, for simplicity of calculations and presentation, and our geometric model
will be regularized in such a way; see also Remark 5.

We then study the following PDE on Qε for the time interval I = [0,T ]:

∂tuε − ∇ · (A(uε)∇uε) = f in I × Qε

A(uε)∇uε · ν = 0 on I × ∂Q

A(uε)∇uε · ν = εh(uε) on I × ∂Qε\∂Q

uε(0, x) = u0(x) in Qε

(1.1)

with ν being the outer normal vector.
In case of a fully linear PDE, i.e., h(·) = const and A(·) = const, this problem was homogenized

already in the aforementioned [28] and later reconsidered in [30]. In this linear case, one benefits from
the regularity of the limit solution and the weak convergence of the ε-solutions that is given a priori.

However, the nonlinear case is more difficult. Weak convergence of solutions is no longer
sufficient. Thus, one needs to establish strong convergence of the uε. As we will discuss below, a lack
of a uniformly continuous family of extension operators or, more generally, a degeneration of the
homogenized matrix will cause the whole argumentation to break down. Hence, typical assumptions
in the literature, such as minimal smoothness (see Definition 23) of G and uniform boundedness of
the hole sizes, ensure the existence of uniformly bounded extension operators
Uε,• : W1,2(Qε) → W1,2(Q) [7]. This in turn implies weak compactness of Uε,•uε in W1,2(Q), a
property of uttermost importance to pass to the homogenization limit in the nonlinear terms. Other
approaches are conceivable, e.g., exploiting the Frechet–Riesz–Kolmogorov compactness theorem,
but in application the prerequisites are hard to prove.

If all limit passages go through, the homogenized limit as ε → 0 reads for some positive definite
matrixA(G) as

C1,(G)∂tu − div
(
A(u)A(G) ∇u

)
−C2,(G)h(u) = C1,(G) f in I × Q

A(u)A(G) ∇u · ν = 0 on I × ∂Q (1.2)
u(0, x) = C1,(G)u0(x) in Q,
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which represents the macroscopic behavior of our object. We note at this point that positivity of A(G)

is, in general, nontrivial but can be shown for minimally smooth domain examples (see Sections 8
and 9).

Unfortunately, canonical perforation models are neither minimally smooth nor is the size of their
holes uniformly bounded. Our toy model of choice will be the Boolean model ΞXpoi :=

⋃
x∈Xpoi

Br(x)
(see Definition 1) driven by a Poisson point process Xpoi. It clearly reveals the following general issues
for the homogenization analysis:

i) ΞXpoi
∁ = Rd\ΞXpoi is not connected due to areas that are encircled.

ii) Two distinct balls can lie arbitrarily close to each other or – in case they intersect – have arbitrary
small overlap. This implies that

• the connected components in ΞXpoi develop arbitrarily large local Lipschitz constants: Two
balls of equal radius intersecting at an angle α have the Lipschitz constant tan((π − α)/2) at
the points of intersection, and
• there is no δ > 0 such that for every p ∈ ∂ΞXpoi

∁ the surface Bδ(p) ∩ ∂ΞXpoi
∁ is a graph of a

function: If x, y ∈ Xpoi with |x − y| = 2r + η and |p − x| = r, |p − y| = r + η, Bδ(p) ∩ ∂ΞXpoi

can be a graph only if δ < η.

The first issue can be fixed by considering a “filled-up model” ⊟Xpoi in Definition 1. Furthermore,
we will see that – under mild regularity conditions – the procedure of filling up a perforation does not
change the effective conductivity A(G) at all (Theorem 58). Unfortunately, the second issue poses an
actual problem. In a recent work [9], one of the authors has shown that in some cases an extension
operator Uε,• : W1,p(Qε)→ W1,q(Q), 1 ≤ q < p, can be constructed for some geometries including the
Boolean model (strictly speaking, this was shown for an extension from the balls to the complement in
the percolation case). However, [9] also suggests that the Boolean model for the Poisson point process
requires p > 2 in order forUε,• to be properly defined for some q ≥ 1.

Due to these severe analytical difficulties, we need other approaches to the problem. We call our
approach ‘regularized homogenization’ and it consists of an approximation of the random geometry G
by Gn, performing homogenization, and afterward letting n→ ∞. In our particular example, it consists
of the following steps:

i) Given a general stationary ergodic (admissible) random point process X, we construct a
regularization X(n) := FnX (see Definition 3) such that the set ⊟X(n) is uniformly minimally
smooth for given n ∈ N.

ii) Given n ∈ N, we perform homogenization for the smoothed geometry ⊟X(n) instead of ⊟X (see
Lemma 7).

iii) We pass to the limit n → ∞ along a subsequence to obtain the anticipated homogenized limit
problem (see Theorem 56), where the coefficients are independent from the intermediate
regularizations (Corollary 39). This happens under the assumption that ⊟X∁ is statistically
connected (see Definition 15).

iv) We show that the Poisson point process in the subcritical regime is a valid example for our general
homogenization result (see Section 9).

We are thus in a position to prove an indirect homogenization result. This seems to us an appropriate
intermediate step on the way to a full homogenization result, which may be achieved in the future
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using further developed homogenization techniques based on a better understanding of the interaction
of geometry and homogenization. Let us note that we focus on fixed radii r > 0 for the sake of
presentation. In fact, random radii pose no issue for the procedure as briefly mentioned in Remark 18
as long as the remaining conditions are satisfied.

This paper is structured as follows:

• In Section 3, we introduce the core objects and state the main result. This includes the thinned
point processes X(n) and its filled-up Boolean model ⊟X(n).
• In Section 4, we prove relevant properties of the thinning map and the thinned point processes,

most importantly, minimal smoothness of ⊟X(n) (Theorem 25) and ⊟X(n) → ⊟X in a certain sense
(Lemma 29).
• Section 5 deals with the cell solutions and the definition of the effective conductivityA.
• The homogenization theory for minimally smooth holes is sketched in Section 6 on the basis of

stochastic two-scale convergence. Due to the considerations in Section 5, the underlying
probability space is a compact separable metric space.
• In Section 7, we show that the homogenized solutions to Eq (1.2) for G = ⊟X(n) converge and

that their limit is a solution to the anticipated limit problem for G = ⊟X.
• Section 8 establishes a criterion for statistical connectedness (nondegeneracy of the effective

conductivity A) using percolation channels. We follow the ideas in [13, Chapter 9] where a
discrete model was considered.
• In Section 9, we show that the Poisson point process Xpoi is indeed admissible, which follows

from readily available percolation results. Showing statistical connectedness of ⊟X∁poi is much
harder. We do so using the criterion established in Section 8 and a version of [11, Theorem 11.1].
As the original [11, Theorem 11.1] is a statement about percolation channels on the Z2-lattice, we
need to adjust both the statement and the proof to our setting.

2. Notation

General notation

• M(Rd): Space of Radon measures on Rd equipped with the vague topology
• S(Rd) ⊂ M(Rd): Space of boundedly finite point clouds/point measures in Rd

• A∁: Complement of a set A
• B(X): Borel-σ-algebra of the topological space X
• Ld: d-dimensional Lebesgue-measure
• Hd: d-dimensional Hausdorff-measure
• Hd

⌞A: Restriction ofHd to A, i.e. Hd
⌞A(B) := Hd(B ∩ A)

• o := 0Rd ∈ Rd: Origin in Rd

• 1A: Indicator/characteristic function of a set A
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Specific notation introduced later

• Br(A): Open r-neighborhood around A. (Definition 1)
• Ξx and ⊟x: Boolean model of x and its filled version (Definition 1)
• C

x
(x): Cluster of x in x ∈ S(Rd) (Definition 3)

• x(n) for x ∈ S(Rd): x(n) = Fnx with thinning map Fn (Definition 3)
• Qε

x
and Jε(Q,x): Perforated domain and index set generating perforations (Definition 4)

• τx : M(Rd)→M(Rd): Shift-operator inM(Rd) (Definition 8)
• λ(µ): Intensity of random measure µ (Definition 8)
• µ

x
: Hd−1 restricted to ∂ ⊟ x (Definition 30)

• A and αA: Effective conductivity and smallest eigenvalue ofA (Definition 37)
• U and T : Extension and trace operators (Theorem 43 and Theorem 51)
• µε: Scaled measure (Assumption 46)

3. Setting and main result

3.1. Generating minimally smooth perforations

We start by introducing some concepts from the theory of point processes. We will not formulate
the concepts in full generality but only as general as needed for our purpose. Let d ≥ 2 and let S(Rd)
be the set of boundedly finite point clouds in Rd (i.e., point clouds without accumulation points) and
M(Rd) the space of Radon measures with the vague topology, that is, the smallest topology onM(Rd)
such that

µ 7→

∫
Rd

f dµ

is continuous for every f ∈ C∞c (Rd). Every x ∈ S(Rd) can be identified with a Borel measure through
the correspondence

x(A) =
∑
x∈x

δx(A).

Hence, we identify S(Rd) ⊂ M(Rd).

Our perforation model of interest is the Boolean model driven by a point cloud x ∈ S(Rd). While it
is a natural way to generate perforations, we require its complement to be connected for suitable x.
Hence, the perforation Ξx needs to be filled up in order to remove all finite-sized connected
components from its complement. These can be easily identified as they do not admit a path of
infinite diameter.

Definition 1 (Boolean model Ξ of a point cloud and filled-up model ⊟ (see Figure 1)). Let x ∈ S(Rd).
The Boolean model of x for a radius r > 0 is

Ξx :=
⋃
x∈x

Br(x) = Br(x),

where Br(x) is the open ball of radius r around x and Br(A) :=
⋃

x∈A Br(x). We define the filled-up
Boolean model ⊟x of x for radius r through its complement, i.e.,

⊟x∁ :=
{
x ∈ Rd | ∃γ : [0,∞)→ Ξx∁ continuous and γ(0) = x, lim sup

t→∞

∣∣∣γ(t)
∣∣∣ = ∞}

.
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Figure 1. Initial Boolean model Ξx vs filled-up Boolean model ⊟x.

Remark 2. We observe that

Ξ(x + x) = Ξ(x) + x and ⊟ (x + x) = ⊟x + x.

As discussed in the introduction, we need to “smoothen” the geometry in order to be able to apply
standard homogenization methods. Given a Lipschitz domain P ⊂ Rd, we define for p ∈ ∂P

δ(p) :=
1
2

sup
δ′>0

{
∂P is Lipschitz-graph in Bδ′(p)

}
,

and because δ : ∂P→ R≥0 is continuous [9], we can define for bounded P

δ(P) := min
p∈∂P

δ(p).

Definition 3 (Thinning maps Fn (see Figure 2)). Let x ∈ S(Rd) be a point cloud. We denote the cluster
of x in x by

C
x
(x) := {y ∈ x | ∃path from x to y inside Ξx}.

We set

F1,nx :=
{
x ∈ x | ∀y ∈ x : d(x, y) <

(
0, 1

n

)
∪

(
2r − 1

n , 2r + 1
n

)}
, (3.1)

F2,nx :=
{
x ∈ x | #C

x
(x) ≤ n, δ(Br(Cx(x))) ≥ 1

n

}
, (3.2)

and define the thinning map Fn

Fn : S(Rd)→ S(Rd), x
(n) := Fnx :=

(
F2,n ◦ F1,n

)
x.

Fn can be understood as a generalization of the classical Matérn construction [15, 26]. For an
arbitrary x ∈ S(Rd), we see that (⊟x(n))∁ is always minimally smooth (see Definition 23). Furthermore,
if X is a stationary point process (as defined later), then the same holds for X(n) = FnX. We note that
Fn is in general not monotone in n, i.e., Fmx 1 Fnx for m ≤ n.

Given a scale ε > 0, we define the perforation domain Qε such that the perforations have some
minimal distance from the boundary ∂Q:
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Figure 2. Thinning of point clouds under Fn pictured via the Boolean model Ξ. From left to
right are x, x(2), and x(5).

Definition 4 (Perforation of domain Qε). Let x ∈ S(Rd). We set

Jε(x,Q) :=
{
x ∈ x | dist

(
εC

x
(x), Q∁

)
> 2εr

}
, Gε

x
:= ε ⊟ (Jε(x,Q))

as well as the perforated domain
Qε
x

:= Q \Gε
x
.

One quickly verifies that Qε
x

(n) is minimally smooth (Definition 23); see Theorem 25.

Remark 5. By construction, our perforation model Gε
x

:= ε ⊟ (Jε(x,Q)) ensures connectedness of
its complement Rd \ Gε

x
, resp., of Qε

x
. We prefer this approach of “filling the holes of the holes”

because it allows for an easy use of extension operators in a way that we can safely apply compact
embeddings. Otherwise, once Rd \ Gε

x
becomes disconnected, we would have to rely on additional

regularity assumptions on the initial data in those holes, which is then carried on by the evolution
equation and would lead to additional tedious calculations. Otherwise, we would have to introduce a
second PDE on the holes with suitable coupling boundary conditions. While we do not claim that a
treatment of such a situation is impossible, we claim that the additional effort would not be justified by
the additional expected insight.

3.2. Homogenization for minimally smooth perforations

We make the following parameter assumptions on our partial differential Eq (1.1).

Assumption 6 (Parameters of PDE). Let I = [0,T ] ⊂ R and Q ⊂ Rd be a bounded, connected open
domain. We assume that

• u0 ∈ W1,2(Q)
• f ∈ L2(I; L2(Q))
• h : R→ R is Lipschitz continuous with Lipschitz constant Lh

• A : R→ R is continuous with 0 < inf(A) and sup(A) < ∞.

Generalized time derivatives will always be considered under the evolution triple
W1,2(Q) ↪→ L2(Q) ↪→ W1,2(Q)∗ or W1,2(Qε

x
(n)) ↪→ L2(Qε

x
(n)) ↪→ W1,2(Qε

x
(n))∗ in the case of a perforated

domain Qε
x

(n) .
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Lemma 7 (Solution to PDE for minimally smooth holes). Let x ∈ S(Rd) and n ∈ N. Under
Assumption 6, we have on Qε

x
(n): There exists a weak solution uε ∈ L2(I; W1,2(Qε

x
(n))) with generalized

time derivative ∂tuε ∈ L2(I; W1,2(Qε
x

(n))∗) to Eq (1.1) on Qε
x

(n) instead of Qε.

This uε satisfies for some C > 0 independent of ε depending only on Q,n, f and u0 but not on ε

ess sup
t∈I
∥uε(t)∥L2(Qε

x
(n) ) + ∥uε∥L2(I;W1,2(Qε

x
(n) )) ≤ C

∥∂tuε∥L2(I;W1,2(Qε

x
(n) )∗) ≤ C.

The proof is given in Section 6 (Theorem 53).

The next step is passing to the limit ε → 0. We do so in the case of x being a realization of a
stationary ergodic point process X as defined below:

Definition 8 (Random measure and shift-operator τx). A random measure µ• is a random variable with
values inM(Rd). It induces a probability distribution P onM(Rd). Given the continuous map

τx : M(Rd)→M(Rd), τxξ(A) := ξ(A + x), (3.3)

a random measure is stationary if P(F) = P(τxF) for every F ∈ B(M(Rd)) and every x ∈ Rd. In line
with the above setting, a random point process X is a random measure with P(S(Rd)) = 1, and one
quickly verifies that X is stationary if for every N ∈ N, x ∈ Rd, and bounded open A ⊂ Rd, it holds

P
(
x ∈ S(Rd) : x(A) = N

)
= P

(
x ∈ S(Rd) : x(A + x) = N

)
.

We call a stationary random measure µ• ergodic if the σ-algebra of τ-invariant sets is trivial under
its distribution P.

Remark 9 (Compatibility of thinning with shifts). The thinning map Fn is compatible with the shift τx,
i.e., on S(Rd)

Fn ◦ τx = τx ◦ Fn.

Lemma 10 (Homogenized PDE for minimally smooth domains). Let X be a stationary ergodic point
process and n ∈ N be fixed. For almost every realization x of X, we have under Assumption 6:

For ε > 0, let uε ∈ L2(I; W1,2(Qε
x

(n))) be a solution to Eq (1.1) on Qε
x

(n) instead of Qε. Given any
sequence ε→ 0, we find a subsequence (still denoted as ε→ 0) and corresponding ũε ∈ L2(I; W1,2(Q))
with ũε|Qε

x
(n)
= uε, such that ũε → un strongly in L2(I; L2(Q)) for some un ∈ L2(I; W1,2(Q)) with

generalized time derivative ∂tun ∈ L2(I; W1,2(Q)∗). This un is a weak solution to

C1,P(n)∂tun − ∇ ·
(
A(un)A(n)∇un

)
−C2,P(n)h(un) = C1,P(n) f in I × Q

A(un)A(n)∇un · ν = 0 on I × ∂Q (3.4)
un(0, x) = C1,P(n)u0(x) in Q,

with constants Ci,P(n) > 0 depending on the distribution P(n) of X(n) andA(n) being a symmetric positive
semi-definite matrix – the so-called effective conductivity based on the event that the origin is not
covered by ⊟X(n) (see Definition 37).
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Proof. This is shown in Section 6 (Theorem 55) using two-scale convergence.

A more general result, which immediately is implied by the proof of the previous lemma is the
following Lemma 11. There are many random geometries that do not have an extension operator
W1,2(Qε) → W1,2(Q) but still an extension operator W1,2(Qε) → W1,q(Q) for some 1 ≤ q < 2, see [9].
For such geometries, the desired homogenization result could be established without the bypass that
we will take below. However, results in [9] will provide sufficient conditions for homogenization, but
they do not provide necessary conditions.

Lemma 11. Assume that Qε is such that there exists q ∈ (1, 2] such that for every family vε ∈ W1,2(Qε)
with supε(∥∇vε∥L2(Qε) + ∥vε∥L2(Qε)) < +∞, there exists a Vε ∈ Lq(Q), such that vε = 1QεVε and such
that Vε is pre-compact in Lq(Q). Then, every convergent subsequence of the solutions uε of Eq (1.1)
converges to a weak solution of Eq (3.5) given below.

Remark 12 (Estimate). Observe that the situation in Lemma 7 provides us with an estimate
supε(∥∇uε∥L2((0,T ]×Qε) + ∥uε∥L2((0,T ]×Qε)) < +∞ on the solutions uε, and the compact operator is a
combination of the extension operator for minimally smooth domains and the standard Sobolev
embedding.

Remark 13 (Compactness). It has to be noted that the claim of compactness is somewhat natural and for
most nonlinearities, even necessary. Indeed, unless the nonlinearities are monotone operators, we are
not aware of an existence theory for equations of Type (1.1), which would not rely on compactness of
a sequence of approximate solutions in some Lp-space. However, if existence theory is already heavily
relying on this compactness assumption, we have no hope that homogenization could cope with less.

3.3. Regularized homogenization for irregular perforations

When it comes to the final homogenization result, we will need the following assumptions on the
point process X.

Definition 14 (Admissible point process). We call a point cloud x ∈ S(Rd) admissible the following
holds (with r > 0 from Definition 1):

i) Equidistance Property: ∀x, y ∈ x : |x − y| , 2r.
ii) Finite Clusters: For every x ∈ x, we have #C

x
(x) < ∞.

A stationary ergodic boundedly finite point process X is called admissible if its realizations are
almost surely admissible.

Definition 15 (Statistical connectedness). The random set ⊟X∁ is statistically connected if the
effective conductivity A (Definition 37) based on the event that the origin is covered by ⊟X∁ is
strictly positive definite.

In our setting of Boolean models of admissible point processes, the procedure of filling up a
perforation does not change its effective conductivity A (Theorem 58). In particular, ⊟X∁ is
statistically connected if, and only if, the same holds for ΞX∁.

Remark 16 (On statistical connectedness). Let us note that the existence of an infinite connected
component in ⊟X∁ is a necessary requirement for A > 0, as can be seen later in Section 8. There, we
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also give a criterion for statistical connectedness: the existence of sufficiently many so-called
percolation channels. The procedure is based on [13, Lemma 9.7], which we adjust to the
continuum setting.

We may now state the main theorem of this work.

Theorem 17 (Homogenized limit for admissible point processes). LetX be an admissible point process
and ⊟X∁ statistically connected. Under Assumption 6, we have for almost every realization x of X:
For every n ∈ N, let un be a homogenized limit in Lemma 10. For every subsequence of (un)n∈N,
we can extract a subsequence (unk)k∈N such that there exists a u ∈ L2(I; W1,2(Q)) with generalized
time-derivative ∂tu ∈ L2(I; W1,2(Q)∗)

un
L2(I;W1,2(Q))
−−−−−−−−−⇀

n→∞
u and ∂tun

L2(I;W1,2(Q)∗)
−−−−−−−−−−⇀

n→∞
∂tu,

and u is a weak solution to

C1,P∂tu − ∇ ·
(
A(u)A∇u

)
−C2,Ph(u) = C1,P f in I × Q

A(u)A∇u · ν = 0 on I × ∂Q

u(0, x) = C1,Pu0(x) in Q,

(3.5)

with constants Ci,P > 0 only depending on the distribution P of X and A being a symmetric positive
definite matrix – the so-called effective conductivityA based on the event that the origin is not covered
by ⊟X (Definition 37). The limit u may depend on the chosen subsequence if the solution to Eq (3.5) is
not unique. Otherwise, the whole sequence (un)n∈N converges to u.

Proof. This is proved in Theorem 56.

Regarding the derivation of Eq (3.5), we only need local convergence of ⊟x(n) → ⊟x (Lemma 29).
Hence, Eq (3.5) is independent of the thinning procedure as long as local convergence is satisfied.

Remark 18 (Random radii). For simplicity, we have chosen the Boolean model with fixed radius r as
our underlying model. One can easily generalize the procedure to random independent radii. Given a
marked point process X =

⋃
i(xi, ri) whose marks represent the radius ri of the ball around xi, we need

to adjust Point 1 in Definition 14 accordingly, i.e.,

∀(x, rx), (y, ry) ∈ X : |x − y| , rx + ry.

The thinning maps Fn (Definition 3) also need to be modified to ensure minimal smoothness
(Definition 23), e.g., balls with especially large/small radii need to be removed. Eq (3.1) has the
purpose to ensure that two balls in the regularized geometry either have a minimal distance 1/n or, if
they intersect, the intersection angle is bounded away from 0. This also has to be modified depending
on radii r1 and r2 of two intersecting balls. Local convergence is preserved if all clusters remain finite.
Hence, the rest of our procedure essentially follows as is under the assumption ofA > 0.

Remark 19 (Homogenization procedure). For fixed ε > 0, solutions uε = uε
x

to Eq (1.1) exist for
admissible x ∈ S(Rd) as Qε

x
(n) = Qε

x
for n large enough (Lemma 29). If x is a realization of some

admissible point process X, then this is still not sufficient to pass to the limit ε → 0. The missing
regularity of ⊟X still prevents us from establishing a priori estimates. All in all, our procedure yields
the following diagram:
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uε
ε↓0

? // u

uεn

n↑∞

OO

ε↓0
// un

n↑∞

OO

(3.6)

Statistical connectedness of ⊟X∁ is crucial to establish W1,2(Q)-estimates for un. This indicates
that the direct limit passing uε → u might only rely on the statistical connectedness property, but we
cannot answer that as of now. On the other hand, if the assumptions of Lemma 11 hold, then the
diagram commutes.

3.4. Example: Poisson point processes

In order to demonstrate that the class of point process satisfying our assumptions is not empty, we
show in Section 9 that the Poisson point process Xpoi is indeed suitable for our framework. We obtain
the following.

Theorem 20 (Admissibility and statistical connectedness for Xpoi). In the subcritical regime (see
Assumption 62), we have for the Poisson point process Xpoi that

• Xpoi is an admissible point process.
• ⊟X∁poi is statistically connected.

While admissibility is easily proven, statistical connectedness is much harder to deal with. Most
of Section 9 is dedicated to this proof. It also builds up on Section 8 in which we show that so-called
percolation channels yield statistical connectedness.

3.5. Consistency of our approach

In what follows, we collect examples where stochastic homogenization is well understood and
where our new ansatz of regularized stochastic homogenization is consistent in the sense that the
Diagram (3.6) commutes for these examples.

3.5.1. Linear equations where Qε
n ⊃ Qε

Let G be a stationary ergodic random set and let Gn be jointly stationary sets with G where Gn ⊂

G =: G∞ and where Gn → G pointwise as n → ∞. We then define Qε := Q \ εG as before and
additionally Qε

n := Q \ εGn. Then, Qε
n ⊃ Qε by definition, and we have the following result.

Theorem 21. Under the above assumptions, let f εn ∈ L2(Qε
n) be extended by 0 to Q and λ > 0.

i) For each ε > 0, assume that f εn ⇀ f ε∞ =: f ε as n→ ∞. Then, the solutions uεn of the problem

−∇ · ∇uεn + λuεn = f εn in Qε
n

uεn = 0 on ∂Q

∇uεn · ν = 0 on ∂Qε
n\∂Q

(3.7)

satisfy uεn ⇀ uε∞ =: uε as n→ ∞, where uε is the solution to Eq (3.7) on Qε
∞ := Qε.
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ii) For each n ∈ N ∪ {+∞}, there exists a positive semi-definite A(n) such that f εn ⇀ fn as ε → 0
implies uεn ⇀ un in L2(Q), where un solves

−∇ · A(n)∇un + λun = fn in Q.

iii) If fn ⇀ f∞ =: f as n → ∞, then A(n) → A(∞) = : A and un ⇀ u∞ =: u weakly in L2(Q). Note
from Statement 2 that u solves

−∇ · A∇u + λu = f in Q.

In other words, Diagram 3.6 commutes for linear equations.

3.6. An explicit geometry with commutative Diagram (3.6) for nonlinear problems

We now sketch the homogenization of Eq (1.1) on a geometry that is not minimally smooth but
allows for homogenization. This sample geometry was introduced in [9]: We start from a Poisson
point process and erase all points that are closer to each other than a given distance threshold s > 0.
We then construct the Delaunay triangulation and assign a pipe of random diameter 0 < D < s/2 with
a distribution P(D < x) < exp(−1/x) to every edge, for all x > 0. Furthermore, we enrich the geometry
by the balls of radius s/4 around the remaining points. This union of pipes and balls is stationary and
ergodic and we then define Qε as the intersection of Q with the system of balls and pipes scaled by a
factor ε. In three dimensions, the complement of Qε is pathwise connected and unbounded, but in two
dimensions, the complement consists of bounded sets, where there is no upper bound on the diameter
of these sets. Also, there is no upper bound on the local Lipschitz constant.

Writing W1,2
(0),∂Q(Qε) for the functions in W1,2 with value zero on ∂Q then, in [9, Theorem 1.15], it is

shown that, for every 1 < q < 2, there almost-surely exists an extension operator Uε : W1,2
(0),∂Q(Qε) →

W1,q
0 (Bεβ(Q)) that is continuous with β ∈ (0, 1) depending only on the random geometry, such that, for

every ε > 0 and uε ∈ W1,2
(0),∂Q(Qε), it holds that

∥∇Uεuε∥Lq(Rd) ≤ C ∥∇uε∥L2(Qε) and ∥Uεuε∥Lq(Rd) ≤ C ∥uε∥L2(Qε) . (3.8)

An inspection of the proof of [9, Theorem 1.7] reveals that it also holds for q = p = d = 2 therein,
that is, there exists a constant C > 0, independent from ε, such that

∥T εuε∥L2(∂Qε) ≤ C ∥∇uε∥L2(Qε) . (3.9)

The important insight is that Uεuε is bounded in W1,q
0 (B1(Q)) and hence, pre-compact in L2(R2),

which in turn yields two-scale pre-compactness of the traces T εuε, in a similar way as below. Thus,
we can argue as in our proof of Lemma 10 to obtain the respective homogenization result. The needed
two-scale convergence methods have been introduced in [8].

On the other hand, in R2, we can regularize the geometry by filling up holes with a diameter larger
than a prescribed threshold and we can additionally prescribe a minimal thickness for the pipes. Since
the generating points of the Delaunay triangulation have a minimal mutual distance, the filling of large
holes provides minimal smoothness. However, Lemma 10 guarantees homogenization. Together with
the proof of Theorem 17, we again find that Diagram 3.6 commutes.
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3.6.1. Linear equations under norm bounds

In the previous example, we explicitly constructed the approximation in a way that Qε
n ⊃ Qε.

However, this is not strictly necessary. The following result shows that the homogenization limits
would also exist and look the same as above, as long as the distributions of several geometric quantities
do not worsen (significantly), with the respective conditions to be taken from [9].

Theorem 22. Let Gn be jointly stationary sets with G where Gn → G pointwise as n → ∞. Assume
further that there exists C > 0, independent of ε and n, such that Eq (3.8) holds for every ε and n.
Then, the assertion in Theorem 21 still holds.

Without going further into detail, we mention that our main results in form of Lemma 10 and
Theorem 56 can be reproduced for any family of geometries satisfying Eqs (3.8) and (3.9) using
Theorem 22.

3.6.2. Extrapolation to the Boolean model

It is currently not clear whether the Boolean model introduced above has a family of extension
operators such as in the pipe example. Furthermore, if such a family does exist, then the diagram
commutes. Hence, we propose the approximation method to derive an educated guess for a
homogenized model.

4. Thinning properties, surface measure and convergence of intensities

We first establish some properties of Fn : S(Rd)→ S(Rd), most importantly the minimal smoothness
of ⊟x(n).

Definition 23 (Minimal smoothness [25]). An open set P ⊂ Rd is called minimally smooth with
constants (δ,N,M) if we may cover ∂P by a countable sequence of open sets (Ui)i such that

i) ∀x ∈ Rd : #{Ui | x ∈ Ui} ≤ N.
ii) ∀x ∈ ∂P∃Ui : Bδ(x) ⊂ Ui.

iii) For every i, ∂P∩Ui agrees (in some Cartesian system of coordinates) with the graph of a Lipschitz
function whose Lipschitz semi-norm is at most M.

Lemma 24 (Uniform δ on individual clusters). Let x ∈ S(Rd) be an admissible point cloud. Then, for
every x ∈ x

δ(Ξ(C
x
(x))) > 0.

Proof. Let x ∈ S(Rd) and assume δ(Ξ(C
x
(x))) = 0 for some x ∈ x. Then, there must be some p ∈ ∂Ξ

x

with δ(p) = 0. This together with bounded finiteness gives xp, yp ∈ x such that p ∈ Br(xp) ∩ Br(yp), in
particular |xp − yp| = 2r. This contradicts the equidistance property of x.

The thinning maps Fn have been constructed just to yield the following theorem.

Theorem 25 (Minimal smoothness of thinned point clouds). For every x ∈ S(Rd), both (Ξx(n))∁ and
(⊟x(n))∁ are minimally smooth with δ = 1/n, M =

√
2nr. Furthermore, every connected component of

Ξx(n) or ⊟x(n) has diameter less than 2nr.
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Proof. It remains to verify the estimate on M. Let x = o = 0Rd and y =
(
2r − n−1, 0, . . . , 0

)
. Then the

Lipschitz constant at the intersection of the two balls Br(x) and Br(y) is less than
√

2nr.

Theorem 26 (Further properties of Fn). The set SA(Rd) of admissible point clouds is measurable in
the vague σ-algebra. Given n ∈ N, it holds that Fn : S(Rd)→ S(Rd) is measurable, S(n) := FnS(Rd) is
compact in the vague topology and the following three properties of x ∈ S(Rd) are equivalent:

i) Fnx = x,
ii) x ∈ S(n),

iii) Eqs (4.1) and (4.2) hold:

∀x, y ∈ x, x , y : d(x, y) < (0, 1/n) ∪ (2r − 1/n, 2r + 1/n), (4.1)
∀x ∈ x : #C

x
(x) ≤ n, δ(Br(Cx(x))) ≥ 1/n. (4.2)

Proof. Fnx = x implies x ∈ S(n) since Fnx ∈ S
(n), and vice versa, x ∈ S(n) implies Fnx = x by

definition of Fn. By construction of Fn it follows that Eqs (4.1) and (4.2) hold if, and only if, x ∈ S(n).
Consider the space of (non-simple) counting measures N(Rd) ⊂ M(Rd), i.e.,

N(Rd) :=
{
µ ∈ M(Rd) : µ =

∑
k∈I⊂N

akδxk such that ak ∈ N and xk ∈ R
d
}
.

We see, e.g., in [2], that

• S(Rd) and N(Rd) are both measurable w.r.t. the Borel-σ-algebra ofM(Rd).
• S(Rd) ⊂ N(Rd) and N(Rd) is closed inM(Rd). In particular, N(Rd) is also complete under the

Prokhorov metric.

Now S(n) is pre-compact because of the characterization of pre-compact sets in the vague topology:
For every bounded open A ⊂ Rd, it holds that sup

x∈S(n) x(A) ≤ C (diam A)d with C depending only
on n. It remains to show that S(n) is closed as a subset of N(Rd). Let

(
x j

)
j∈N
⊂ S(n) be a converging

sequence with limit x ∈ N(Rd). One checks that (4.1) (namely d(x, y) <
(
0, 1/n

)
) ensures x ∈ S(Rd),

e.g., in a procedure similar to the proof of [2, Lemma 9.1.V]. We observe that for every x, y ∈ x, there
exist x j, y j ∈ x j such that x j → x, y j → y as j → ∞. This implies by a limit in Eq (4.1) that x still
satisfies Eq (4.1).

For x ∈ x, one checks that Eq (4.1) (namely d(x, y) <
(
2r − 1/n, 2r + 1/n

)
) implies #C

x
(x) ≤ n.

Let p ∈ ∂Ξ(x) and let {x(1), . . . , x(K)} = B10r(p) ∩ x with sequences x(k)
j → x(k), x(k)

j ∈ x j. Given
η > 0, let J ∈ N such that for all j > J and k = 1, . . . ,K it holds |x(k) − x(k)

j | < η. Then there exists

p j ∈ ∂Ξ(x j) such that |p j − p| < η and ∂Ξ(x j) is a Lipschitz graph in the ball B2δ

(
p j

)
for every δ < 1/n.

Hence ∂Ξ(x j) is a Lipschitz graph in the ball B2δ−η(p). Because the Lipschitz regularity of ∂Ξ(x j)
changes continuously under slight shifts of the balls, there exists η0 such that for η < η0 and ∂Ξ(x) is a
Lipschitz graph in B2δ−2η(p). Since η is arbitrary, we find ∂Ξ(x) is Lipschitz graph in B2δ(p) for every
δ < 1/n, implying δ(p) ≥ 1/n. Since this holds for every p, we conclude Eq (4.2) and S(n) is compact.

To see that SA(Rd) is measurable, consider for x ∈ S(Rd)

x1,m,R := {x ∈ x : x < BR(o) or d(x, y) < (0, 1/m) ∪ (2r − 1/m, 2r + 1/m) ∀y ∈ x},

x2,l,R := {x ∈ x | x < BR(o) or #C
x
(x) ≤ l, δ(Br(Cx(x))) > 1/l},
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and define

F1,m,Rx := x1,m,R S(1,m,R) := F1,m,RS(Rd)
F2,l,Rx := x2,l,R. S(2,m,R) := F2,m,RS(Rd).

We check that S(1,m,R) is a closed subset inside S(Rd) (repeat the arguments above), i.e., S(1,m,R) ∩

S(Rd) = S(1,m,R). In particular, S(1,m,R) is measurable w.r.t. the vague topology of M(Rd). Similarly,
one shows that S(Rd)\S(2,m,R) is closed as a subset inside S(Rd). Again, this shows that S(2,m,R) is
measurable. Consider now the measurable sets

S(1,∞,∞) :=
⋂
R∈N

⋃
m∈N

S(1,m,R) and S(2,∞,∞) :=
⋂
R∈N

⋃
m∈N

S(2,m,R).

We see that

i) x ∈ S(1,∞,∞) if, and only if, for all x, y ∈ x , it holds d(x, y) , 2r.
ii) x ∈ S(2,∞,∞) if, and only if, for every x ∈ x, it holds that #C

x
(x) < ∞ and δ(Br(Cx(x))) > 0.

Therefore,
SA(Rd) = S(1,∞,∞) ∩ S(2,∞,∞),

is measurable.
To see that Fn : S(Rd)→ S(Rd) is measurable, recall Fn = F2,n ◦ F1,n from Definition 3. It, therefore,

suffices to show that the following maps are measurable:

F1,n : S(Rd)→ F1,nS(Rd) ⊂ S(Rd) and F2,n : F1,nS(Rd)→ S(Rd).

For f ∈ Cc(Rd), consider the evaluation by f , i.e.,

M f : S(Rd)→ R, x 7→

∫
Rd

f dx.

If f ≥ 0, we observe the upper semi-continuity of

M f ◦ F1,n : S(Rd)→ R and M f ◦ F2,n : F1,nS(Rd)→ R.

We have lower semi-continuity for f ≤ 0 since M− f = −M f . Therefore M f ◦ Fi,n with i ∈ {1, 2} is
measurable in the cases f ≥ 0 and f ≤ 0 and hence, in general. Since the vague topology is generated
by

(
M f

)
f∈Cc(Rd), we conclude that F1,n and F2,n are measurable.

Remark 27 (Fine details of Theorem 26).

• For S(n) := FnS(Rd), we have that⋃
n∈N

S(n) ⊊ SA(Rd) ⊊
{
x : lim

n→∞
Fnx = x

}
⊊ S(Rd) ⊊

⋃
n∈N

S(n) = N(Rd).

• M f ◦ F2,n is not upper semi-continuous on S(Rd) (in contrast to F1,nS(Rd)): The condition that
d(x, y) < (2r − 1/n, 2r + 1/n) ∀x, y ∈ F1,nx is crucial to ensure that clusters do not change sizes.
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Definition 28. We define the events that the origin is not covered by the filled-up Boolean model, i.e.,

G := {x ∈ S(Rd) | o < ⊟x} and Gn := Fn
−1(G) = {x ∈ S(Rd) | o < ⊟x(n)}.

This gives us, for x ∈ Rd, that
1⊟x∁(x) = 1G(τxx).

We will later consider the effective conductivities based on these events.

Lemma 29 (Approximation properties). Let x ∈ S(Rd) be an admissible point cloud.

i) For every bounded domain Λ, there exists an N(x,Λ) ∈ N such that for every n ≥ N(x,Λ)

x
(n) ∩ Λ = x ∩ Λ, in particular x =

⋃
n∈N

x
(n).

ii) For every bounded domain Λ, there exists an Ñ(x,Λ) ∈ N such that for every n ≥ Ñ(x,Λ)

⊟x(n) ∩ Λ = ⊟x ∩ Λ, in particular ⊟ x =
⋃
n∈N

⊟x(n).

iii) There exists an N = N(x) ∈ N such that for every n ≥ N:

o < ⊟x(n) ⇐⇒ o < ⊟x.

In particular,
⋂

n∈NGn\G only consists of non-admissible point clouds.

Proof. i) Boundedness of Λ implies that there are only finitely many mutually disjoint clusters
C
x
(xi), i = 1, . . . ,NC that intersect with Λ. Furthermore, because # (x ∩ Br(Λ)) < ∞ and because

of Property 1 of admissible point clouds, we know

min {||x − y| − 2r| : x, y ∈ x ∩ Br(Λ), x , y} > 0

and Lemma 24 yields
min {δ(ΞC

x
(xi)) : C

x
(xi) ∩ Λ , ∅} > 0.

This implies the first statement.
ii) By making Λ larger, we may assume Λ = [−k, k]d for some k ∈ N. For n ≥ N(Br

(
[−k, k]d

)
),

[−k, k]d\Ξx(n) = [−k, k]d\Ξx.

[−k, k]d\Ξx only has finitely many connected components Ci. Take one of these connected
components Ci and suppose it lies in ⊟x. Then, it has to be encircled by finitely many balls Br(x)
in Ξx. Let ni be large enough such that all these x lie in x(ni). Then, Ci ⊂ ⊟x(ni). We may do so
for every Ci. Take

Ñ(x,Λ) := max
{
ni, N(Br

(
[−k, k]d

)
)
}
.

For every n ≥ Ñ(x,Λ), the connected components Ci of [−k, k]d\Ξx(n) and [−k, k]d\Ξx are
identical since [−k, k]d\Ξx(n) = [−k, k]d\Ξx. Therefore, we get the claim

[−k, k]d\ ⊟ x(n) =
(
[−k, k]d\Ξx(n)

)
\

⋃
Ci⊂⊟x(n)

Ci

=
(
[−k, k]d\Ξx

)
\

⋃
Ci⊂⊟x

Ci = [−k, k]d\ ⊟ x.
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iii) This is a direct consequence of Point 2. If x ∈
⋂

n∈NGn\G, then o < ⊟x(n) for every n but o ∈ ⊟x.
Therefore, x cannot be admissible by Point 2.

Definition 30 (Surface measure of ⊟x). We define the surface measure for x ∈ S(Rd)

µ
x
(A) := Hd−1

⌞∂⊟x(A) = Hd−1(A ∩ ∂ ⊟ x).

Note that µ
x

(
[0, 1]d

)
≤ Hd−1(Br(o)) · x

(
Br

(
[0, 1]d

))
.

Definition 31 (Intensity of random measure). Given a stationary random measure µ̃, we define
its intensity

λ(µ̃) := E
[
µ̃
(
[0, 1)d)].

We define the intensity of point processes by identifying them as random measures.

Lemma 32 (Convergence of intensities). Let X be an admissible stationary point process with finite
intensity λ(X). Then,

lim
n→∞

λ(X(n)) = λ(X) and lim
n→∞

λ(µX(n)) = λ(µX).

Proof. “Almost surely” is to be understood w.r.t. the distribution P of X.

i) By Lemma 29, we have almost surely X(n)
(
[0, 1]d

)
→ X

(
[0, 1]d

)
as n → ∞. Dominated

convergence with majorant X
(
[0, 1]d

)
yields

λ(X(n)) = E[x(n)
(
[0, 1]d

)
]→ E[x

(
[0, 1]d

)
] = λ(X).

ii) Again, by Lemma 29, we have almost surely ⊟X(n) ∩ [0, 1]d → ⊟X ∩ [0, 1]d, in particular

µX(n)

(
[0, 1]d

)
= Hd−1

⌞∂⊟X(n)

(
[0, 1]d

)
→ Hd−1

⌞∂⊟X

(
[0, 1]d

)
= µX

(
[0, 1]d

)
.

Dominated convergence yields, again, convergence of intensities.

Remark 33 (Local convergence). The convergence in Lemma 29 is much stronger than what is actually
needed to prove the convergence of intensities. Indeed, we could prove convergence even for so-
called tame and local functions f : M(Rd) → R, among which the intensity λ is just one special case
f (x) := x

(
[0, 1]d

)
.

5. Effective conductivity and cell solutions

The structure (M(Rd),B(M(Rd)),P, τ) as in Definition 8 is a dynamical system:

Definition 34 (Dynamical system, stationarity, ergodicity). Let (Ω,F ,P) be a separable metric
probability space. A dynamical system τ = (τx)x∈Rd is a family of measurable mappings
τx : Ω→ Ω satisfying

• Group property: τ0 = idΩ and τx+y = τx ◦ τy for any x, y ∈ Rd.
• Measure preserving: For any x ∈ Rd and any F ∈ F , we have P (τx(F)) = P (F).
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• Continuity: The map T : Ω × Rd → Ω, (ω, x) 7→ τx(ω) is continuous w.r.t. the product topology
on Ω × Rd.

τ is called ergodic if the σ-algebra of τ-invariant sets is trivial under P.

Our practical setting will always be someΩ ⊂ M(Rd), but we will still work with abstract dynamical
systems in Sections 5 and 6. In this context, let us mention that continuity of τ was not needed in the
first place [22], but turned out to be very useful in the proofs concerning two-scale convergence [30].
Since we frequently use results from [30] and since we get continuity of τ for free in our applied
setting, we will simply rely on this property.

5.1. Potentials and solenoidals

Let (Ω,B(Ω),P, τ) be a dynamical system. We write L2(Ω) := L2(Ω, P). The dynamical system τ

introduces a strongly continuous group action on L2(Ω) → L2(Ω) through Tx f (ω) := f (τxω) with the
d independent generators

Di f := lim
t→0

1
t
(
f − f (τtei•)

)
,

with domainDi where (ei)i=1,...,d ⊂ R
d is the canonical Euclidean basis. Introducing

H1(Ω) :=
d⋂

i=1

Di ⊂ L2(Ω),

and the gradient ∇ω f := (D1 f , . . . ,Dd f )⊤, we can define the space of potential vector fields

V2
pot(Ω) :=

{
∇ω̃ f | f ∈ H1(Ω) and

∫
Ω

∇ω̃ f dP(ω) = 0Rd
}
.

Defining L2
sol(Ω) := V2

pot(Ω)⊥, we find with uω(x) := u(τxω) that

L2
pot(Ω) :=

{
u ∈ L2(Ω;Rd) : uω ∈ L2

pot,loc(R
d) for P − a.e. ω ∈ Ω

}
,

L2
sol(Ω) =

{
u ∈ L2(Ω;Rd) : uω ∈ L2

sol,loc(R
d) for P − a.e. ω ∈ Ω

}
, (5.1)

V2
pot(Ω) =

{
u ∈ L2

pot(Ω) :
∫
Ω

u dP = 0
}
,

because Ω is a separable metric [8] where

L2
pot,loc(R

d) :=
{
u ∈ L2

loc(R
d;Rd) : ∀U bounded domain ∃φ ∈ W1,2(U) : u = ∇φ

}
,

L2
sol,loc(R

d) :=
{
u ∈ L2

loc(R
d;Rd) :

∫
Rd

u · ∇φ dx = 0 ∀φ ∈ C1
c (Rd)

}
.

For A ⊂ Ω measurable, we define

V2
pot(A|Ω) := clL2(A)d

{
v|A : v ∈ V2

pot(Ω)
}
.

Networks and Heterogeneous Media Volume 20, Issue 1, 165–212.



183

5.2. Cell solutions and effective conductivity

Definition 35 (Cell solutions). Let (Ω,B(Ω),P) be a separable metric probability space with dynamical
system τ and let Q ∈ B(Ω). We notice that for every unit vector ei, the map

v 7→ −
∫
Q

ei · v dP(ω) = −
〈
ei, v

〉
L2(Q)d ,

is a bounded linear functional on the Hilbert spaceV2
pot(Q|Ω). Using the Riesz representation theorem,

we obtain a unique wi ∈ V
2
pot(Q|Ω) such that

〈
wi, v

〉
V2

pot(Q|Ω) = −
〈
ei, v

〉
L2(Q)d or equivalently

∀v ∈ V2
pot(Ω) :

∫
Q

[wi + ei] · v dP(ω) = 0.

wi is called the i-th cell solution. The cell solutions satisfy

∥wi∥L2(Q)d ≤
√
P(Q) ≤ 1,

and can be grouped in the matrix
WQ := (w1, . . . ,wd).

Remark 36. We observe that by definition, wi is the minimizer inV2
pot(Q|Ω) of the functional

Ei(w) =
∫
Q

1
2

(wi + ei)2 dP. (5.2)

Definition 37 (Effective conductivity A). Let wi be the cell solution on Q ∈ B(Ω). The effective
conductivityA based on the event Q is defined as

A :=
∫
Q

(Id +WQ)t(Id +WQ) dP(ω), (5.3)

with Id being the identity matrix. We observe for the entries
(
Ai, j

)
i, j=1,...,d

ofA that

Ai, j =

∫
Q

[ei + wi(ω)] ·
[
e j + w j(ω)

]
dP(ω) =

∫
Q

[ei + wi(ω)] · e j dP(ω). (5.4)

We write αA ≥ 0 for its smallest eigenvalue.

Lemma 38 (Convergence of cell solutions). Let (Qn)n∈N ⊂ B(Ω) and Q ∈ B(Ω) such that 1Qn → 1Q
P-almost everywhere as n→ ∞ and

• either Qn ⊃ Q for every n, or
• there exist C > 0, r ∈ (1, 2] independent from n and continuous operators Un : V2

pot(Q|Ω) →
Vr

pot(Ω) such that, for every n and every w ∈ V2
pot(Qn|Ω), it holds that ∥Unw∥Lr(Ω) ≤ C ∥w∥V2

pot(Qn |Ω).

Then, the sequence of cell solutions w(n)
i to the cell problem on Qn satisfies

w(n)
i ⇀ wi in L2(Ω)d as n→ ∞,

where wi ∈ V
2
pot(Q|Ω) is the i-th cell solution on Q

∀v ∈ V2
pot(Ω) :

∫
Q

[wi + ei] · v dP(ω) = 0.
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Proof. We first check that the limit satisfies
∫
Q

[wi + ei] · v dP(ω) = 0 and then wi ∈ V
2
pot(Q|Ω).

i) In both cases, the a priori estimate yields an L2-weakly convergent subsequence of w(n)
i ⇀ wi ∈

L2(Ω)d after extending w(n)
i to the whole of Ω via 0. Let v ∈ V2

pot(Ω). We have 1Qn → 1Q P-almost
everywhere, so dominated convergence yields

lim
n→∞

∫
Qn

ei · v dP(ω) =
∫
Q

ei · v dP(ω),

while weak convergence yields

lim
n→∞

∫
Qn

w(n)
i · v dP(ω) =

∫
Ω

wi · v dP(ω).

We also have
1Qnw

(n)
i = w(n)

i

L2(Ω)d

−−−−⇀
n→∞

wi,

which implies
1Qwi = wi.

Therefore, with wi ∈ L2(Q)d:

0 = lim
n→∞

∫
Qn

[w(n)
i + ei] · v dP(ω) =

∫
Q

[wi + ei] · v dP(ω).

ii) In both cases of the lemma, the space V2
pot(Q|Ω) ⊂ L2(Q)d is closed and convex, so it is also

weakly closed. We construct a weakly converging sequence in V2
pot(Q|Ω) that converges to wi. Since

w(n)
i ∈ V

2
pot(Qn|Ω), we find v(n) ∈ V2

pot(Ω) such that

∥w(n)
i − 1Qnv

(n)∥L2(Q)d ≤
1
n
.

Since w(n)
i ⇀ wi, we get

1Qnv
(n) L2(Ω)d

−−−−⇀
n→∞

wi.

Note that
(
1Qn − 1Q

)
v(n) is a bounded sequence that is weakly converging to 0 because for every

ϕ ∈ L2(Ω) we find by dominated convergence that
(
1Qn − 1Q

)
ϕ → 0 strongly in L2(Ω). Therefore, we

also obtain
1Qv(n) L2(Ω)d

−−−−⇀
n→∞

wi.

In the first case of the lemma, 1Qv(n) ∈ V2
pot(Q|Ω), so we get that wi ∈ V

2
pot(Q|Ω). In the second case,

we obtain 1Qv(n) ∈ Vr
pot(Q|Ω) and hence wi ∈ V

r
pot(Q|Ω). Since being a Lr

pot-function is distinguished
from being a pure Lr-function only by the Condition (5.1), the integrability of wi then yields wi ∈

V2
pot(Q|Ω).

Corollary 39 (Convergence of effective conductivities). Let (Qn)n∈N ⊂ B(Ω) and Q ∈ B(Ω) such that
1Qn → 1Q P-almost surely and

• either Qn ⊃ Q for every n, or
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• there exist C > 0, r ∈ (1, 2] independent from n and continuous operators Un : V2
pot(Q|Ω) →

Vr
pot(Ω) such that, for every n and every w ∈ V2

pot(Qn|Ω), it holds that ∥Unw∥Lr(Ω) ≤ C ∥w∥V2
pot(Qn |Ω).

LetA(n) be the effective conductivity of Qn andA be the effective conductivity of Q. Then,

A(n) n→∞
−−−→ A.

Proof. This follows from Eq (5.4) and weak convergence w(n)
i ⇀ wi.

Remark 40 (Variational formulation). There is another way to define A: For η ∈ Rd, WQη (see
Definition 35) is the unique minimizer to

min
φ∈V2

pot(Q)

∫
Q

∣∣∣η + φ∣∣∣2 dP(ω),

and therefore
ηtAη =

∫
Q

∣∣∣(Id +WQ)η
∣∣∣2 dP(ω) = min

φ∈V2
pot(Q)

∫
Q

∣∣∣η + φ∣∣∣2 dP(ω).

This equality is related to Theorem 57.

5.3. Proof of Theorems 21 and 22

We will prove both theorems at once. The first part follows using the weak formulation, weak
convergence of both uεn and ∇uεn as n → ∞ as well as standard PDE arguments. The second part is
proved in [30] using our notation and also before in [28]. The convergence ofA(n) in Part three is given
by Corollary 39. Hence, it only remains to prove the convergence of un.

When it comes to the latter, we have to distinguish between three cases:

i) There exists C0 > 0 such that, for every ξ ∈ Rd \ {0} and every n ∈ N ∪ {∞}, it holds

|ξ|2 ≤ C0ξ · A
(n)ξ.

Then, the proof is straightforward using the resulting uniform estimates on ∥∇u∥L2(Q) + ∥u∥L2(Q).
ii) A = 0: Then, convergence follows after assuming that fn ∈ H1(Q) is uniformly bounded as well

as testing with λun − fn. This will eventually lead to an estimate

∥λun − fn∥
2
L2(Q) ≤

C̃
λ

(∫
Q
∇ fn · A

(n)∇ fn

)
→ 0.

Afterward, we may use an approximation argument for fn bounded in L2(Q) using a standard
mollifier: f δn = fn ∗ ηδ with ∥a − a ∗ ηδ∥L2(Q) ≤ δ∥a∥L2(Q). Then,∫

Q
∇(uδn − un)A(n)∇(uδn − un) +

λ

2
∥uδn − un∥

2
L2(Q) ≤

1
2λ
∥ f δn − fn∥

2
L2(Q).

iii) ξ · Aξ = 0 along some ξ ∈ Rd \ {0}. Then, these ξ form a linear subspace and we may restrict
our testing functions to a dependence in the orthogonal direction, only. More precisely, we can
consider testing functions with support concentrated on the orthogonal plane to ξ as n→ ∞.
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5.4. Pull-back for thinning maps

In Section 6, we will use two-scale convergence to homogenize Eq (1.1) for fixed n. This process is
more convenient to handle if the underlying probability space is compact. Here we show that we may
take FnS(Rd) as the underlying probability space instead of S(Rd).

Lemma 41. Let P be a distribution on S(Rd) and let S(n) := FnS(Rd) with the push-forward measure
P̃n := P ◦ F−1

n . Recall Gn :=
{
x ∈ S(Rd) : o < ⊟x(n)

}
and let G̃n :=

{
x ∈ S(n) : o < ⊟x

}
= FnGn. Let w(n)

i

be the cell solutions on Gn and w̃(n)
i the cell solutions on G̃n for their respective dynamical systems.

Then, for every i, j ∈ {1, . . . , d}, it holds that∫
Gn

[
w(n)

i + ei
]
· e j dP =

∫
G̃n

[
w̃(n)

i + ei
]
· e j dP̃n. (5.5)

Lemma 42 (Properties of pull-back functions). Let (Ω,F ,P, τ), (Ω̃, F̃ , P̃, τ̃) be dynamical systems,
ϕ : Ω→ Ω̃ measurable such that P̃ = P ◦ ϕ−1 and such that for every x ∈ Rd

ϕ ◦ τx = τ̃x ◦ ϕ. (5.6)

Then, the following holds: For every f̃ ∈ L2(Ω̃)d, we have f := f̃ ◦ ϕ ∈ L2(Ω)d with ∥ f ∥L2(Ω)d =

∥ f̃ ∥L2(Ω̃)d . If f̃ ∈ V2
pot(Ω̃), then f ∈ V2

pot(Ω). If f̃ ∈ L2
sol(Ω̃), then f ∈ L2

sol(Ω). f is called the pull-back
of f̃ .

Proof. Due to P̃ = P ◦ ϕ−1, we immediately obtain for arbitrary measurable g̃ ∈ L1(Ω̃)d and its pull-
back g ∫

Ω̃

g̃ dP̃ =
∫
Ω

g̃ ◦ ϕ dP =
∫
Ω

g dP. (5.7)

Therefore ∥ f ∥L2(Ω)d = ∥ f̃ ∥L2(Ω̃)d and (5.6) yields f̃ ∈ V2
pot(Ω̃) =⇒ f ∈ V2

pot(Ω). For f̃ ∈ L2
sol(Ω̃),

f ∈ L2
sol(Ω), follows from ϕ ◦ τx = τ̃x ◦ ϕ and checking∫

Λ

f (τxω) · ∇φ(x) dx =
∫
Λ

f̃ (τ̃xω) · ∇φ(x) dx = 0,

for P-almost every ω and every φ ∈ C1
c (Λ) on a bounded domain Λ ⊂ Rd.

Proof of Lemma 41. We use Lemma 42 for ϕ = Fn with (Ω,F ,P, τ) = (S(Rd),B(S(Rd)),P, τ), where
τx is the shift-operator on S(Rd) and B(S(Rd)) is the Borel-σ-algebra generated by the vague topology,
and (Ω̃, F̃ , P̃, τ̃) = (S(n)),B(S(n)),P ◦ F−1

n , τ) again with shift-operator and Borel-σ-algebra. Let wi

be the pull-back of w̃(n)
i according to Lemma 42. We see F−1

n G̃n = Gn, so wi has support in Gn. Let
ṽk ∈ V

2
pot(S

(n)) with ∥w̃(n)
i − ṽk∥L2(G̃n)d ≤

1
k . The pull-back vk ∈ V

2
pot(Ω) of ṽk satisfies ∥wi − vk∥L2(Gn)d ≤ 1

k

and hence, wi ∈ V
2
pot(Gn|S(Rd)). We observe

(
w̃(n)

i +ei
)
1G̃n
∈ L2

sol(S
(n)) with the pull-back

(
wi+ei

)
1Gn ∈

L2
sol(S(Rd)). This implies wi = w(n)

i . Eq (5.7) yields Eq (5.5).

6. Proof of Lemmas 7 and 10

We first collect all the tools needed to prove the homogenization result for minimally smooth
domains (Lemma 10).
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6.1. Extensions and traces for thinned point clouds

Theorem 43 (Extending beyond holes and trace operator). There exists a constant C > 0 depending
only on n ∈ N and M0 > 1 such that the following holds: Assume that Q ⊂ Rd is a bounded Lipschitz
domain with Lipschitz constant M0, x ∈ FnS(Rd) and xQ ⊂ x such that for every x ∈ xQ it holds
B2r(x) ⊂ Q. Then, there exists an extension operator

U
xQ : W1,2(Q \ ⊟xQ)→ W1,2(Q),

such that (U
xQu)|Q\⊟xQ = u and∥∥∥U

xQu
∥∥∥

L2(Q)
≤ C ∥u∥L2(Q\⊟xQ) ,

∥∥∥∇U
xQu

∥∥∥
L2(Q)
≤ C ∥∇u∥L2(Q\⊟xQ) . (6.1)

Furthermore, there exists a trace operator

T
xQ : W1,2(Q \ ⊟xQ)→ L2(∂ ⊟ xQ) := L2(∂ ⊟ xQ, H

d−1),

such that T
xQu = u|∂⊟xQ for every u ∈ C1

c (Q) and

∥T
xQu∥L2(∂⊟xQ) ≤ C

(
∥u∥L2(Q\⊟(xQ)) + ∥∇u∥L2(Q\⊟xQ)

)
. (6.2)

Proof. For every xQ ⊂ x with x ∈ FnS(Rd), the set Q \⊟xQ is minimally smooth with δ = min {1/n, r}
and, M = max

{√
2nr,M0

}
. Furthermore, the connected components of ⊟xQ have a diameter less

than 2nr. The existence of U
xQ satisfying Eq (6.1) follows from [5, Lemma 2.4] (actually, this was

pointed out before by [7, Section 3], but the implications there are not obvious). The existence of T
xQ

satisfying Eq (6.2) is provided in [9].

6.2. Stochastic two-scale convergence

Definition 44 (Stationary and ergodic random measures). A random measure µ• : Ω → M(Rd) with
underlying dynamical system (Ω,F ,P, τ) is called stationary if

µτxω(A) = µω(A + x),

for every measurable A ⊂ Rd, x ∈ Rd, and P-almost every ω ∈ Ω. µ• is called ergodic if it is stationary
and τ is ergodic.

Definition 44 is compatible with Definition 8 given in Section 3 by considering the canonical
underlying probability space (M(Rd),B(M(Rd)),Pµ, τ) with Pµ being the distribution of µ.

Theorem 45 (Palm theorem (for finite intensity) [17]). Let µ• be a stationary random measure with
underlying dynamical system (Ω,F ,P, τ) of finite intensity λ(µ•).

Then, there exists a unique finite measure µP on (Ω,F ) such that for every g : Rd × Ω → R

measurable and either g ≥ 0 or g ∈ L1
(
Rd ×Ω, Ld ⊗ µP

)
:∫

Ω

∫
Rd

g(x, τxω) dµω(x) dP(ω) =
∫
Rd

∫
Ω

g(x, ω) dµP(ω) dx.
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For arbitrary f ∈ L1(Rd) with
∫
Rd f dx = 1, we have that

µP(A) =
∫
Ω

∫
Rd

f (x)1A(τxω) dµω(x) dP(ω),

in particular, µP(Ω) = λ(µ). Furthermore, for every ϕ ∈ Cc(Rd) and g ∈ L1(Ω; µP), the ergodic limit

lim
ε→0

∫
Rd
ϕ(x) g

(
τ x
ε
ω
)

dµω(x) =
∫
Rd

∫
Ω

ϕ(x) g(ω̃) dµP(ω̃) dx, (6.3)

holds for P-almost every ω. We call µP the Palm measure of µ•.

For the rest of this subsection, we use the following assumptions.

Assumption 46. Ω is a compact metric space with a probability measure P and continuous dynamical
system (τx)x∈Rd . Furthermore, µ• : Ω → M(Rd) is a stationary ergodic random measure with Palm
measure µP. We define µεω(A) := εdµω(ε−1A).

According to [30] (by an application of Eq (6.3)), almost every ω ∈ Ω is typical, i.e., for such an ω,
it holds for every ϕ ∈ C(Ω) that

lim
ε→0
|Q|−1

∫
Q
ϕ
(
τ x
ε
ω
)

dx =
∫
Ω

ϕ dP.

Definition 47 (Two-scale convergence). Let Assumption 46 hold and let ω ∈ Ω be typical. Let (uε)ε>0

be a sequence uε ∈ L2(Q, µεω) and let u ∈ L2(Q; L2(Ω, µP)) such that

sup
ε>0
∥uε∥L2(Q,µεω) < ∞,

and such that for every φ ∈ C∞c (Q), ψ ∈ C(Ω)

lim
ε→0

∫
Q

uε(x)φ(x)ψ
(
τ x
ε
ω
)

dµεω(x) =
∫

Q

∫
Ω

u(x, ω̃)φ(x)ψ(ω̃) dµP(ω̃) dx. (6.4)

Then, uε is said to be (weakly) two-scale convergent to u, written uε
2s
⇀ u.

Remark 48 (Extending the space of test functions).

• For K ∈ N, let χ1, . . . , χK ∈ L∞(Ω, µP). The original proof of the following Lemma 49 in [30]
shows that we can equally define two-scale convergence additionally claiming Eq (6.4) has to hold
for every ψ ∈ C(Ω) and ψ = χkψ̃, where ψ̃ ∈ C(Ω). In particular, given a fixed χ ∈ L∞(Ω, µP), we

can w.l.o.g. say that two-scale convergence of uε
2s
⇀ u implies uεχ(τ ·

ε
ω)

2s
⇀ uχ.

• Using a standard approximation argument, we can extend the class of test functions from φ ∈

C∞c (Q) to φ ∈ L2(Q), provided µω is uniformly continuous w.r.t. the Lebesgue measure. Then,
strong L2(Q)-convergence implies two-scale convergence for µω ≡ Ld.

Lemma 49 ([30, Lemma 5.1]). Let Assumption 46 hold. Let ω ∈ Ω be typical and uε ∈ L2(Q, µεω) be a
sequence of functions such that ∥uε∥L2(Q,µεω) ≤ C for some C > 0 independent of ε. Then, there exists a

subsequence of (uε
′

)ε′→0 and u ∈ L2(Q; L2(Ω, µP)) such that uε
′ 2s
⇀ u and

∥u∥L2(Q;L2(Ω,µP)) ≤ lim inf
ε′→0

∥uε
′

∥L2(Q,µεω). (6.5)
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Theorem 50 (Two-scale convergence in W1,2(Q) [30]). Under Assumption 46, for every typical ω ∈ Ω
the following holds: If uε ∈ W1,2(Q;Rd) for all ε and if

sup
ε>0

(
∥uε∥L2(Q) + ∥∇uε∥L2(Q)

)
< ∞,

then, there exists a u ∈ W1,2(Q) with uε ⇀ u weakly in W1,2(Q) and there exists v ∈ L2(Q;V2
pot(Ω))

such that ∇uε
2s
⇀ ∇u + v weakly in two scales.

6.3. Two-scale convergence on perforated domains

Due to Theorem 26, the set FnS(Rd) ⊂ M(Rd) is compact, hence the above two-scale convergence
method can be applied for the stationary ergodic point process X(n) taking values in FnS(Rd) only.
To be more precise, we consider the compact metric probability space Ω = FnS(Rd) and a random
variable Xn : Ω→ S(Rd) such that Xn and X(n) have the same distribution. By the considerations made
in Subsection 5.4, they will both result in the same partial differential equation.

Theorem 51 (Extension and trace estimates on Qε
x

for x ∈ FnS(Rd)). Let Q ⊂ Rd be a bounded
domain, n ∈ N be fixed. Let X be an admissible point process with values in FnS(Rd). For almost every
realization x of X, we have: Let Qε

x
and Gε

x
be defined according to Definition 4.

i) There exists a C > 0 depending only on Q and n and a family of extension and trace operators

Uε,x : W1,2(Qε
x
)→ W1,2(Q), Tε,x : W1,2(Qε

x
)→ L2(∂Gε

x
),

such that for every u ∈ W1,2(Qε
x
) it holds∥∥∥Uε,xu
∥∥∥

W1,2(Q)
≤ C ∥u∥W1,2(Qε

x
) ,

ε
∥∥∥Tε,xu

∥∥∥2

L2(∂Gε
x

)
≤ C

(
∥u∥2L2(Qε

x
) + ε

2 ∥∇u∥2L2(Qε
x

)

)
.

ii) If uε ∈ W1,2(Qε
x
) is a sequence satisfying supε ∥u

ε∥W1,2(Qε
x

) < ∞, then, there exists a u ∈ W1,2(Q)
and a subsequence still indexed by ε such that Uε,xuε ⇀ u weakly in W1,2(Q) and there exists
v ∈ L2(Q;V2

pot(Ω)) such that

∇Uε,xuε
2s
⇀ ∇u + v, ∇uε

2s
⇀ 1Gn (∇u + v) ,

where Gn :=
{
x ∈ FnS(Rd) | o < ⊟x

}
. Furthermore, for some C > 0 depending only on Q and n

ε
∥∥∥Tε,x(uε − u)

∥∥∥2

L2(∂Gε
x

)
≤ C

(∥∥∥Uε,xuε − u
∥∥∥2

L2(Q)
+ ε2

∥∥∥∇Uε,xuε − ∇u
∥∥∥2

L2(Q)

)
. (6.6)

Proof. i) follows from using Theorem 43 on ε−1Gε
x

and rescaling the inequalities (6.1) and (6.2).
ii) is a bit more lengthy. The existence of a subsequence and u ∈ W1,2(Q) and v ∈ L2(Q; L2

pot(Ω))

such that Uε,xuε ⇀ u and ∇Uε,xuε
2s
⇀ ∇u + v follows from Theorem 50. We observe that

1Gn(τxx) = 1⊟x∁(x) and 1⊟x∁( x
ε
) = 1ε⊟x∁(x). Therefore, 1ε⊟x∁∇Uε,xuε

2s
⇀ (∇u + v)1Gn
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(Remark 48(i)). Furthermore, we observe with Qε
n,r := {x ∈ Q : dist(x, ∂Q) ≤ εnr} such that we have

(ε ⊟ x ∩ Q) \Gε
x
⊂ Qε

n,r and ∣∣∣1ε⊟x − 1Gε
x

∣∣∣ ≤ 1Qε
n,r

ε→0
−−−→ 0 pointwise a.e..

Therefore, 1ε⊟x−1Gε
x

→ 0 strongly in Lp(Q), p ∈ [1,∞), and hence, taking any arbitrary ϕ ∈ C(Ω),
ψ ∈ C(Q), we find∫

Q

(
1ε⊟x − 1Gε

x

)
∇Uε,xuεϕ(τ •

ε
x)ψ dx ≤

∥∥∥1ε⊟x − 1Gε
x

∥∥∥
L2(Q)

∥∥∥∇Uε,xuε
∥∥∥

L2(Q) ∥ϕ∥∞ ∥ψ∥∞ → 0,

which means that 1ε⊟x∇Uε,xuε and ∇uε = 1Gε
x

∇Uε,xuε have the same two-scale limit

∇uε
2s
−−−⇀
ε→0

1Gn(∇u + v).

Due to the absolutely bounded diameter of the connected components of ⊟x, there exists a domain
B ⊃ Q big enough such that, with the notation of Definition 4,

Q ∩ ε ⊟ (Jε(x, B)) = Q ∩ ε ⊟ x ∀ε ∈ (0, 1).

Now letUQ : W1,2(Q)→ W1,2(B) be the canonical extension operator satisfying∥∥∥UQu
∥∥∥

L2(B)
≤ C ∥u∥L2(Q) and

∥∥∥∇UQu
∥∥∥

L2(B)
≤ C ∥∇u∥L2(Q) .

Reapplying Theorem 43 to the trace on ε−1 (B\ε ⊟ (Jε(x, B))), we find for some constant C
independent from ε and X but depending on Q, B, and n and varying from line to line:

ε
∥∥∥Tε,x(uε − u)

∥∥∥2

L2(∂Gε
x

)
≤ ε

∥∥∥Tε,x(UQUε,xuε −UQu)
∥∥∥2

L2(ε∂⊟(Jε(x,B)))

≤ C
(∥∥∥UQUε,xuε −UQu

∥∥∥2

L2(B)
+ ε2

∥∥∥∇UQUε,xuε − ∇UQu
∥∥∥2

L2(B)

)
≤ C

(∥∥∥Uε,xuε − u
∥∥∥2

L2(Q)
+ ε2

∥∥∥∇Uε,xuε − ∇u
∥∥∥2

L2(Q)

)
,

as desired.

6.4. Existence of solution on perforated domains (Lemma 7)

Due to the perforations, ∂tuε cannot be embedded in a common space in a convenient way for
the application of the Aubin–Lions theorem. Hence, we use the following general characterization of
compact sets.

Theorem 52 (Characterization of compact sets in Lp(I; V) [24, Theorem 1]). Let V be a Banach space,
p ∈ [1,∞) and Λ ⊂ Lp(I; V). Λ is relatively compact in Lp(I; V) if, and only if,{∫ t2

t1
v(t) dt | v ∈ Λ

}
is relatively compact in V ∀ 0 < t1 < t2 < T, (6.7)

sup
v∈Φ
∥sh[v] − v∥Lp(0,T−h;V) → 0 as h→ 0, (6.8)

where sh[v( · )] := v( · + h) is the shift by h ∈ (0, T ).
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We can now establish the existence of a solution for fixed ε > 0 to our partial differential equation.

Theorem 53 (Existence of solution on perforated domains and a priori estimate). Let x ∈ FnS(Rd).
Under Assumption 6 and with Qε

x
as defined in Definition 4, we have that there exists a solution

uε ∈ L2(I; W1,2(Qε
x
)), with generalized time derivative ∂tuε ∈ L2(I; W1,2(Qε

x
)∗), to Eq (1.1), i.e.,

∂tuε − ∇ · (A(uε)∇uε) = f in I × Qε
x

A(uε)∇uε · ν = 0 on I × ∂Q

A(uε)∇uε · ν = εh(uε) on I × ∂Qε
x
\∂Q

uε(0, x) = u0(x) in Qε
x
,

(6.9)

which satisfies the following a priori estimates for ε small enough

ess sup
t∈I
∥uε(t)∥2L2(Qε

x
) ≤ exp(C1)

[
∥u0∥

2
L2(Q) +C2

]
∥∇uε∥2L2(I;L2(Qε

x
)) ≤

1
inf(A)

(
1 +C1 exp(C1)

)[
∥u0∥

2
L2(Q) +C2

]
(6.10)

∥∂tuε∥2L2(I;W1,2(Qε
x

)∗) ≤ C̃,

where
C1 := T (1 + 3CLh) and C2 := T Lhh(0)2Ld(Q) + ∥ f ∥2L1(I;L2(Q)),

C is from Theorem 51 depending only on Q and n and where C̃ > 0 is independent of ε.

Proof. We will only sketch the proof. There are 3 main steps: Deriving a priori estimates, existence of
Galerkin solutions and the limit passing.

i) Testing Eq (6.9) with uε and using

⟨∂tuε, uε⟩W1,2(Qε
x

)∗,W1,2(Qε
x

) =
1
2

d
dt
∥uε∥2L2(Qε

x
),

yields

1
2

d
dt
∥uε∥2L2(Qε

x
) + A(uε) ∥∇uε∥2L2(Qε

x
) − ε

(
h(uε), uε

)
L2(∂Gε

x
) =

(
f , uε

)
L2(Qε

x
).

The a priori estimate then follows from the Gronwall inequality and the trace estimate in
Theorem 51. For the a priori estimate in ∂tuε, one simply uses

⟨∂tuε, φ⟩ =
(
A(uε)∇uε, ∇φ

)
L2(Qε

x
) + ε

(
h(uε), φ

)
L2(∂Gε

x
) +

(
f , φ

)
L2(Qε

x
).

ii) Let (Vm)m∈N be a family of finite-dimensional vector spaces, Vm ↗ W1,2(Qε
x
). Solutions to

Eq (1.1) exist in Vm, that is,

∂tuε(m) − ∇ ·
(
A(uε(m))∇uε(m)

)
= Pm f in I × Qε

A(uε(m))∇uε(m) · ν = 0 on I × ∂Q

A(uε(m))∇uε(m) · ν = εh(uε(m)) on I × ∂Qε\∂Q

uε(m)(0, x) = Pmu0(x) in Qε,
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where Pm : W1,2(Qε
x
) → Vm is the orthogonal projection. This can be shown via, e.g., [21,

Theorem 3.7] which yields solutions for some I′ := [0,T ′] ⊂ [0,T ]. In this reference, their
y ∈ W1,p(I′) corresponds to the parameters of the Galerkin approximation, i.e., uε(m) =

∑m
i=1 yivi with

vi ∈ Vm being fixed orthonormal base vectors. These solutions uε(m) satisfy the a priori estimate in
Eq (6.10) as well as

sup
m∈N
∥∂tuε(m)∥L2(I′;V∗m) < ∞, (6.11)

in particular, we may extend the solution uε(m) to the whole time interval I (with still uniform bounds
in m).

iii) The a priori estimates yield a L2(I; L2(Qε
x
))-weakly convergent subsequence to some

uε ∈ L2(I; L2(Qε
x
)). Theorem 52 and Eq (6.11) imply pre-compactness of (uε(m))m∈N ⊂ L2(I; L2(Qε

x
)) as

well as pre-compactness of (Tε,xuε(m))m∈N ⊂ L2(I; L2(∂Gε
x
)), see Remark 54. Testing with functions in

L2(I; Vm) and passing to the limit m→ ∞ finishes the proof since
⋃

m∈N Vm is dense in W1,2(Qε
x
).

Remark 54 (Procedure of Simon’s theorem). We will use Simon’s theorem (Theorem 52) on multiple
occasions. The general procedure will always be the same. We will exemplaily prove the following
result: Let I = [0,T ], U ⊂ Rd be some bounded Lipschitz-domain and T : W1,2(U) → L2(∂U)
the trace operator. For each k ∈ N, let uk ∈ L2(I; W1,2(U)) with generalized time-derivative ∂tuk ∈

L2(I; W1,2(U)∗) via W1,2(U) ↪→ L2(U) ↪→ W1,2(U)∗. Assume that

C := sup
k∈N
∥uk∥L2(I;W1,2(U)) < ∞ and C̃ := sup

k∈N
∥∂tuk∥L2(I;V∗k ) < ∞,

for either the situation that W1,2(U) ⊂ Vk ⊂ L2(U) with ∥·∥Vk
≤ ∥·∥W1,2(U) and uniformly continuous

injective maps Uk : Vk → W1,2(U) or for the situation that Vk ⊂ W1,2(U). We further claim uk(t) ∈ Vk

for almost every t ∈ I. Then,

(Ukuk)k∈N ⊂ L2(U) resp. (uk)k∈N ⊂ L2(U) and (T uk)k∈N ⊂ L2(∂U),

are relatively compact.

Exemplarily proof for the procedure of Simon’s theorem. We need to show Conditions (6.7) and (6.8)
from Theorem 52.

i) Condition (6.7) usually relies on compactness results for the stationary setting. Since

sup
k∈N

∥∥∥∥∥∥
∫ t2

t1
uk dt

∥∥∥∥∥∥
W1,2(Q)

≤ sup
k∈N

√
T∥uk∥L2(I;W1,2(U)) < ∞,

compactness of T yields pre-compactness of
( ∫ t2

t1
T uk dt

)
k∈N =

(
T

∫ t2
t1

uk dt
)

k∈N ⊂ L2(∂U), so we
have shown Condition (6.7).

ii) Condition (6.8) will additionally require some a priori estimate on ∂tuk. We have

uk(t2) = uk(t1) +
∫ t2

t1
∂tuk ds,

as elements of W1,2(U)∗. Using the Cauchy–Schwarz inequality twice, we get for h ∈ (0,T ):

∥sh[uk] − uk∥
2
L2((0,T−h);L2(U)) =

∫ T−h

0

(
uk(t + h) − uk(t), uk(t + h) − uk(t)

)
L2(U) dt
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=

∫ T−h

0

〈 ∫ t+h

t
∂tuk(s) ds, uk(t + h) − uk(t)

〉
W1,2(U)∗,W1,2(U) dt

≤

∫ T−h

0
∥

∫ t+h

t
∂tuk(s) ds∥L2(V∗k ) ∥Ukuk(t + h) −Ukuk(t)∥W1,2(U) dt

≤ h∥∂tuk∥L2(I;V∗k ) 2∥uk∥L2(I;W1,2(U)) ≤ 2hCC̃.

Compactness of T implies that for every δ > 0, there exists a Cδ > 0 such that

∥T v∥2L2(∂U) ≤ Cδ∥v∥2L2(U) + δ∥∇v∥2L2(U) ∀v ∈ W1,2(U).

Therefore,

∥sh[T uk] − T uk∥
2
L2((0,T−h);L2(∂U)) = ∥T [shuk − uk]∥2L2((0,T−h);L2(∂U))

≤Cδ∥shuk − uk∥
2
L2(∂U) + δ∥∇shuk − ∇uk∥

2
L2(U)

≤2hCδCC̃ + 2δC̃.

The estimate is independent of the chosen uk, and Condition (6.8) holds.

We have shown both conditions and concluded.

6.5. Homogenization for minimally smooth domains (Lemma 10)

We can now pass to the limit ε → 0 for the homogenized system. Some extra care has to be taken
since Qε

x
, Q\ε ⊟ x, especially in the boundary term. However, we show that the difference becomes

negligible for the two-scale convergence as ε→ 0.

Theorem 55 (Homogenized system for ⊟X(n)). LetX be a stationary ergodic point process with values
in FnS(Rd). Recall the surface measure µ

x
from Definition 30

µ
x

:= Hd−1
⌞∂⊟x.

Under Assumption 6, we have for almost every realization x of X and with Qε
x

as defined in
Definition 4: Let uε be a solution to Eq (6.9) and let Uε,x be given as in Theorem 51. There exists a
un ∈ L2(I; W1,2(Q)) with generalized time derivative ∂tun ∈ L2(I; W1,2(Q)∗) such that for
a subsequence

Uε,xuε
L2(I;L2(Q))
−−−−−−−−→

ε→0
un and ∂tuε

L2(I;W1,2(Q)∗)
−−−−−−−−−−⇀

ε→0
P(Gn)∂tun,

and un is a (not necessarily unique) solution to

P(Gn)∂tun − ∇ · (A(un)A∇un) − λ(µX)h(un) = P(Gn) f in I × Q

A(un)A(n) ∇un · ν = 0 on I × ∂Q (6.12)
un(0, x) = P(Gn)u0(x) in Q,

with A(n) being the effective conductivity based on the event Gn =
{
x ∈ FnS(Rd) | o < ⊟x

}
defined in

Definition 37. Furthermore, un satisfies the following a priori estimates

ess sup
t∈I
∥un(t)∥2L2(Q) ≤ exp(C(n)

1 )
[
∥u0∥

2
L2(Q) +C(n)

2
]
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∥∇un∥
2
L2(I;L2(Q)) ≤

P(Gn)
2αA(n) inf(A)

(
1 +C(n)

1 exp(C(n)
1 )

)[
∥u0∥

2
L2(Q) +C(n)

2
]
,

for

C(n)
1 := T

(
1 +

λ(µX)
P(Gn)

(1 + 2Lh)
)

and C(n)
2 := ∥ f ∥2L2(I;L2(Q)) + 2T

λ(µX)
P(Gn)

∣∣∣h(0)
∣∣∣2.

Proof. The a priori estimates in Eq (6.10) and Theorem 51 tell us that

Uε,xuε
2s
⇀ un, ∇Uε,xuε

2s
⇀ ∇un + v, uε

2s
⇀ 1Gnun, ∇uε

2s
⇀ 1Gn(∇un + v),

for some un ∈ L2(I; W1,2(Q)) and v ∈ L2(I; L2(Q;V2
pot(Ω))) where the two-scale convergence is with

respect to the Lebesgue measureLd. The uniform bound for ∂tuε in Eq (6.10) together with Theorem 52
yields (for yet another subsequence)

Uε,xuε
L2(I;L2(Q))
−−−−−−−−→

ε→0
un, (6.13)

compared to, e.g., Remark 54.
For φ1, φ2 ∈ C1([0,T ] × Q) with φ1(T, ·) = 0 and ψ ∈ H1(Ω) with

∫
Ω
∇ω̃ψ dP = 0, we use

φε(t, x) := φ1(t, x) + εφ2(t, x)ψ(τ x
ε
x) as a test function and pass to the limit using two-scale

convergence. Furthermore, we use

A(uε)∇uε
2s
⇀ A(un)1Gn (∇un + v) and h(uε)

2s, µX
−−−−⇀ h(un), (6.14)

which we will prove below. We then obtain the two equations

−

∫ T

0

∫
Q

un∂tφ1 dx dt +
∫

Q
u0φ1 dx +

∫ T

0

∫
Q

∫
Gn

∇φ1·A(un) (∇un + v) dP(x) dx dt

+

∫ T

0

∫
Q

h(un)φ1 dx dt
∫
Ω

dµP(x) =
∫ T

0

∫
Q

fφ1 dx dt, (6.15)∫ T

0

∫
Q

∫
Gn

φ2∇ω̃ψ · A(un) (∇un + v) dP(x) dx dt = 0. (6.16)

The second equation holds true for every choice of φ2 and ψ as above if we make the standard
ansatz v =

∑d
i=1 ∂iunw(n)

i (see the remark following this proof), where w(n)
i are the cell solutions from

Definition 35 for Ω = FnS(Rd) and P = P being the distribution of X. Plugging this information into
the first equation yields (6.12). The a priori estimate follows from testing Eq (6.12) with un and the
Gronwall inequality (see, e.g., the proof of Theorem 53). It only remains to prove Eq (6.14).

Now, we show the first part of Eq (6.14). By Remark 48, we know that

A(un)∇uε
2s
−−−⇀
ε→0

1Gn A(un)(∇un + v).

Using dominated convergence and Eq (6.13) yields a subsequence such that A(Uε,xuε) → A(un) in
Lp(0,T ; Lp(Q)) for every 1 ≤ p < ∞. Using test functions ϕ ∈ C(Q) and ψ ∈ C(Ω), we observe that(
A(Uε,xuε) − A(un)

)
∇uε

2s
⇀ 0, so A(uε)∇uε

2s
⇀ 1Gn A(un)(∇un + v).
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The second part of Eq (6.14) is more difficult. Given φ ∈ C1(Q) and ψ ∈ C(Ω), we set ψε,x(x) :=
ψ(τ x

ε
x) and find∣∣∣∣∣∣ε

∫
∂Gε

x

h
(
uε(x)

)
φ(x)ψε,x(x)dHd−1(x) −

∫
Q

∫
Ω

h
(
un(x)

)
φ(x)ψ(x) dµP(x) dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ε
∫
∂Gε

x

h
(
uε(x)

)
φ(x)ψε,x(x)dHd−1(x) − ε

∫
∂Gε

x

h
(
un(x)

)
φ(x)ψε,x(x)dHd−1(x)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ε
∫
∂Gε

x

h
(
un(x)

)
φ(x)ψε,x(x)dHd−1(x) − ε

∫
Q∩ε∂⊟x

h
(
un(x)

)
φ(x)ψε,x(x)dHd−1(x)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ε
∫

Q∩ε∂⊟x
h
(
un(x)

)
φ(x)ψε,x(x)dHd−1(x) −

∫
Q

∫
Ω

h
(
un(x)

)
φ(x)ψ(x) dµP(x) dx

∣∣∣∣∣∣ .
We will show that all these terms go to 0 as ε → 0. Due to the Lipschitz continuity of h and

Stampacchia’s lemma, we find

∥∇h(uε)∥L2(Qε
x

) ≤ ∥h∥C0,1 ∥∇uε∥L2(Qε
x

) , ∥h(uε)∥L2(Qε
x

) ≤ ∥h∥C0,1

(
∥uε∥L2(Qε

x
) + 1

)
,

∥∇h(un)∥L2(Q) ≤ ∥h∥C0,1 ∥∇un∥L2(Q) , ∥h(un)∥L2(Q) ≤ ∥h∥C0,1

(
∥un∥L2(Q) + 1

)
.

Furthermore, Uε,xuε → un strongly in L2(I; L2(Q)) and weakly in L2(I; W1,2(Q)) implies that
h
(
Uε,xuε

)
→ h(un) in the same topologies. Gε

x
as in Definition 4 fulfills ∂Gε

x
= ∂Qε

x
\∂Q. Eq (6.6)

together with the strong convergence ofUε,xuε tells us

ε
∥∥∥h

(
Tε,xuε

)
− h

(
Tε,xun

)∥∥∥2

L2(I;L2(∂Gε
x

))
≤ Lhε

∥∥∥Tε,x(uε − un)
∥∥∥2

L2(I;L2(∂Gε
x

))
→ 0,

which already shows convergence in the first summand. Similar considerations to the proof of Eq (6.6)
tell us that Tε,x : W1,2(Qε

x
)→ L2(ε∂⊟x∩Q) is a bounded linear operator, so we can consider the trace

not only on ∂Gε
x

but even for clusters close to the boundary. We have, with C > 0 changing from line
to line but independent of ε,

∣∣∣ε∫
I

∫
Q

(
1ε∂⊟x − 1∂Gε

x

)
h(uε)φψε,x dHd−1 dt

∣∣∣2
≤ Cε∥h(uε)∥2L2(I;L2((ε∂⊟x)\∂Gε

x
)) · ε∥1∥

2
L2(I;L2((ε∂⊟x)\∂Gε

x
))

≤ C
{
∥1Qε

n,r h(uε)∥2L2(I;L2(Q)) + ε∥1Qε
n,r∇h(uε)∥2L2(I;L2(Q))

}
· Ld(Qε

n,r),

where
Qε

n,r :=
{
x ∈ Q | dist(x, ∂Q) ≤ εnr

}
.

We observe thatLd(Qε
n,r)→ 0 as ε→ 0, i.e., 1Qε

n,r → 0 point-wiseLd-almost everywhere. We know
that h(uε)→ h(u) strongly in L2(I; L2(Q)), so dominated convergence yields that the second summand
also converges to 0.

The third summand follows from two-scale convergence, i.e., h(un)
2s, µx
−−−−⇀ h(un) for almost every x.
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Remark (On the special solution of Eq (6.16)). Our special ansatz v =
∑d

i=1 ∂iunw(n)
i as a solution to

Eq (6.16) for a fixed, given u has a long tradition, where we mention [5] for perforated domains or the
more “historical” papers [22, 30]. For readers familiar with periodic homogenization, let us mention
that due to v beingV2

pot(Ω) problem (6.16) is the probabilistic equivalent of

∀φ ∈ Cc(Q), ψ ∈ H1
per([0, 1)d) :

∫
[0,1)d

∫
Q
φ(x)∇yψ(y)A(∇u + ∇yu1) dx dy = 0.

Now given a un ∈ L2(I; W1,2(Q)), we are looking for a solution v ∈ L2(I; L2(Q;V2
pot(Ω))) to∫ T

0

∫
Q

∫
Gn

φ2∇ω̃ψ · A(un) (∇un + v) dP(x) dx dt = 0,

for arbitrary φ2 ∈ C1([0,T ] × Q) and ψ ∈ H1(Ω) with
∫
Ω
∇ω̃ψ dP = 0. Since functions of the form

∇ω̃ψ|Gnare dense inV2
pot(Gn|Ω) for ψ ∈ H1(Ω) with

∫
Ω
∇ω̃ψ = 0 (by definition ofV2

pot(Ω)), this equation
actually has to hold for arbitrary ϕ ∈ V2

pot(Gn|Ω). By the fundamental lemma of calculus of variations,
this solution must satisfy for almost every t ∈ I and almost every x ∈ Q

ϕ ∈ V2
pot(Gn|Ω) :

∫
Gn

ϕ · A(un) (∇un + v) dP = 0.

Next, we see that v :=
∑d

i=1 ∂iunw(n)
i ∈ L2(I; L2(Q;V2

pot(Gn|Ω))) is indeed a solution since the w(n)
i

are cell solutions ∫
Gn

ϕ · A(un) (∇un + v) dP =
d∑

i=1

∂iun A(un)
∫

Gn

[
ei + wi

]
· ϕ dP = 0.

On the other hand, such a solution is unique: First, observe that functions of the form φ2 · ∇ω̃ψ are
dense in L2(I; L2(Q;V2

pot(Ω))). Then, we consider the coercive bilinear form on L2(I; L2(Q;V2
pot(Ω))):

B(v1, v2) :=
∫ T

0

∫
Q

∫
Gn

v1 · A(un)v2 dP(x) dx dt.

Lax–Milgram tells us that the solution v ∈ L2(I; L2(Q;V2
pot(Gn|Ω))) to

B( ·, v) =
[
v1 7→ −

∫ T

0

∫
Q

∫
Gn

v1 · A(un)∇un dP(x) dx dt
]
,

is unique, which is equivalent to

0 = B(ϕ, v) +
∫ T

0

∫
Q

∫
Gn

ϕ · A(un)∇un =

∫ T

0

∫
Q

∫
Gn

ϕ · A(un)
[
∇un + v

]
,

which justifies the standard ansatz.
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7. Proof of main theorem (Theorem 17)

Theorem 17 is a consequence of the following.

Theorem 56 (Main theorem: homogenized limit of admissible point processes). Let X be a stationary
ergodic admissible point process with distribution P such that ⊟X∁ is statistically connected. Under
Assumption 6, let un ∈ L2(I; W1,2(Q)) be a homogenized solution from Theorem 55 for the thinned point
process X(n).

For any subsequence of (un)n∈N, we are able to extract yet another subsequence that converges to a
u ∈ L2(I; W1,2(Q)). This u is a (not necessarily unique) weak solution to the initial value problem

P(G)∂tu − ∇ · (A(u)A∇u) − λ(µX)h(u) = P(G) f in I × Q,

A(u)A∇u · ν = 0 on I × ∂Q,

u(0, x) = P(G)u0(x) in Q.

Here A is the effective conductivity defined in Definition 37 based on the event Q = G =
{
x ∈

S(Rd) | o < ⊟x
}
, Ω = S(Rd), P = P and λ(µX) is the intensity of µX := Hd−1

⌞∂⊟X. Furthermore, with
αA > 0 being the smallest eigenvalue ofA and Lh being the Lipschitz constant of h

ess sup
t∈I
∥u(t)∥2L2(Q) ≤ exp(C1)

[
∥u0∥

2
L2(Q) +C2

]
∥∇u∥2L2(I;L2(Q)) ≤

P(G)
2αA inf(A)

(
1 + exp(C1)

)[
∥u0∥

2
L2(Q) +C2

]
,

where
C1 := T

(
1 +

λ(µX)
P(G)

(1 + 2Lh)
)

and C2 := ∥ f ∥2L2(I;L2(Q)) + 2T
λ(µX)
P(G)

∣∣∣h(0)
∣∣∣2.

Proof. We note that A(n) from Theorem 55 is defined with cell solutions on Ω = FnS(Rd) and the
push-forward measure P ◦ F−1

n . We use the pull-back result from Lemma 41 to obtain a representation
ofA(n) in terms of Ω = S(Rd) and the original probability distribution.

Lemmas 32 and 29 and Corollary 39 yield respectively

λ(µX(n))→ λ(µX), P(Gn)→ P(G) > 0, A(n) → A, αA(n) → αA > 0,

for Gn :=
{
x | o < ⊟x(n)} and G :=

{
x | o < ⊟x

}
. From the a priori estimates in Theorem 55, we

furthermore find

lim sup
n→∞

(
∥un(t)∥2L∞(0,T ;L2(Q)) + ∥∇un∥

2
L2(I;L2(Q))

)
< ∞,

lim sup
n→∞

∥∂tun∥L2(I;W1,2(Q)∗) < ∞,

and Aubin–Lions (or more general, Theorem 52) yields pre-compactness. These uniform bounds
together with compactness arguments yield the existence of u ∈ L2(I; W1,2(Q)) with generalized time
derivative ∂tu ∈ L2(I; W1,2(Q))∗, such that for a subsequence

un
L2(I;W1,2(Q))
−−−−−−−−−⇀

n→∞
u, ∂tun

L2(I;W1,2(Q))∗
−−−−−−−−−−⇀

n→∞
∂tu, un

L2(I;L2(Q))
−−−−−−−−→

n→∞
u, h(un)

L2(I;L2(Q))
−−−−−−−−→

n→∞
h(u),

as well as
A(un)A(n)∇un

L2(I;L2(Q))
−−−−−−−−⇀

n→∞
A(u)A∇u.

From here we conclude.
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8. Criterion for non-degeneracy of effective conductivity

In this chapter, we will establish a criterion for ⊟X∁ to be statistically connected (Definition 15),
that is Theorem 60. To be precise, we will show that

et
1Ae1 > 0,

as all other directions η ∈ Rd can be shown analogously via rotation. The procedure will be based
on [13, Chapter 9]. The matrix A corresponds to the matrix A0 there. We will also see that ⊟X∁ is
statistically connected if ΞX∁ is statistically connected.
Notation. Given a fixed admissible point process X, we write in this section

⊟ := ⊟X Ξ := ΞX.

Most arguments work for more general random perforations Ξ and their filled-up versions as long as
Ξ has no infinite connected component (Theorem 58 needs additionally that almost surely, the bounded
connected components of Rd\Ξ have non-zero distance to the infinite connected components). We
refrain from doing so since we would need to introduce the notion of stationary random sets and the
main focus here lies on point processes.

8.1. Variational formulation

The following theorem gives us a different point of view on the effective conductivityA:

Theorem 57 (Variational formulation [13, Theorem 9.1]). For every ergodic admissible point process,
we have almost surely and for every η ∈ Rd:

ηtAη = lim
n→∞

n−d inf
v∈C∞0 ([0,n]d)

∫
[0,n]d\Ξ

∣∣∣η − ∇v
∣∣∣2 dx,

whereA is the effective conductivity based on the event {o < Ξ}.

The first observation we can make is that the effective conductivity depends monotonously on the
domain: The larger the set of holes, the lower the effective conductivity. The question arises in which
cases this term becomes 0. This should only happen if Rd\Ξ is “insufficiently connected”. Intuitively,
we want v ≈ −η · x+const, but at the same time, v needs to be 0 at the boundaries. If our region is badly
connected, we can hide large gradients inside the holes, see, e.g., Figure 3. As in [13], we will see that
the existence of sufficiently many “channels” connecting the left to the right side of a box [0, n]d will
ensure et

1Ae1 > 0. Before we do that, we establish an important fact:
We have defined statistical connectedness (Definition 15) via the filled-up Boolean model ⊟.

Unfortunately, filling up holes is non-local (depending on the size of holes), which is troublesome on
the stochastic side. However, an analogue of [13, Lemma 9.7] tells us that the effective conductivity
of both the Boolean model Ξ and its filled-up version ⊟ are the same.

Theorem 58 (Filling up holes preserves the effective conductivity). For every ergodic admissible point
process, we have almost surely

ηtAη = lim
n→∞

n−d inf
v

∫
[0,n]d\⊟

∣∣∣η − ∇v
∣∣∣2 dx = lim

n→∞
n−d inf

v

∫
[0,n]d\Ξ

∣∣∣η − ∇v
∣∣∣2 dx,

where the infimum is over v ∈ C∞0 ([0, n]d).
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Figure 3. High versus low conductivity. The balls represent Ξ. The white area corresponds
to v ≈ −η · x + const. Black lines indicate large contributions to

∫
[0,n]d\Ξ

∣∣∣η + ∇v
∣∣∣2 dx.

Proof. As mentioned before, this is a variation of [13, Lemma 9.7] fitted to our purpose. Let

• K s
n be the set of islands (i.e., connected components in Rd\Ξ of finite diameter) of diameter ≤ s

that intersect but do not lie inside [0, n]d.
• Ls

n be the set of islands of diameter > s that do not completely lie inside [0, n]d and that are
encircled by a Ξ-cluster of size larger than s.

All the islands in K s
n and Ls

n belong to connected components of Rd\Ξ different from ⊟∁ (the unique
unbounded connected component). SinceX is admissible, almost surely they all have non-zero distance
to ⊟∁. Therefore, the following infimum decomposes, with all the infima being over v ∈ C∞0 ([0, n]d)

inf
v

∫
[0,n]d\Ξ

∣∣∣η − ∇v
∣∣∣2 dx = inf

v

∫
([0,n]d\Ξ)\(K s

n∪Ls
n)

∣∣∣η − ∇v
∣∣∣2 dx + inf

v

∫
K s

n∪Ls
n

∣∣∣η − ∇v
∣∣∣2 dx

= inf
v

∫
([0,n]d\⊟)\(K s

n∪Ls
n)

∣∣∣η − ∇v
∣∣∣2 dx + inf

v

∫
K s

n∪Ls
n

∣∣∣η − ∇v
∣∣∣2 dx

= inf
v

∫
[0,n]d\⊟

∣∣∣η − ∇v
∣∣∣2 dx +C,

with ∣∣∣C∣∣∣ ≤ ∣∣∣η∣∣∣2 [
Ld(K s

n) +Ld(Ls
n)
]
,

and where the second equality comes from the fact that filling up islands that lie completely inside
[0, n]d does not change the value of the infimum. Now, we observe

• Ld(K s
n) ∼ O(nd−1) for fixed s, so limn→∞ n−dLd(K s

n) = 0 and
• denoting by Ls all islands of diameter greater than s, we have almost surely

lim
n→∞

n−dLd(Ls
n) ≤ lim

n→∞
n−dLd(Ls ∩ [0, n]d) = : density(Ls) = P(o ∈ Ls).

All islands are of finite size, yielding
⋂

s∈N Ls = ∅. Hence, lims→∞ density(Ls) = 0.

Choosing s sufficiently large finishes the proof.
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Figure 4. Percolation channels for different kscale.

8.2. Percolation channels

Definition 59 (Percolation channels (see Figure 4)). Fix a kscale ∈ N. We consider the lattice Zd
n ⊂ Z

d

and the cube with corner z = (z1, . . . , zd) ∈ Zd

Zd
n : = Zd ∩ [0, n)d and Kz :=

d

×
i=1

[zi, zi + 1]

and call two vertices z, z′ neighbors if their l1-distance is equal to 1.
We call z open if

Ξ ∩ k−1
scaleKz = ∅.

An open left-right crossing γ = (z(1), . . . , z(l)) of Zd
n is called a percolation channel in Zd

n, i.e.,

i) z(i), z(i+1) are neighbors for each i < l,
ii) all the z(i) are open, and

iii) z(1)
1 = 0 and z(l)

1 = n − 1.

We define the quantity (depending on the random Ξ and on kscale)

N(n) : = max
{
j | γ1, . . . , γ j are disjoint percolation channels in Zd

n
}

= “maximal number of disjoint percolation channels in Zd
n”

and the tube L(γ) corresponding to the path γ = (z(1), . . . , z(l)) as

L(γ) :=
⋃
i≤l

k−1
scaleKz(i) .

Statistical connectedness of Rd\Ξ then reads as follows:
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Theorem 60 (Percolation channels imply conductivity). For almost every realization x of an ergodic
admissible point process, we have for Ξ = Ξx

lim
n→∞

n−d inf
v∈C∞0 ([0,n]d)

∫
[0,n]d\Ξ

∣∣∣e1 − ∇v
∣∣∣2 dx ≥ lim sup

n→∞

(N(n)
nd−1

)2
.

In particular, the effective conductivity is strictly positive if almost surely

lim sup
n→∞

N(n)
nd−1 > 0. (8.1)

Proof. This is an analogue of [13, Theorem 9.11] and relies on defining a suitable vector field
−→
F γ : [0, k−1

scalen]d → Rd inside channels γ = (z(1), . . . , z(l)) on Zd
n. We want

−→
F γ to satisfy the following

•
∣∣∣−→F γ(x)

∣∣∣ = 1 for every x inside the tube L(γ) and
−→
F γ(x) = 0 outside.

•
−→
F γ is parallel to ∂L(γ) except on corners as well as ∂L(γ)− := Kz(1) ∩ {x1 = 0} and ∂L(γ)+ :=
Kz(l) ∩ {x1 = k−1

scalen}.

•
−→
F γ(x) = e1 for x ∈ ∂L(γ)− ∪ ∂L(γ)+.

• For the standard normal vector ν to ∂L(γ):∫
L(γ)

(e1 − ∇v) ·
−→
F γ dx =

∫
∂L(γ)

(x1 − v)
−→
F γ · ν dHd−1(x). (8.2)

Thus, the vector field was deliberately chosen such that the Gauß divergence theorem only yields
contributions from the “starting” and “ending” surfaces. Figure 5 illustrates how

−→
F γ can be chosen to

satisfy these properties.
The rest is simple. Take γ1, . . . , γN(n) disjoint nonself-intersecting channels in Zd

n. Set

T :=
⋃

i≤N(n)

L(γi) ⊂ [0, k−1
scalen]d,

−→
F :=

∑
i≤N(n)

−→
F γi .

Then,∫
[0,k−1

scalen]d\Ξ

∣∣∣e1 − ∇v
∣∣∣2 dx ≥

∫
T

∣∣∣e1 − ∇v
∣∣∣2 dx ≥

∫
T

∣∣∣(e1 − ∇v) ·
−→
F
∣∣∣2 dx

≥
1
Ld(T )

(∫
T
(e1 − ∇v) ·

−→
F dx

)2

≥
kd

scale

nd

(∫
T
(e1 − ∇v) ·

−→
F dx

)2

.

For a fixed tube L = L(γi), we have∫
L
(e1 − ∇v) ·

−→
F dx =

∫
∂L

(x1 − v)
−→
F · ν dHd−1(x) =

∫
∂L−∪∂L+

(x1 − v)
−→
F · ν dHd−1(x)

=

∫
∂L+

k−1
scalene1 · e1 dHd−1(x) = k−1

scalenH
d−1(∂L+) = k−d

scalen.
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Figure 5. The vector field
−→
F simply follows along the direction of the path γ. Whenever the

tube makes a turn, we divide the corresponding cube diagonally as depicted with the vector
field remaining constant in each respective half. The resulting

−→
F is piecewise constant and

Eq (8.2) holds via the Gauß divergence theorem as contributions on the diagonal surfaces
cancel out: We have a positive contribution from the incoming arrows and a negative
contribution from the outgoing one.

Therefore, ∫
[0,k−1

scalen]d\Ξ)

∣∣∣e1 − ∇v
∣∣∣2 dx ≥

kd
scale

nd

(
k−d

scalenN(n)
)2
,

and so (
k−1

scalen
)−d

∫
[0,k−1

scalen]d\Ξ

∣∣∣e1 − ∇v
∣∣∣2 dx ≥

(
N(n)
nd−1

)2

.

Passing to the lim sup finishes the proof.

Remark 61 (d = 2 and bottom-top crossings). Let L(n) be the minimal number of open vertices that a
l∞-bottom-top crossing of Z2

n must have. It turns out that in d = 2

L(n) = N(n)

(see Lemma 73). We will use this to show Eq (8.1) for the Poisson point process Xpoi.

9. Example: Poisson point processes

The driving force behind this work has been a stationary Poisson point process Xpoi. It is known
that the Poisson point process is ergodic (even mixing) and its high spatial independence makes it the
canonical random point process. As pointed out before though, ΞXpoi gives rise to numerous analytical
issues which prevent the usage of the usual homogenization tools.

The main theorem (Theorem 56) tells us that homogenization is still reasonable for highly irregular
filled-up Boolean models ⊟X driven by admissible point processes X.

It is known for Xpoi that there exists some critical radius rc := rc[λ(Xpoi)] ∈ (0, ∞) such that

• ⊟Xpoi only consists of finite clusters for r < rc (subcritical regime) and
• ⊟Xpoi has a unique infinite cluster for r > rc (supercritical regime).

Networks and Heterogeneous Media Volume 20, Issue 1, 165–212.



203

The behavior at criticality r = rc is still a point of research. For details, we refer to [14] for the
Poisson point process Xpoi and [18, Chapter 3] for the Boolean model ΞXpoi.

We will see in the subcritical regime that

i) Xpoi is an ergodic admissible point process and
ii) ΞXpoi

∁ is statistically connected, which is equivalent to ⊟Xpoi
∁ being statistically connected (see

Theorem 58).

We therefore make the following assumption for the rest of this section:

Assumption 62 (subcritical regime). We assume that

r < rc.

Remark 63 (Scaling relation). rc has the following scaling relation

rc[kd · λ(Xpoi)] = rc[λ(k−1Xpoi)] = k−1rc[λ(Xpoi)].

9.1. Admissibility of Poisson point processes

The Mecke–Slivnyak theorem tells us that the Palm probability measure (Theorem 45) of a
stationary Poisson point process is just a Poisson point process with a point added in the origin. This
gives us the following lemma:

Lemma 64 (Equidistance property). The stationary Poisson point process Xpoi satisfies the
equidistance property for arbitrary r > 0, i.e.,

P
(
∃x, y ∈ Xpoi | d(x, y) = 2r

)
= 0.

Proof. This follows from using the Palm theorem Theorem 45 on

f (x,x) :=
∑
xi∈x

1 {d(x, xi) = 2r} ,

and the Mecke–Slivnyak theorem [14, Theorem 9.4].

Corollary 65 (Xpoi is admissible). Under Assumption 62, Xpoi is an admissible point process.

Proof. Xpoi is not just ergodic, but even mixing (see [14, Theorem 8.13]). The equidistance property
has been proven in Corollary 64. Finiteness of clusters follows from the subcritical regime
(Assumption 62).

9.2. Statistical connectedness for Poisson point processes

Proving the statistical connectedness of ΞXpoi
∁ (Definition 15) is much harder and does not

immediately follow from readily available results. Our procedure is as follows:

i) We employ the criterion from Section 8. Therefore, we will check that there are sufficiently many
percolation channels for ΞXpoi.

ii) Using the spatial independence of the Poisson point process Xpoi, we show that it is sufficient to
only consider 2-dimensional slices.
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iii) We show the statement in d = 2 using ideas in [11, Chapter 11]. There, the result has been proven
for certain iid fields on planar graphs, including Z2.

Additionally to Assumption 62, we need sufficient discretization for the percolation channels:

Assumption 66 (Sufficient scaling). Let kscale ∈ N be large enough such that, for the critical radius rc,

(rc − r)/2 >
√

dk−1
scale,

e.g., kscale := ⌈2
√

d
rc−r ⌉ + 1.

Definition 67 (Recap and random field (Xz)z∈Zd ). Recall Definition 59, most importantly

Zi
n : = Zi ∩ [0, n)i and Kz :=

d

×
i=1

[zi, zi + 1],

as well as the notion of percolation channels for kscale and

N(n) : = “maximal number of disjoint percolation channels in Zd
n”.

We define the random field

(Xz)z∈Zd :=
(
1{ΞXpoi ∩ k−1

scaleKz = ∅}
)

z∈Zd .

We say that z ∈ Zd is blocked if Xz = 0 and open if Xz = 1 (this is consistent with Definition 59).

Theorem 68 (Percolation channels of the Poisson point process). Under Assumptions 62 and 66, there
is a C > 0 such that Eq (8.1) holds, i.e.,

P
(

lim sup
n→∞

n1−dN(n) ≥ C
)
= 1.

In particular, ⊟Xpoi
∁ is statistically connected (see Theorem 60).

The rest of the section deals with the proof of Theorem 68. It will follow as a direct consequence
of Lemma 70 (reduction to d = 2) and Lemma 74 (main result for d = 2) which are given later.

9.2.1. Spatial independence and moving to d = 2

For disjoint U1, U2, . . . ⊂ R
d and events Ai only depending on Xpoi inside Ui, we know that (Ai)i

is an independent family. This is one of the striking properties of a Poisson point process and we will
heavily make use of it. The Boolean model ΞXpoi for radius r still retains this property in a slightly
weaker form and correspondingly the random field (Xz)z∈Zd :

Lemma 69 (Independence in large distances). Let A, B ⊂ Zd such that

d∞(A, B) := min
za∈A,zb∈B

∥zb − za∥∞ ≥ 2rkscale + 1. (9.1)

Then, (Xz)z∈A and (Xz)z∈B are independent.
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Proof. (Xz)z∈A is only affected by points of Xpoi inside

UA :=
⋃
z∈A

Br

(
k−1

scaleKz

)
.

The same holds for (Xz)z∈B and we check that Eq (9.1) implies UA ∩ UB = ∅.

Lemma 70 (2-dimensional percolation channels imply channel property for d > 2). For z̃ ∈ Zd−2, we
define (compare to Definition 59)

N(2)
z̃ (n) : = “maximal number of disjoint percolation channels in Z2

n × z̃”.

If there are C̃, p0 > 0 such that for some z̃ ∈ Zd−2,

lim sup
n→∞

P
(
N(2)

z̃ (n) ≥ C̃n
)
> p0 > 0, (9.2)

then there exists a C > 0 such that

lim sup
n→∞

P
(
N(n) ≥ Cnd−1

)
= P

(
lim sup

n→∞
n1−dN(n) ≥ C > 0

)
= 1.

(This proof heavily relies on the independence structure of the Poisson point process, i.e., Lemma 69.)

Proof. Xpoi is stationary, so for distinct z̃1, z̃2 ∈ Z
d−2,

p(n) := P
(
N(2)

z̃1
(n) ≥ C̃n

)
= P

(
N(2)

z̃2
(n) ≥ C̃n

)
.

Let k := ⌈2rkscale⌉ + 1. By Lemma 69, the events on Z2 × (kz̃1) are independent from the events
on Z2 × (kz̃2). Therefore,

(
1{N(2)

kz̃ (kn) ≥ C̃n}
)

z̃∈Zd−2 is an iid family of Bernoulli random variables with
parameter p(n). Then,

P
(
N(kn) ≥

C̃p0

2kd−2 (kn)d−1
)
≥ P

(
For at least p0/2 of the z̃ ∈ Z(d−2)

n : N(2)
z̃ (kn) ≥ C̃kn

)
= P

( 1

#Z(d−2)
n

∑
z̃∈Z(d−2)

n

1{N(2)
kz̃ (kn) ≥ C̃n} ≥

1
2

p0

)
.

By Eq (9.2) and the law of large numbers, we get

lim sup
n→∞

P
(
N(n) ≥

C̃p0

2kd−2 nd−1
)
≥ lim sup

n→∞
P
(
N(kn) ≥

C̃p0

2kd−2 (kn)d−1
)
= 1.

Setting C = C̃p0
2kd−2 , we obtain Eq (8.1) after checking

P
(

lim sup
n→∞

n1−dN(n) ≥ C
)
= lim sup

n→∞
P
(
n1−dN(n) ≥ C

)
= 1,

which finishes the proof.

Remark 71. Spatial independence is needed to move from d = 2 to d ≥ 3. The strong independence
properties of Xpoi allow far weaker conditions on N(2)(n) (positive probability) than on N(n)
(probability 1). Either way, Lemma 74 shows that P(N(2)(n) < Cn) drops exponentially in n.
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Figure 6. Disjoint percolation channels vs. vertical crossings. On the left side, we see that we
can only have at most two l1-channels. The right figure shows that any l∞-vertical crossing
must contain at least two open vertices.

9.2.2. d = 2: Definitions and preliminary results

As shown before, we may limit ourselves to a fixed lattice Z2 × 0Zd−2 ≃ Z2. Therefore, we will often
suppress the “anchor point” 0Zd−2 and just act like we are in Z2. Our random field from Definition 67 is
then by abuse of notation

(Xz)z∈Z2 ≃ (Xz)z∈Z2×0
Zd−2 .

Definition 72 (Vertical crossings). Consider the (Z2, l∞)-lattice, that is z, z′ are neighbors if
∥z − z′∥∞ = 1.

An l∞-bottom-top crossing in Z2
n is called a vertical crossing. We call a path blocked if all its vertices

are blocked. We define the quantity

L(n) := “minimal number of open vertices in a vertical crossing in Z2
n”.

(The percolation channels lie on the l1-graph, while the vertical crossings lie on the l∞-graph.)

We may work with single vertical crossings instead of collections of percolation channels:

Lemma 73 (Percolation channels vs vertical crossings (see Figure 6)). It holds that

N(n) = L(n).

Proof. See the proof of [11, Theorem 11.1] based on Menger’s theorem and [11, Proposition 2.2].

The main work is proving the following equivalent of [11, Proposition 11.1]:

Lemma 74 (Open vertices in vertical crossings). Under Assumptions 62 and 66, there are Ci > 0
such that

P
(
∃o ; Z × {n} with at most C1n open vertices

)
≤ C2 exp

(
−C3n

)
,

in particular,
P
(
N(n) ≥ C1n

)
≥ 1 −C2n exp(−C3n).

The proof relies on a reduction scheme of the path γ : o ; Z × {n}. We divide γ into several
segments which must either contain an open vertex or contain a blocked path of large diameter. Since
we are in the subcritical regime, the probability of such paths decreases exponentially in their diameter:
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Lemma 75 (Diameter of blocked paths). Let z ∈ Z2. Under Assumption 62 and kscale ∈ N as in
Assumption 66, there are Ci > 0 such that

P
(
∃blocked path γ, z ∈ γ, diam(γ) ≥ n

)
≤ C1 exp

(
−C2n

)
,

where
diam(γ) := max

z1,z2∈γ
∥z1 − z2∥2.

Proof. Consider the Boolean model for radius R := 1
2 (r + rc) < rc, i.e.,

Ξ(R)Xpoi := BR

(
Xpoi

)
.

Let γ = (z(1), . . . , z(l)) be a blocked path in Z2 containing z with diameter ≥ n. Since γ is blocked
and R − r >

√
dk−1

scale (Assumption 66), we find for every 1 ≤ i ≤ l some xi ∈ Xpoi such that

Kz(i)∩kscaleBr(xi) , ∅,

and therefore
Kz(i) ⊂ kscaleBR(xi).

Connecting all the z(i) by a straight line, we obtain a continuous path inside kscaleΞ
(R)Xpoi. In

particular, they all belong to the same kscaleΞ
(R)Xpoi-cluster. Then,

P
(
∃closed path γ, z ∈ γ and diam(γ) ≥ n

)
≤ P

(
z lies in a cluster in kscaleΞ

(R)Xpoi of diameter ≥ n
)

≤ C1 exp(−C2n),

since the occurrence of large clusters drops exponentially in the diameter ([18, Lemma 2.4]).

9.2.3. Proof of Lemma 74 (open vertices in vertical crossings)

Let n ∈ N. As pointed out before, we follow the procedure in [11, Proposition 11.1] adjusted to the
continuum setting. We define A(z, k) for z ∈ Z2 and k ∈ N as

A(z, k) :=
{
∃l∞-path z ; Z × {n} with at most k open vertices

}
.

The idea is to break up the path o ; Z×{n} into multiple segments (see Figure 7). In each segment,
we can either reduce k by 1 or employ Lemma 75. We set

s̃ : = ⌈2rkscale⌉ + 1
B∞1 (z, s) : =

{
v ∈ Z2 | ∥z − v∥∞ ≤ s

}
B∞2 (z, s) : =

{
v ∈ Z2 | ∥z − v∥∞ ≤ s + s̃

}
D∞(z, s) : =

{
v ∈ Z2 | ∥z − v∥∞ = s + s̃ + 1

}
= “boundary of B∞2 (z, s)”.

These boxes are defined so that the following holds: For fixed z ∈ Z2, we have by Lemma 69 that the
random variables (Xv)v∈B∞1 (z,s) and (Xv)v∈Z2\B∞2 (z,s) are independent. That means the state of the vertices
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in B∞1 (z, s) is independent from the state of the vertices in Z2\B∞2 (z, s) = B∞2 (z, s)∁. Additionally, we
define the probability

g(z, s) :=P
(
∃z ; B∞1 (z, s)∁ blocked inside B∞1 (z, s)

)
.

The key inequality for the iteration in k is the following

P
(
A(z, k)

)
≤

∑
v∈D∞(z,s)

[
g(z, s)P

(
A(v, k)

)
+ P

(
A(v, k − 1)

)]
, (9.3)

for z = (z1, z2) ∈ Z2 whenever z2 < n − (s + s̃).

Proof of Eq (9.3). Consider the event that for some v ∈ D∞(z, s), we find a path v ; Z× {n} that has at
most k − 1 open vertices, i.e.,

E :=
⋃

v∈D∞(z,s)

A(v, k − 1).

Now assume that the event A(z, k)\E happens. Take a path γ = (z, v(1), . . . , v( j)) with v( j)
2 = n and

at most k of the v(i) being open. Let i1 be the last index with v(i1) ∈ D∞(z, s). This i1 exists since
z2 < n − (s + s̃), so γ has to pass by D∞(z, s) to reach Z × {n}. For this i1, we know that (v(i1), . . . , v( j))
completely lies in B∞2 (z, s)∁. Since E does not happen, it must have k open vertices. (z, v(1), . . . , v(i1)) is
a path from z to B∞1 (z, s)∁ that is blocked everywhere except its end. Therefore,

A(z, k)\E ⊂
⋃

v∈D∞(z,s)

{
∃z ; B∞1 (z, s)∁ blocked in B∞1 (z, s) and

∃v ; Z × {n} in B∞2 (z, s)∁ with at most k open vertices
}
.

As previously mentioned, the events in B∞1 (z, s) and B∞2 (z, s)∁ are independent from each other. This
gives us

P
(
A(z, k)\E

)
≤

∑
v∈D∞(z,s)

P
(
∃z ; B∞1 (z, s)∁ blocked in B∞1 (z, s) and

∃v ; Z × {n} in B∞2 (z, s)∁ with at most k open vertices
)

=
∑

v∈D∞(z,s)

P
(
∃z ; B∞1 (z, s)∁ blocked in B∞1 (z, s)

)
×P

(
∃v ; Z × {n} in B∞2 (z, s)∁ with at most k open vertices

)
≤

∑
v∈D∞(z,s)

g(z, s)P
(
A(v, k)

)
.

Now,

P
(
A(z, k)

)
≤ P

(
A(z, k)\E

)
+ P(E) ≤

∑
v∈D∞(z,s)

[
g(z, s)P

(
A(v, k)

)
+ P

(
A(v, k − 1)

)]
,

concludes the proof of Eq (9.3).
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Figure 7. B∞1 , B∞2 , D∞ and decomposition of paths (left-right crossing instead of top-
bottom).

Observe that the reduction in k can only happen until k = 0, so more g(z, s)-terms have to show
up at some point. Since any path z ; B∞1 (z, s)∁ has diameter of at least s, Lemma 75 tells us that
g(z, s) ≤ C1 exp

(
−C2s

)
for C1, C2 > 0 independent of z and s. Choose s large such that

g(z, s) · #D∞(z, s) ≤ C1 exp
(
−C2s

)
· 8(s + s̃ + 1) ≤ 1/4.

For simplicity, we introduce

D∞ := D∞(o, s) and h(z, y) :=

g(z, s) if y = 0
1 if y = 1,

and rewrite Eq (9.3) into

P
(
A(z, k)

)
≤

∑
v(1)∈D∞, y1∈{0,1}

h(z, y1)P
(
A(z + v(1), k − y1)

)
. (9.4)

We now iteratively use Eq (9.4) up to l times as it is only applicable when z2 < n − (s + s̃). All the
v(i) are summed over D∞ and all the yi over {0, 1}.

P
(
A(o, k)

)
≤

∑
i≤l,v(i),yi

v(1)
2 +···+v(l)

2 <n−(s+s̃)
y1+···+yl≤k

P(A(v(1) + · · · + v(l), k − y1 − · · · − yl))
∏
m≤l

h(v(1) + · · · + v(m−1), ym)

+
∑

n−(s+s̃)
s+s̃+1 ≤ j≤l

∑
i≤ j,v(i),yi

v(1)
2 +···+v( j−1)

2 <n−(s+s̃)

v(1)
2 +···+v( j)

2 ≥n−(s+s̃)
y1+···+y j≤k

P(A(v(1) + · · · + v( j), k − y1 − · · · − y j))
∏
m≤ j

h(v(1) + · · · + v(m−1), ym)

≤
∑

y1,...,yl
y1+···+yl≤k

(
#D∞ sup

v∈Z2

v2<n−(s+s̃)

h(v, ym)
)l
+

∑
n−(s+s̃)
s+s̃+1 ≤ j≤l

∑
y1,...,y j

y1+···+y j≤k

(
#D∞ sup

v∈Z2

v2<n−(s+s̃)

h(v, ym)
) j
.
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We iterate as long as 0 + v(1)
2 + · · · + v( j)

2 < n − (s + s̃); otherwise, we stop for 0 + v(1)
2 + · · · + v( j)

2 and
land in the second summand. Only y1 + · · · + y j ≤ k matters since A(z,m) = 0 whenever m < 0. Also,
observe that v(1)

2 + · · · + v( j)
2 ≥ n − (s + s̃) can only happen if

j ≥
n − (s + s̃)
s + s̃ + 1

,

since we “gain” at most s + s̃ + 1 to the second component in each v(i).
Let α > 0 be large enough such that

ϕ(α) : =
∑

y∈{0,1}

sup
z∈Z2

z2<n−(s+s̃)

#D∞ · h(z, y) · e−αy ≤
1
4
+ #D∞ · e−α ≤

1
2
.

Then,

P
(
A(o, k)

)
≤ eαk

∑
y1,...,yl

y1+···+yl≤k

(
#D∞ sup

v∈Z2

v2<n−(s+s̃)

h(v, ym)
)l ∏

i≤l

e−αyi

+eαk
∑

n−(s+s̃)
s+s̃+1 ≤ j≤l

∑
y1,...,y j

y1+···+y j≤k

(
#D∞ sup

v∈Z2

v2<n−(s+s̃)

h(v, ym)
) j ∏

i≤ j

e−αyi

≤ eαkϕ(α)l + eαk
l∑

j≥ n−(s+s̃)
s+s̃+1

ϕ(α) j ≤ eαk[2−l + 2−
n−(s+s̃)
s+s̃+1 +1].

Since l ∈ N was arbitrary, we get

P
(
A(o, k)

)
≤ eαk · 2−

n−(s+s̃)
s+s̃+1 +1 = eαk−

[
n−(s+s̃)
s+s̃+1 −1

]
ln 2 = C3eαk−C4n.

Now we finally make use of k. Setting C5 := C4
2α and k := C5n, the claim follows:

P
(
A(o,C5n)

)
≤ C3 exp

(
−C4n/2

)
.
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