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Abstract: In this paper, for solving linear feasibility problems we propose two randomized methods: a
multiple row-action method (RMR) based on partial rows of residual vectors and its generalized method
(GRMR) with history information in updating the current update. By introducing a linear combination
of the information from the previous and subsequent iterative steps with the relaxation parameter ξ, the
GRMR method unifies various RMR-type algorithms. A thorough convergence analysis for the proposed
methods is provided. The theoretical results show the theoretical convergence rate of the GRMR method
with 0 ≤ ξ ≤ 1 is always worse or equal compared to that of the RMR method. Therefore, a global
linear rate for the GRMR method is explored for −1 ≤ ξ ≤ 0. Finally, numerical experiments on both
randomly generated and real-world data show our algorithms outperform the original methods in terms
of computing time and iteration counts. In particular, when the appropriate parameters are selected, the
GRMR method is the competitive row-action method for solving linear feasibility problems.

Keywords: linear feasibility; Kaczmarz method; multiple row-action method; acceleration;
convergence

1. Introduction

Consider solving the large-scale linear inequalities

Ax ≤ b, (1.1)

where A ∈ Rm×n is an m-by-n (m > n) real coefficient matrix, b ∈ Rm is an m-dimensional right-hand
side, and x ∈ Rn is an unknown n-dimensional vector. We confine the scope of this work to the regime
of m ≫ n, where iterative methods are typically employed. We denote the feasible region of Eq (1.1) by
S = {x ∈ Rn|Ax ≤ b}. Through this paper, we assume that the coefficient matrix A has no zero rows and
S , ∅.

The Kaczmarz method [1], or the algebraic reconstruction technique (ART) [2], is one of the most
popular solvers to solve linear systems of equations. Originally proposed by Polish mathematician

https://https://www.aimspress.com/journal/nhm
https://dx.doi.org/10.3934/nhm.2024062


1449

Stefan Kaczmarz in 1937, it has found a wide range of applications in many fields such as image
reconstruction, medical scanners, computerized tomography, and digital signal processing. At each
iteration, the Kaczmarz method uses a cyclic rule to select a row of the matrix and projects the current
iteration onto the corresponding hyperplane. Let Ai,: stand for the i-th row of the coefficient matrix A
and b = (b1, b2, · · · , bm)T , hence, for the algebraic reconstruction technique (Kaczmarz)

xk = xk−1 +
bi − ⟨(Ai,:)T , xk−1⟩

∥Ai,:∥
2
2

(Ai,:)T , k = 1, 2, · · · , (1.2)

where i =(k mod m)+1 , ⟨·, ·⟩ is the Euclidean inner product, and ∥ · ∥2 is the corresponding norm in
Rn. A lot of applications have demonstrated that random row selection in the coefficient matrix A can
significantly enhance its convergence rate compared to sequential selection. Strohmer and Vershyn [3]
proposed the randomized Kaczmarz (RK) method by selecting the working row with a probability
proportional to its Euclidean norm and proved its expected linear convergence rate in 2009. Then, Bai
and Wu in [4] discussed an improved estimate of the convergence rate of the randomized Kaczmarz
method. Subsequently, based on the RK method, many iterative methods have been proposed to further
improve its convergence rate and computational efficiency. For instance, many variants of the RK
method with different selection rules for working rows or various generalizations of the RK method
are explored (see [5–8] for more details). Especially, the study on the block Kaczmarz algorithm is
deepening. The block Kaczmarz method was first proposed by Elfving [9]. Unlike the Kaczmarz
single-projection method, the block Kaczmarz method is equivalent to solving multiple equations at
each iteration. Needell and Tropp [10] proposed the random block Kaczmarz (RBK) method. For the
randomized (block) Kaczmarz method, it is necessary to traverse all rows of the coefficient matrix.
There is a large amount of data in the coefficient matrix, which leads to a huge amount of computation
and storage. To avoid computing the pseudoinverses, Gower and Richtárik [11] proposed the Gaussian
Kaczmarz (GK) method. The Gaussian Kaczmarz (GK) method, defined by

xk+1 = xk −
ηT (Axk − b)
∥ATη∥22

ATη, (1.3)

can be regarded as another kind of block Kaczmarz method that writes directly the increment in the
form of a linear combination of all columns of AT at each iteration, where η is a Gaussian vector with
mean 0 ∈ Rm and the covariance matrix I ∈ Rm×m, i.e., η ∼ N(0, I). Here I denotes the identity matrix.
In Eq (1.3), all columns of AT are used. The expected linear convergence rate was analyzed in [11] in
the case that A is of full column rank. Recently, Chen and Huang [12] proposed a fast deterministic
block Kaczmarz (FDBK) method, in which a set Uk is first computed according to the greedy index
selection strategy [13] and then the vector ηk is constructed by

ηk =
∑
i∈Uk

(bi − Ai,:xk)µi. (1.4)

Its relaxed version was given by [14]. In these methods [11–14], the calculations on the
pseudoinverses are not needed, while, to compute Uk, one has to scan the residual vector from scratch
during each iteration. In fact, Eq (1.3) is viewed as a special case of the following prototype projection
iteration (for more details, see Section 5.1.2 in [15]),

xk+1 = xk + V(WT AV)+WT (b − Axk), (1.5)
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for k = 0, 1, 2, · · · , where V and W are two parameter matrices, which is proposed by Saad based on
Petrov-Galerkin (PG) conditions. It is easy to see that with different V and W, one can obtain different
popular iterations as special cases, including the multiple row-action iterate scheme. For example, let
W = η and V = AT W with η ∈ Rm being any non-zero vector, the iteration step (1.5) becomes the
form (1.3).

For solving the linear feasibility problem (1.1), Leventhal and Lewis [16] extended the randomized
Kaczmarz method. At each iteration k, if the inequality is already satisfied for the selected row i, then set
xk+1 = xk. If the inequality is not satisfied, the previous iterate only projects onto the solution hyperplane{
x|

〈
Ai,:, x

〉
= bi

}
. The update rule for this algorithm is thus

xk = xk−1 −
(⟨(Ai,:)T , xk−1⟩ − bi)+

∥Ai,:∥
2
2

(Ai,:)T , k = 1, 2, · · · . (1.6)

One can see that xk+1 in Eq (1.6) is indeed the projection of xk onto the set
{
x|

〈
Ai,:, x

〉
≤ bi

}
. Leventhal

and Lewis [16] (Theorem 4.3) proved that a randomized projection (RP) method converges to a
feasible solution linearly in expectation. Recently, by combining the ideas of Kaczmarz and Motzkin
methods [17, 18], Loera et al. proposed the sampling Kaczmarz-Motzkin (SKM) method for solving the
linear feasibility problem (1.1) in [19]. Later, Morshed et al. [20] developed a generalized framework,
namely the generalized sampling Kaczmarz-Motzkin (GSKM) method, that extends the SKM algorithm
and proves the existence of a family of SKM-type methods. In addition, they also proposed a Nesterov-
type acceleration scheme in the SKM method called probably accelerated sampling Kaczmarz-Motzkin
(PASKM), which provides a bridge between Nesterov-type acceleration of machine learning and
sampling Kaczmarz methods for solving linear feasibility problems.

In this paper, inspired by [13, 20], we develop a randomized multiple row-action (RMR) method
for the linear feasibility problem (1.1). Partial rows indexed by Uk are instead of that of [13] to reduce
the calculation on the residual vector in the RMR method, Moreover, by using history information
in updating the current update, we establish a generalized version of randomized multiple row-action
(GRMR) method. This general framework will provide an ideal platform for researchers to experiment
with a wide range of iterative projection methods and design efficient algorithms for solving optimization
problems in areas such as artificial intelligence, machine learning, etc. We emphasize that our algorithms
are pseudoinverse-free and therefore different from projection-based block algorithms. We prove the
linear convergence of our algorithms in the mean-square sense. Numerical results are presented to
illustrate the efficiency of our algorithms.

The rest of the paper is organized as follows. In Section 2, the notations and preliminaries are
provided. In Section 3, we introduce the RMR method and analyze its convergence properties.
Experimental results on both randomly generated and real-world data are reported and discussed in
Section 4. Finally, we present some conclusions in Section 5.

2. Preliminaries and notations

Throughout the paper, for any random variables ξ and ζ, we use E[ξ] and E[ξ|ζ] to denote the
expectation of ξ and the conditional expectation of ξ given ζ. For an integer m ≥ 1, let [m] := {1, · · · ,m}.
For any real matrix A, we use ai, a j, ai, j, AT , A†, ∥A∥2, ∥A∥F and Range(A) to denote the i-th row, the
j-th column, the (i, j)-th entry, the transpose, the Moore-Penrose pseudoinverse, the spectral norm, the
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Frobenius norm, and the column space of A, respectively. The nonzero singular values of a matrix A are
σmax(A) = σ1(A) ≥ σ2(A) ≥ · · · ≥ σr(A) := σmin(A) > 0, where r is the rank of A, and we use σmax(A)
and σmin(A) to denote the biggest and smallest nonzero singular values of A. We see that ∥A∥2 = σ1(A)

and ∥A∥F =
√∑r

i=1 σ
2
i (A). Matrix A with m rows and n columns belongs to Rm×n, the corresponding

compact singular value decomposition of A ∈ Rm×n is denoted as A = UDVT , where U and V are unitary
matrices with appropriate size and D is the nonsingular and diagonal matrix with singular value on
the diagonal. Let PS (x) be the projection of x onto the nonempty closed convex set S : that is, PS (x)
is the vector y that is the optimal solution to minz∈S = ∥x − z∥2. Additionally, define the distance from
x to a set S by d(x, S ) = minz∈S ∥x − z∥ = ∥x − PS (x)∥ as denoted in [21]. For any c ∈ R, u ∈ Rn, we
define c+ = max{0, c}, u+ = ((u1)+, · · · , (un)+)T . For an index set τ , we use A(τ, :), A(:, τ), v(τ) and |τ|
to denote the row and column submatrix of A indexed by τ , the subvector of v with component indices
listed in τ and the cardinality of the set τ, respectively. We use In to denote the n-order identity matrix
and I for short if its size is without confusion. We use ei = I(:, i) to represent the ith column of the
identity matrix.

Lemma 1 (Hoffman [22]). Let x ∈ Rn and S be the feasible region of the linear feasibility problem (1.1).
There exists a constant L > 0 such that the following inequality holds:

∥x − PS (x)∥22 ≤ L2∥(Ax − b)+∥22. (2.1)

Lemma 1 is a famous result of Hoffmann’s work on systems of linear inequalities. The constant L is
called the Hoffman constant. For a consistent system of equations (i.e., there exists a unique x∗ such
that Ax = b), L can be expressed in terms of the smallest singular value of matrix A, i.e.,

L2 =
1

∥A−1∥2
=

1
σ2

min(A)
.

Lemma 2 ( [20]). For any x ∈ Rn and x̄ ∈ S , the following identity holds:

d(x, S )2 = ∥x − PS (x)∥22 ≤ ∥x − x̄∥22. (2.2)

In the paper, for any ϕ1, ϕ2 ≥ 0, the following parameters are defined:

ϕ =
−ϕ1 +

√
ϕ2

1 + 4ϕ2

2
, ρ = ϕ + ϕ1,

R1 =
1 + ϕ
ϕ + ρ

, R2 =
1 − ρ
ϕ + ρ

, R3 =
ϕ2 + ρ

ϕ + ρ
, R4 =

ϕ − ϕ2

ϕ + ρ
. (2.3)

Lemma 3 ( [20]). Let {Gk} be a non-negative real sequence satisfying the following relation:

Gk+1 ≤ ϕ1Gk + ϕ2Gk−1, ∀k ≥ 1, G1 = G0 ≥ 0,

if ϕ1, ϕ2 ≥ 0 and ϕ1 + ϕ2 < 1, then the following bounds hold:

1. Let ϕ be the largest root of ϕ2 + ϕ1ϕ − ϕ2 = 0, then

Gk+1 ≤ (1 + ϕ)(ϕ + ϕ1)kG0, ∀k ≥ 1.
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2. Define ρ = ϕ + ϕ1, then we have the following:

E

[
Gk+1

Gk

]
≤



R1ρ
k+1 + R2ϕ

k+1

R1ρ
k − R2ϕ

k

G0, k even; R3ρ
k − R4ϕ

k

R3ρ
k−1 + R4ϕ

k−1

G0, k odd,

where 0 ≤ ϕ < 1 and 0 < ρ < 1.

Lemma 4 ( [20]). Let the real sequences Hk ≥ 0 and Fk ≥ 0 satisfy the following recurrence relation:[
Hk+1

Fk+1

]
≤

[
Π1 Π2

Π3 Π4

] [
Hk

Fk

]
, (2.4)

where Π1,Π2,Π3,Π4 ≥ 0 such that the following relations

Π1Π4 − Π2Π3 ≥ 0, Π1 + Π4 < 1 + min{1,Π1Π4 − Π2Π3} (2.5)

hold. Then the sequences {Hk} and {Fk} converge and the following result holds:[
Hk+1

Fk+1

]
≤

[
Π1 Π2

Π3 Π4

]k [
H1

F1

]
=

Γ3

(
Γ1ρ

k
2 − Γ2ρ

k
1

)
Γ1Γ2Γ3

(
ρk

1 − ρ
k
2

)
Γ3

(
ρk

2 − ρ
k
1

)
Γ3

(
Γ1ρ

k
1 − Γ2ρ

k
2

) [H1

F1

]
,

where

Γ1 =
Π1 − Π4 +

√
(Π1 − Π4)2 + 4Π2Π3

2Π3
,

Γ2 =
Π1 − Π4 −

√
(Π1 − Π4)2 + 4Π2Π3

2Π3
, Γ3 =

Π3√
(Π1 − Π4)2 + 4Π2Π3

, (2.6)

ρ1 =
1
2

[
Π1 − Π4 −

√
(Π1 − Π4)2 + 4Π2Π3

]
,

ρ2 =
1
2

[
Π1 − Π4 +

√
(Π1 − Π4)2 + 4Π2Π3

]
,

and Π1,Π3 ≥ 0 and 0 ≤ ρ1 ≤ ρ2 < 1.

3. The randomized multiple row-action methods and convergence analysis

In this paper, for solving the linear feasibility problem (1.1), combined with the iteration
schemes (1.3), (1.6), and the parameter W = ηk in Eq (1.4), we propose a randomized multiple
row-action (RMR) method and its variant (GRMR), respectively, described in Algorithms 1 and 2.

Before we delve into the main theorems, we give an important lemma as follows:

Lemma 5. Assume that ηk =
∑

i∈Uik
(Ai,:x − bi)+ei with partition {Uik}

s
ik=1,

βU
max := max j∈[s]{σ

2
max(AU j,:)/∥AU j,:∥

2
F}, and βU

min := min j∈[s]{σ
2
min(AU j,:)/∥AU j,:∥

2
F}. Then, for any x ∈ Rn

there exists the following relation:

µ1∥x − PS (x)∥22 ≤ Ek

[
|ηT

k (Ax − b)+|2

∥ATηk∥
2
2

]
≤ µ2∥x − PS (x)∥22, (3.1)
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Algorithm 1: The RMR method for Ax ≤ b

1: Input partition {Ui}
s
i=1, initial vector x0 ∈ Rn, 0 < α < 2, and maximum iteration number l.

2: for k=1, 2, · · · , l − 1

3: Pick ik ∈ [s] with probability

∥∥∥∥AUik
,:

∥∥∥∥2

F

∥A∥2F
;

4: Compute xk+1 = xk − α
ηT

k (Axk−b)+

∥AT ηk∥
2
2

ATηk, where ηk =
∑

i∈Uik
(Ai,:xk − bi)+ei;

5: End for
6: Output xl.

where 0 < µ1 =
1

βU
max∥A∥2F L2 ≤ µ2 = min{1, σ

2
max(A)
βU

min∥A∥
2
F
} ≤ 1.

Proof. From the definition of η and AUik ,:
x − bUik

≤ AUik ,:
(x − PS (x)), there results in

|ηT
k (Ax − b)+|2

∥ATηk∥
2
2

=
|(
∑

i∈Uik
(Ai,:x − bi)+ei)T (Ax − b)+|2

∥ATηk∥
2
2

=
|(I:,Uik

(AUik ,:
x − bUik

)+)T (Ax − b)+|2

∥ATηk∥
2
2

=
∥((AUik ,:

x − bUik
)+)T (AUik ,:

x − bUik
)+∥22

∥ATηk∥
2
2

=
∥((AUik ,:

x − bUik
)+)T (AUik ,:

x − bUik
)∥22

∥ATηk∥
2
2

(3.2)

≤
∥((AUik ,:

x − bUik
)+)T AUik ,:

(x − PS (x))∥22
∥ATηk∥

2
2

=
∥(AT I:,Uik

(AUik ,:
x − bUik

)+)T (x − PS (x))∥22
∥ATηk∥

2
2

≤
∥ATηk∥

2
2∥(x − PS (x))∥22
∥ATηk∥

2
2

≤ ∥x − PS (x)∥22.

Since (AUik ,:
x − bUik

)+ ∈ R(A), the inequality comes from
∥AT

Uik ,:
(AUik ,:

x − bUik
)+∥22 ≥ σ

2
min(AUik ,:

)∥(AUik ,:
x − bUik

)+∥22. Thus, we have the following relation,

|ηT (Ax − b)+|2

∥ATη∥22
=
|(
∑

i∈Uik
(Ai,:x − bi)+ei)T (Ax − b)+|2

∥AT
Ui,:

(AUik ,:
x − bUik

)+∥22

=
∥(AUik ,:

x − bUi)
+∥42

∥AT
Uik ,:

(AUik ,:
x − bUik

)+∥22
≤
∥(AUik ,:

x − bUik
)+∥22

σ2
min(AUik ,:

)
.

(3.3)
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Now, taking the expectation conditional on the first k iterations on both sides of Eq (3.3) , we have

Ek

[
|ηT

k (Ax − b)+|2

∥ATηk∥
2
2

]
= Ek

∥AUik ,:
∥2F
|ηT

k (Ax − b)+|2

∥ATηk∥
2
2

1
∥AUik ,:

∥2F


≤ Ek

∥AUik ,:
∥2F

∥(AUik ,:
x − bUik

)+∥22
σ2

min(AUik ,:
)

1
∥AUik ,:

∥2F


≤

1
βU

min

Ek

∥(AUik ,:
x − bUik

)+∥22
∥AUik ,:

∥2F


=

1
βU

min

s∑
ik=1

∥AUik ,:
∥2F

∥A∥2F

∥(AUik ,:
x − bUik

)+∥22
∥AUik ,:

∥2F

=
∥(Ax − b)+∥22
βU

min∥A∥
2
F

≤
∥(Ax − APS (x))+∥22
βU

min∥A∥
2
F

≤
∥Ax − APS (x)∥22
βU

min∥A∥
2
F

≤
σ2

max(A)
βU

min∥A∥
2
F

∥x − PS (x)∥22,

(3.4)

where the third inequality comes from APS (x) ≤ b and the last equality follows from the fact that
∥Ax∥22 ≤ σ

2
max(A)∥x∥22.

Meanwhile, from Eq (3.2), it is easy to see that the following relation exists,

Ek

[
|ηT

k (Ax − b)+|2

∥ATηk∥
2
2

]
≤ ∥x − PS (x)∥22. (3.5)

Therefore, with the use of Eqs (3.4) and (3.5), there holds that

Ek

[
|ηT

k (Ax − b)+|2

∥ATηk∥
2
2

]
≤ µ2∥x − PS (x)∥22. (3.6)

Similarly, we have

|ηT
k (Ax − b)+|2

∥ATηk∥
2
2

=
|(
∑

i∈Uik
(Ai,:x − bi)+ei)T (Ax − b)+|2

∥AT
Uik ,:

(AUik ,:
x − bUik

)+∥22
≥
∥(AUik ,:

x − bUik
)+∥22

σ2
max(AUik ,:

)
.

Then, taking the conditional expectation on the above inequalities, we obtain

Ek

[
|ηT

k (Ax − b)+|2

∥ATηk∥
2
2

]
≥ Ek

∥(AUik ,:
x − bUik

)+∥22
σ2

max(AUik ,:
)


= Ek

∥AUik ,:
∥2F

∥(AUik ,:
x − bUik

)+∥22
σ2

max(AUik ,:
)

1
∥AUik ,:

∥2F


≥

1
βU

max

s∑
ik=1

∥AUik ,:
∥2F

∥A∥2F

∥(AUik ,:
x − bUi)

+∥22

∥AUik ,:
∥2F

=
∥(Ax − b)+∥22
βU

max∥A∥
2
F

≥
∥x − PS (x)∥22
βU

max∥A∥
2
F L2

= µ1∥x − PS (x)∥22,

(3.7)
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where the last inequality is obtained by Lemma 1.
Hence, from Eqs (3.6) and (3.7), the conclusion is obtained.

Using the above lemma, we have the following theorem that provides the convergence of the
RMR method.

Theorem 1. Assume that the linear feasibility problem (1.1) is consistent, and the stepsize is 0 < α < 2.
Then the iteration sequence {xk} generated by the RMR method for arbitrary x0 ∈ Rn satisfies

E[∥xk+1 − PS (xk+1)∥22] ≤ (h(α))k∥x0 − PS (x0)∥22,

where h(α) := (1 − 2α−α2

L2βU
max∥A∥2F

) < 1 with βU
max := max j∈[s]{σ

2
max(AU j,:)/∥AU j,:∥

2
F}.

Proof. From direct calculation results, there results in

⟨ATηk, PS (xk) − xk⟩ = ηT
k (APS (xk) − Axk) ≤ ηT

k (b − Axk)
≤ ((AUik ,:

x − bUik
)+)T ((bUik

− AUik ,:
x)+) = ηT

k (b − Axk)+.
(3.8)

Then, there follows that

∥xk+1 − PS (xk+1)∥22 ≤ ∥x
k+1 − PS (xk)∥22

= ∥xk − PS (xk) − α
ηT

k (Axk − b)+

∥ATηk∥
2
2

ATηk∥
2
2

= ∥xk − PS (xk)∥22 + α
2 |η

T
k (Axk − b)+|2

∥ATηk∥
2
2

− 2α
ηT

k (Axk − b)+

∥ATηk∥
2
2

⟨ATηk, xk − PS (xk)⟩

(3.8)
≤ ∥xk − PS (xk)∥22 − (2α − α2)

|ηT
k (Axk − b)+|2

∥ATηk∥
2
2

.

(3.9)

Taking the conditional expectation on the first k iterations and using Lemma 5, we have

Ek[∥xk+1 − PS (xk+1)∥22]
Lemma 5
≤

(
1 −

2α − α2

L2βU
max∥A∥

2
F

)
∥xk − PS (xk)∥22. (3.10)

By the law of total expectation, there holds that

E[∥xk+1 − PS (xk+1)∥22] ≤
(
1 −

2α − α2

L2βU
max∥A∥

2
F

)
E[∥xk − PS (xk)∥22].

Finally, unrolling the recurrence gives the desired result, i.e.

E[∥xk+1 − PS (xk+1)∥22] ≤ (1 −
2α − α2

L2βU
max∥A∥

2
F

)k∥x0 − PS (x0)∥22

= (h(α))k∥x0 − PS (x0)∥22.

Remark 1. It can be seen from Theorem 1 that the rate of the RMR algorithm is given by h(α) =
(1 − 2α−α2

L2βU
max∥A∥2F

), and it reaches the minimum value h(α) = (1 − 1
L2βU

max∥A∥2F
) when α = 1.
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Next, to improve the RMR method, we propose a generalized version of the RMR method (GRMR)
in which the history information is used. Here, we take two iterates, xk−1 and xk, generated by the
successive iteration in the RMR method, and update the next iterate, xk+1, as an affine combination of
the previous two updates, i.e., starting with x0 = x1, z0 = z1 ∈ Rn,

xk+1 = (1 − ξ)zk + ξzk−1, for k ≥ 1,

where zk = xk − α
ηT

k (Axk−b)+

∥AT ηk∥
2
2

ATηk is the k-th update of the GRMR algorithm, which is described in
Algorithm 2. It is easy to see that when ξ = 0, the GRMR algorithm reduces to the original
RMR algorithm.

Algorithm 2: The GRMR method for Ax ≤ b

1: Input partition {Ui}
s
i=1, initial vector x1 = x0, z1 = z0 ∈ Rn, 0 < α < 2, ξ ∈ Q and maximum

iteration number l.
2: for k=1, 2, · · · , l − 1

3: Pick ik ∈ [s] with probability

∥∥∥∥AUik
,:

∥∥∥∥2

F

∥A∥2F
;

4: Compute zk = xk − α
ηT

k (Axk−b)+

∥AT ηk∥
2
2

ATηk, where ηk =
∑

i∈Uik
(Ai,:xk − bi)+ei;

5: Set xk+1 = (1 − ξ)zk + ξzk−1;
6: End for
7: Output xl.

Before the convergence analysis of the proposed GRMR method is explored, the following sets are
first defined. For any ξ ∈ R, let us denote the sets Q, Q1, and Q2 as

Q1 = {ξ|0 ≤ ξ ≤ 1} , Q = Q1 ∪ Q2,

Q2 =
{
−1 < ξ ≤ 0 | (1 + ξ)

√
h(α) − ξ(1 + α

√
µ2) < 1

}
.

(3.11)

Theorem 2. Suppose that the linear feasibility problem (1.1) is consistent. For arbitrary x1 = x0 ∈ Rn,
the sequence of iterates {xk} by the GRMR method converges with 0 < α < 2 and 0 ≤ ξ ≤ 1 (ξ ∈ Q1).
The following results hold:

1. Take ρ = ϕ1 + ϕ, ϕ =
−ϕ1+
√
ϕ2

1+4ϕ2

2 , then

E[∥xk+1 − PS (xk+1)∥22] ≤ ρk(1 + ϕ)∥x0 − PS (x0)∥22.

2. Take R1,R2,R3, and R4 as in Eq (2.3), then

E

[
∥xk+1 − PS (xk+1)∥22
∥xk − PS (xk)∥22

]
≤



R1ρ
k+1 + R2ϕ

k+1

R1ρ
k − R2ϕ

k

 ∥x0 − PS (x0)∥22, k even; R3ρ
k − R4ϕ

k

R3ρ
k−1 + R4ϕ

k−1

 ∥x0 − PS (x0)∥22, k odd,

where 0 ≤ ϕ, ϕ1, ϕ2 < 1, 0 < ρ = ϕ1 + ϕ < 1, h(α) := (1 − 2α−α2

L2βU
max∥A∥2F

) < 1 with βU
max :=

max j∈[s]{σ
2
max(AU j,:)/∥AU j,:∥

2
F}.
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Proof. Since for any ξ ∈ Q1, (1 − ξ)PS (xk) + ξPS (xk−1) ∈ S , straightforward calculations, we have

∥xk+1 − PS (xk+1)∥22
Lemma 2
≤ ∥xk+1 − (1 − ξ)PS (xk) − ξPS (xk−1)∥22

=∥(1 − ξ)zk + ξzk−1 − (1 − ξ))PS (xk) − ξPS (xk−1)∥22

=∥(1 − ξ)[xk − PS (xk) − α
ηT

k (Axk − b)+

∥ATηk∥
2
2

ATηk]

+ ξ[xk−1 − PS (xk−1) − α
ηT

k−1(Axk−1 − b)+

∥ATηk−1∥
2
2

ATηk−1]∥22

≤(1 − ξ)∥xk − PS (xk) − α
ηT

k (Axk − b)+

∥ATηk∥
2
2

ATηk∥
2
2

+ ξ∥xk−1 − PS (xk−1) − α
ηT

k−1(Axk−1 − b)+

∥ATηk−1∥
2
2

ATηk−1∥
2
2.

(3.12)

By taking the conditional expectation on Eq (3.12) with respect to index k, k-1 we have

Ek,k−1[∥xk+1 − PS (xk+1)∥22]

≤ (1 − ξ)Ek[∥xk − PS (xk) − α
ηT

k (Axk − b)+

∥ATηk∥
2
2

ATηk∥
2
2]

+ ξEk−1[∥xk−1 − PS (xk−1) − α
ηT

k−1(Axk−1 − b)+

∥ATηk−1∥
2
2

ATηk−1∥
2
2].

(3.13)

Meanwhile, with the use of Eqs (3.9) and (3.10), there holds that

Ek[∥xk − PS (xk) − α
ηT

k (Axk − b)+

∥ATηk∥
2
2

ATηk∥
2
2]

≤

(
1 −

2α − α2

L2βU
max∥A∥

2
F

)
∥xk − PS (xk)∥22 = h(α)∥xk − PS (xk)∥22,

(3.14)

and

Ek−1[∥xk−1 − PS (xk−1) − α
ηT

k−1(Axk−1 − b)+

∥ATηk−1∥
2
2

ATηk−1∥
2
2

≤ (1 −
2α − α2

L2βU
max∥A∥

2
F

)∥xk−1 − PS (xk−1)∥22 = h(α)∥xk−1 − PS (xk−1)∥22.
(3.15)

Taking the total expectation on Eq (3.13) and combining Eqs (3.14) and (3.15), we can get

E[∥xk+1 − PS (xk+1)∥22]
≤ (1 − ξ)h(α)E[∥xk − PS (xk)∥22] + ξh(α)E[∥xk−1 − PS (xk−1)∥22]
= ϕ1E[∥xk − PS (xk)∥22] + ϕ2E[∥xk−1 − PS (xk−1)∥22],

(3.16)

which satisfies the condition of Lemma 3 with ϕ1 = (1 − ξ)h(α) and ϕ2 = ξh(α). Therefore, using the
first part of Lemma 3, we have

E[∥xk+1 − PS (xk+1)∥22] ≤ (ϕ + ϕ1)k(1 + ϕ)∥x0 − PS (x0)∥22
= ρk(1 + ϕ)∥x0 − PS (x0)∥22.
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Furthermore, using the second part of Lemma 3 and Eq (3.16), we can get the second part of
Theorem 2.

Remark 2. When 0 ≤ ξ ≤ 1, we obtain a global linear rate for the GRMR method:

ρ = ϕ + ϕ1 =
(1 − ξ)h(α) +

√
(1 − ξ)2h2(α) + 4ξh(α)

2
.

Since 0 < h(α) < 1 and 0 ≤ ξ ≤ 1, we can obtain that ρ is greater than or equal to h(α). Therefore,
the theoretical convergence rate of the GRMR method with 0 ≤ ξ ≤ 1 is always worse or equal compared
to that of the RMR method.

In the next theorem, we will investigate a global linear rate for the GRMR method with ξ ∈ Q2.

Theorem 3. Assume that the linear feasibility problem (1.1) is consistent. Let {xk} and {zk} be the
sequence of random iterates generated by GRMR with 0 < α < 2 and ξ ∈ Q2. Define

Π1 =
√

h(α), Π2 = |ξ| , Π3 = α
√
µ2h(α), Π4 = |ξ| (1 + α

√
µ2), (3.17)

and Γ1,Γ2,Γ3, ρ1, ρ2 as in Eq (2.6) with the parameter choice of Eq (3.17). Then, the following results
hold,

E

[∥∥∥xk+1 − PS (xk+1)
∥∥∥∥∥∥zk+1 − zk

∥∥∥
]
≤

[
Γ1Γ3ρ

k
2 − Γ2Γ3ρ

k
1

Γ3ρ
k
2 − Γ3ρ

k
1

]
∥x0 − PS (x0)∥,

where Γ1,Γ3 ≥ 0 and 0 ≤ ρ1 ≤ ρ2 < 1.

Proof. From Step 5 of the GRMR method and Eq (3.14), there follows that

Ek+1,k[∥xk+1 − PS (xk+1)∥] ≤ Ek[∥xk+1 − PS (xk)∥]
S tep5
= Ek[∥zk − PS (xk) − ξ(zk − zk−1)∥]
≤ Ek[∥zk − PS (xk)∥] + |ξ|Ek[∥zk − zk−1∥]

≤ {Ek[∥zk − PS (xk)∥2]}
1
2 + |ξ|∥zk − zk−1∥

(3.14)
≤

√
h(α)∥xk − PS (xk)∥ + |ξ|∥zk − zk−1∥.

(3.18)

Taking the total expectation on Eq (3.18), we have

E[∥xk+1 − PS (xk+1)∥] ≤
√

h(α)E[∥xk − PS (xk)∥] + |ξ|E[∥zk − zk−1∥]. (3.19)

Then using the update formula for zk+1 in Step 5 of the GRMR method and Lemma 5, we have

Ek+1,k[∥zk+1 − zk∥] = Ek+1,k[∥xk+1 − α
ηT

k+1(Axk+1 − b)+

∥ATηk+1∥
2
2

ATηk+1 − zk∥]

S tep5
= Ek+1,k[∥ − ξ(zk − zk−1) − α

ηT
k+1(Axk+1 − b)+

∥ATηk+1∥
2
2

ATηk+1∥]

≤ |ξ| ∥zk − zk−1∥ + αEk,k+1

[∥∥∥∥∥∥ηT
k+1(Axk+1 − b)+

∥ATηk+1∥
2
2

ATηk+1

∥∥∥∥∥∥
]

Lemma 5
≤ |ξ| ∥zk − zk−1∥ + α

√
µ2Ek[∥xk+1 − PS (xk+1)∥].

(3.20)
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Taking the total expectation on Eq (3.20) and using Eq (3.19), we have

E[∥zk+1 − zk∥]
(3.20)
≤ |ξ|E[∥zk − zk−1∥] + α

√
µ2E[∥xk+1 − PS (xk+1)∥]

(3.19)
≤ |ξ| (1 + α

√
µ2)E[∥zk − zk−1∥] + α

√
µ2h(α)E[∥xk − PS (xk)∥].

(3.21)

Combining Eqs (3.19) and (3.21), we can deduce the following inequality:

E

[
∥xk+1 − PS (xk+1)∥
∥zk+1 − zk∥

]
≤

[ √
h(α) |ξ|

α
√
µ2h(α) |ξ|(1 + α

√
µ2)

]
E

[
∥xk − PS (xk)∥
∥zk − zk−1∥

]
. (3.22)

From the definition, we check that Π1,Π2,Π3,Π4 ≥ 0. Since ξ ∈ Q2, we have

Π2Π3 − Π1Π4 = |ξ|α
√
µ2h(α) − |ξ|

√
h(α) − |ξ|α

√
µ2h(α) = −|ξ|

√
h(α) ≤ 0. (3.23)

We have

Π1 + Π4 − Π1Π4 + Π2Π3 =
√

h(α) + |ξ|(1 + α
√
µ2) − |ξ|

√
h(α)

(3.11)
< 1. (3.24)

From the above formula (3.24), there holds that Π1 + Π4 < 1 + |ξ|
√

h(α) = 1 + min{1, |ξ|
√

h(α)} =
1+min{1,Π1Π4−Π2Π3}. With the use of Eq (3.23), there results in Π2Π3−Π1Π4 ≤ 0, which is precisely
the condition provided in Eq (2.5).

Let the sequences Fk = E[∥zk − zk−1∥] and Hk = E[∥xk − PS (xk)∥]. Then, by using Lemma 4, we have[
Hk+1

Fk+1

]
≤

[
Γ3(Γ1ρ

k
2 − Γ2ρ

k
1) Γ1Γ2Γ3(ρk

1 − ρ
k
2)

Γ3(ρk
2 − ρ

k
1) Γ3(Γ1ρ

k
1 − Γ2ρ

k
2)

] [
H1

F1

]
. (3.25)

where Γ1,Γ2,Γ3, ρ1, ρ2 can be derived from Eq (2.6) using the parameter choice of Eq (3.17).
Since x1 = x0 and z1 = z0, there follows that F1 = E[∥z1 − z0∥] = 0 and H1 = E[∥x1 − PS (x1)∥] = H0.

Thus, the formula (3.25) become into the following form:[
Hk+1

Fk+1

]
=

[
∥xk+1 − PS (xk+1)∥
∥zk+1 − zk∥

]
≤

[
Γ1Γ3ρ

k
2 − Γ2Γ3ρ

k
1

Γ3ρ
k
2 − Γ3ρ

k
1

]
∥x0 − PS (x0)∥. (3.26)

From Lemma 4, we have Γ1,Γ3 ≥ 0 and 0 ≤ ρ1 ≤ ρ2 < 1, which proves the conclusion.

4. Numerical experiments

In this section, we discuss the numerical experiments performed to show the computational efficiency
of the proposed algorithms (Algorithms 1 and 2). As mentioned before, we limit our focus on the
over-determined systems regime (i.e., m ≫ n), where iterative methods are competitive in general. We
present some numerical examples, both synthetic and real-world data, to demonstrate the convergence
of the RMR and GRMR methods.

We suppose that the subset {Ui}
s
i=1 is computed by

{Ui} =

{(i − 1)τ + 1, (i − 1)τ + 2, · · · , iτ} , i ∈ [s − 1],
{(s − 1)τ + 1, (s − 1)τ + 2, · · · ,m} , i ∈ s,
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where τ = 20 is the size of Ui. All experiments are carried out using MATLAB (version R2021b)
on a laptop with a 2.50-GHz intel Core i9-12900H processor, 16 GB memory, and Windows 11
operating system.

In testing synthetic data and the SuiteSparse Matrix Collection, the stopping criterion is

RS E = ∥(Ax − b)+∥2 ≤ 10−6,

or the maximum iteration steps of 300, 000 being reached. Besides, we use the symbol “ − ” to indicate
the case that either the corresponding iteration method can not reach the stopping criterion RS E ≤ 10−6

within 300, 000 iteration steps or the computing time exceeds 1800 seconds.
In testing the sparse Netlib LP data, we set the stopping criterion to be

max(Axk − b)
max(Ax0 − b)

≤ γ,

where γ is the tolerance gap.
In this section, IT and CPU denote the number of iteration steps and computing times (in seconds),

respectively. IT and CPU are the medians of the required iteration steps and the elapsed CPU times
for 20 times repeated runs of the corresponding method. The SKM, GSKM, and PASKM algorithms
involve the selection of many parameters as well, and we have selected a set of parameters with better
performance based on the literature [20]. To ensure that the system (1.1) is consistent, we randomly
generate vectors y1 ∈ Rn, y2 ∈ Rn and set the right-hand side as b = 0.5Ay1 + 0.5Ay2. Both y1 and y2 are
generated randomly by the MATLAB function “randn”.

4.1. Experiments on synthetic data

Example 1. For the coefficient matrix A, we mainly consider two types, namely dense and sparse
matrices, respectively. We randomly generate the dense matrix by the MATLAB function “randn”. The
sparse matrix is generated randomly by the MATLAB function “sprandn” with a density of 1

2logmn for
the nonzero elements. We compared RMR and GRMR with SKM, GSKM, PASKM1, and PASKM2
with the initial vector x0, z0 ∈ Rn (x0, z0 generated randomly by the MATLAB function “randn”) .
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Figure 1. The convergence behaviors of RSE versus IT and CPU given by six methods with
sparse coefficient matrix A ∈ 5000 × 50, β = 100, δ = 0.5, ξ = 0.2, α = 1 for Example 1.
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From Tables 1–4, we list IT and CPU of SKM, GSKM, PASKM1, PASKM2, RMR, and GRMR
methods for the consistent linear feasible problem Ax ≤ b in Example 1. We set ξ = − 0.2, α = 1.05 in
tables. The performance of these algorithms was tested on both dense and sparse coefficient matrices in
two sets of experiments presented in Tables 1 and 2 with a constant number of rows but an increasing
number of columns. Tables 3 and 4 show the performance of the algorithms with different orders of
coefficient matrices. The convergence rates of the different methods are observed for consistent systems,
as depicted in Figure 1. From Tables 1–4 , it can be observed that the RMR and GRMR methods
outperform the SKM, GSKM, PASKM1, and PASKM2 methods for consistent systems. Furthermore,
Figure 1 demonstrates that compared with other methods, the RMR and GRMR approaches achieve
higher accuracy with fewer iterations (IT) and computational time (CPU).

Table 1. IT and CPU of six methods for m × n dense matrices A with m = 5000 and different
n in Example 1.

m × n 5000 × 100 5000 × 200 5000 × 300 5000 × 400 5000 × 500 5000 × 600

SKM
IT 1067 2982 5614 9727 15220 21832
CPU 0.9855 4.7603 9.1254 17.5679 33.0315 71.7751

GSKM
IT 851 2252 4294 7268 11276 16374
CPU 0.7875 3.7005 7.3854 13.6847 23.5921 58.1655

PASKM1
IT 750 1819 3340 5707 8850 12717
CPU 0.6957 3.0986 5.5658 10.3246 16.8315 35.4983

PASKM2
IT 700 1474 2310 3362 4.5721e+03 6.2811e+03
CPU 0.6484 2.5027 3.7529 5.7056 8.7151 17.7476

RMR
IT 412 868 1297 2132 2871 3505
CPU 0.0523 0.1780 0.3607 0.7130 1.2153 2.3454

GRMR
IT 399 849 1234 1777 2482 3275
CPU 0.0503 0.1680 0.3227 0.6910 1.1115 2.1774

Table 2. IT and CPU of six methods for m × n sparse matrices A with m = 5000 and different
n in Example 1.

m × n 5000 × 100 5000 × 200 5000 × 300 5000 × 400 5000 × 500 5000 × 600

SKM
IT 1303 3138 5724 10207 14553 21886
CPU 1.0057 6.6166 8.2686 16.9807 26.5132 43.8631

GSKM
IT 1012 2410 4373 7606 10984 16502
CPU 0.7751 5.3301 6.7144 12.2361 21.1343 33.7102

PASKM1
IT 877 1993 3478 5967 8693 13133
CPU 0.6877 4.2751 5.1627 9.5969 14.9724 23.7929

PASKM2
IT 791 1567 2398 3450 4729 6550
CPU 0.6343 3.5159 3.9884 5.5175 8.1405 12.4132

RMR
IT 459 1034 1563 2419 3129 4684
CPU 0.0672 0.3124 0.7153 1.1694 1.6621 2.6481

GRMR
IT 426 1018 1550 2394 3054 4287
CPU 0.0625 0.3106 0.7091 1.1563 1.6199 2.4405
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Table 3. IT and CPU of six methods for m × n dense matrices A with different n and m in
Example 1.

m × n 1000 × 100 2000 × 200 3000 × 300 4000 × 400 5000 × 500 6000 × 600

SKM
IT 2847 6058 8876 12224 15171 18685
CPU 1.3973 7.3557 14.5893 21.0069 32.0768 81.6442

GSKM
IT 2198 4602 6675 9347 11173 13946
CPU 1.1239 5.6573 11.6139 16.4939 23.1984 63.4526

PASKM1
IT 1.775 3616 5143 7256 9076 10995
CPU 0.8970 4.4592 9.0139 12.7491 16.9114 48.8534

PASKM2
IT 885 1887 2682 3729 4684 5569
CPU 0.4631 2.3404 4.6370 6.6436 8.7244 23.4332

RMR
IT 667 1251 1978 2523 3217 3933
CPU 0.0268 0.0608 0.1731 0.5311 1.2986 1.7975

GRMR
IT 638 1226 1860 2462 3150 3740
CPU 0.0255 0.0585 0.1621 0.5126 1.2877 1.7047

Table 4. IT and CPU of six methods for m × n sparse matrices A with different n and m in
Example 1.

m × n 1000 × 100 2000 × 200 3000 × 300 4000 × 400 5000 × 500 6000 × 600

SKM
IT 3143 5961 8667 11404 14620 17525
CPU 1.1965 2.0794 14.9667 22.3923 27.1353 47.9605

GSKM
IT 2396 4452 6510 8512 10734 13104
CPU 0.9519 1.5554 11.9794 16.7697 21.0046 37.0169

PASKM1
IT 1974 3472 5158 6765 8734 10302
CPU 0.8684 1.2462 9.8658 12.9433 15.4741 28.1906

PASKM2
IT 1119 1959 2870 3694 4700 5546
CPU 0.4947 0.7069 5.5380 7.1027 8.0391 14.3387

RMR
IT 675 1275 2005 2725 3129 3853
CPU 0.0506 0.1899 0.4785 1.0729 1.6562 2.4124

GRMR
IT 668 1219 1919 2575 3054 3792
CPU 0.0488 0.1808 0.4536 1.0211 1.6199 2.3684

In Table 5, we list IT and CPU of the RMR method for m × n dense matrices A with different α for
Example 1. From Table 5, we can see that the RMR algorithm with α = 1.05 performs better. As shown
in Figure 2, the choice of parameter α affects IT and CPU required by the RMR method to achieve
desired accuracy levels. When α is appropriately selected, the IT and CPU needed by the RMR method
are significantly reduced.
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Table 5. IT and CPU of the RMR method for m × n dense matrices A with different α in
Example 1.

m × n α 0.10 0.40 0.55 0.80 1.05 1.30 1.55 1.85

5000 × 100
IT 5808.9 910.0 536.7 436.6 413.3 456.8 578.2 1500.0
CPU 0.5981 0.1007 0.0591 0.0486 0.0469 0.0514 0.0650 0.1616

5000 × 200
IT 13620.0 2093.9 1133.8 851.2 806.5 879.4 1161.7 3005.1
CPU 3.0197 0.5453 0.3023 0.2278 0.2141 0.2355 0.3115 0.7872

5000 × 300
IT 24926.4 3778.3 1962.1 1423.8 1267.4 1407.1 1837.5 4595.9
CPU 13.8342 2.1100 1.1329 0.7885 0.7346 0.8189 1.0251 2.5884

5000 × 400
IT 39569.2 5934.5 2969.8 2013.3 1726.1 1865.3 2432.2 6223.0
CPU 14.6740 2.4406 1.2494 0.8401 0.7170 0.7846 1.0214 2.6008

5000 × 500
IT 61697.4 9158.3 4554.6 2998.8 2423.2 2441.9 3094.0 7574.4
CPU 19.6330 3.0827 1.5505 1.0319 0.8332 0.8344 1.0518 2.6854

5000 × 600
IT 83018.8 12278.2 6063.6 3931.3 2958.2 3066.8 3725.5 9557.4
CPU 48.1672 7.3571 3.6987 2.4025 1.8190 1.9194 2.2922 5.8362
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Figure 2. The convergence behaviors of RSE versus IT and CPU given by RMR method with
dense coefficient matrix A ∈ 5000 × 300 for Example 1.

Example 2. For given m, n, r and κ > 1, we construct a matrix A by A = UDV , where U ∈ Rm×r,
D ∈ Rr×r and V ∈ Rn×r. These matrices are generated by [U,∼] = qr(randn(m, r), 0), [V,∼] =
qr(randn(n, r), 0), and D = diag(1 + (κ − 1). ∗ rand(r, 1)).

This example gives us many flexibilities to adjust the input parameters m, n, r, and κ. We consider
two types of rank-deficient cases by setting m = 30n, r = n/2, and κ = n/10 in Table 6 and m =
5000, r = n/2, and κ = n/10 in Table 7. We compared RMR and GRMR with SKM, GSKM,
PASKM1, and PASKM2 with the initial vector x0, z0 ∈ Rn (x0, z0 generated randomly by the MATLAB
function “randn”) .

In Tables 6 and 7, we report the numerical results of the SKM, GSKM, PASKM1, PASKM2, RMR,
and GRMR algorithms with β = 100, δ = 0.5, ξ = −0.2, α = 1 for two rank-deficient consistent linear
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systems. We can observe the following phenomena: the relative solution error of GRMR decays faster
than those of SKM, GSKM, PASKM1, PASKM2, and RMR when the number of iteration steps and
computing time increase.

Table 6. IT and CPU of six methods for m × n matrices A with m = 30n and different n in
Example 2.

m × n 1500 × 50 3000 × 100 4500 × 150 6000 × 200 7500 × 250

SKM
IT 1.2447e+03 7.9725e+03 2.1648e+04 5.5140e+04 1.2848e+05
CPU 0.2798 6.0742 30.2712 72.6378 177.7376

GSKM
IT 9.7291e+02 6.3474e+03 1.7195e+04 4.3673e+04 1.0183e+05
CPU 0.2223 4.9473 25.7609 59.6574 142.0572

PASKM1
IT 8.0253e+02 5.3334e+03 1.4417e+04 3.6519e+04 8.4791e+04
CPU 0.1833 4.2592 21.6780 48.1641 118.7923

PASKM2
IT 5.1557e+02 3.4486e+03 9.1972e+03 2.3007e+04 5.2762e+04
CPU 0.1181 2.8350 13.2988 27.2750 73.9614

RMR
IT 2.3945e+02 1.4493e+03 7.0107e+03 1.9027e+04 3.4009e+04
CPU 0.0124 0.0844 0.9885 3.4734 9.3129

GRMR
IT 2.0725e+02 1.2183e+03 5.7479e+03 1.5770e+04 2.8827e+04
CPU 0.0109 0.0784 0.8225 2.8958 8.2372

Table 7. IT and CPU of six methods for m × n matrices A with m = 5000 and different n in
Example 2.

m × n 5000 × 50 5000 × 100 5000 × 150 5000 × 200 5000 × 250

SKM
IT 7.5260e+02 4.9593e+03 2.5683e+04 5.8852e+04 1.06256e+05
CPU 0.6725 7.4758 29.9510 86.5563 134.1015

GSKM
IT 6.1130e+02 3.9435e+03 2.0453e+04 4.6742e+04 9.5641e+04
CPU 0.5448 5.9391 21.6146 65.3934 102.7754

PASKM1
IT 5.3000e+02 3.3225e+03 1.7098e+04 3.9103e+04 8.2928e+04
CPU 0.4740 5.2256 19.0484 49.6410 87.6790

PASKM2
IT 3.6930e+02 2.1724e+03 1.0772e+04 2.4912e+04 5.8286e+04
CPU 0.3334 3.4637 12.0785 32.7437 61.1034

RMR
IT 3.4125e+02 2.4008e+03 5.8137e+03 1.2747e+04 3.5337e+04
CPU 0.0405 0.2881 1.0362 5.9427 11.1385

GRMR
IT 2.905e+02 2.0233e+03 4.7020e+03 1.0390e+04 2.8997e+04
CPU 0.0345 0.2446 0.8953 4.9289 9.3507

In Table 8, we list IT and CPU of the GRMR method for m × n dense matrices A with m = 5000,
r = n/2, κ = n/10, α = 0.95, and different ξ for Example 2. We can find that the choice of ξ = −0.4 is
the best choice for the GRMR method in Figure 3.
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Table 8. IT and CPU of the GRMR method for m × n dense matrices A with m = 5000,
r = n/2, κ = n/10, α = 0.95 and different ξ in Example 2.

n ξ -0.6 -0.4 -0.2 0 0.6 0.9

50
IT 3.0910e+02 2.1429e+02 2.7607e+02 3.3015e+02 4.8100e+02 5.9819e+02
CPU 0.0490 0.0344 0.0441 0.0511 0.0747 0.0933

100
IT 1.5200e+03 1.1347e+03 1.4166e+03 1.7213e+03 2.5678e+03 3.1229e+03
CPU 0.9983 0.9612 0.9436 0.9793 0.9883 0.9909

150
IT 9.9682e+03 4.6247e+03 5.9130e+03 7.2372e+03 1.0993e+04 1.2839e+04
CPU 2.9349 1.3518 1.8325 2.3050 3.4949 4.0744

200
IT - 6.4790e+03 8376e+03 1.0158e+04 1.5754e+04 1.8845e+04
CPU - 2.2413 2.9027 3.5326 5.8995 7.1385

250
IT - 2.4789e+04 3.1179e+04 3.8087e+04 5.8929e+04 6.9713e+04
CPU - 3.8122 4.8770 6.5623 9.9870 12.1248

300
IT - 2.6105e+04 3.3267e+04 4.0252e+04 6.2172e+04 7.4024e+04
CPU - 5.6167 7.1635 8.6136 13.1339 15.7273
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Figure 3. The convergence behaviors of RSE versus IT and CPU given by the GRMR method
with dense coefficient matrix A ∈ 5000 × 100, α = 0.95, β = 100, δ = 0.5, and different ξ for
Example 2.

4.2. Experiments on real-world data

We consider the following two types of real-world test data: the SuiteSparse Matrix Collection and
the sparse Netlib LP instances.

Example 3. The SuiteSparse Matrix Collection [23]. In Table 9, the coefficient matrix A is chosen from
the SuiteSparse Matrix Collection. In testing the SuiteSparse Matrix Collection, we take τ =

⌈
∥A∥22

⌉
.

We compared RMR and GRMR with SKM, GSKM, PASKM1, and PASKM2 with the initial vector
x0 = z0 = 0 ∈ Rn. For details, we list their sizes, densities, condition numbers (i.e., cond(A)), and
squared Euclidean norms in Table 10, where the density of a matrix is defined by

density =
the number of non-zero elements of an m-by-n matrix

mn
.
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In Table 9, we list the IT and CPU of SKM, GSKM, PASKM1, PASKM2, RMR, and GRMR methods
for the linear feasible problem Ax ≤ b in Example 3 with β = 100, δ = 0.3, ξ = −0.2, and α = 0.95. We
observe that the GRMR method outperforms SKM, GSKM, PASKM, and RMR methods in terms of
both the iteration counts and the CPU time from Table 9.

Table 9. IT and CPU of six methods for Example 3 with β = 100, δ = 0.3, ξ = −0.2, α = 0.95.

name ash219 ash958 ch7-8-b1 well1033 illc1850 ch6-6-b5

SKM
IT 555 24383 63036 4559 6114 17113
CPU 0.0237 0.5705 12.3610 1.0811 3.0682 39.7281

GSKM
IT 381 1697 48929 3418 4552 12993
CPU 0.0169 0.3626 10.4723 0.8127 2.2707 28.0804

PASKM1
IT 258 1142 39865 2.650 3497 10292
CPU 0.0111 0.2512 8.6279 0.6352 1.7700 46.4743

PASKM2
IT 39 166 20123 1549 1993 6603
CPU 0.0018 0.0381 4.4998 0.3785 0.9553 13.3613

RMR
IT 113 379 24167 1859 2221 619
CPU 0.0012 0.0182 0.6021 0.0455 0.1575 0.1430

GRMR
IT 28 109 15527 551 697 104
CPU 0.0006 0.0112 0.3188 0.0155 0.0592 0.0392

Table 10. The properties of different sparse matrices in Example 3.

name ash219 ash958 ch7-8-b1 well1033 illc1850 ch6-6-b5

m × n 219 × 85 958 × 292 1176 × 56 1033 × 320 1850 × 712 720 × 4320
density 2.35% 0.68% 3.57% 1.43% 0.66% 0.14%
cond(A) 3.0249 3.2014 3.5819e+15 166.1333 1.404e+03 1
∥A∥22 12.1422 17.9630 49.0000 3.2635 4.5086 6.0000

Example 4. Netlib LP instances. We follow the standard framework used by De Loera et al. [19] and
Morshed et al. [20] in their work on linear feasibility problems. The problems are transformed from
standard LP problems (i.e., min cT x subject to Ax = b, l ≤ x ≤ u with optimum value p∗) to an equivalent
linear feasibility formulation (i.e., Ax ≤ b, where A = [AT − AT I − Ic]T and b = [bT − bT uT − lT p∗]T ).
In testing the sparse Netlib LP instances, we take τ = 5 and initial vectors x0 = z0 = 0 ∈ Rn.

Table 11. CPU time comparisons of five methods for different matrices A in Example 4.

name Dimensions γ ξ α SKM GSKM PASKM2 RMR GRMR

lp sc50b 257 × 78 10−2 -0.1 0.9 0.1746 0.1886 0.3636 0.1059 0.0874
lp adlittle 389 × 138 10−2 0.01 0.85 0.0222 0.0258 0.1173 0.0149 0.0076
lp recipe 591 × 204 10−4 -0.2 1.05 2.6012 2.1534 3.1206 2.2878 1.9061
degen2 1957 × 534 10−2 -0.1 1.05 0.0107 0.0184 0.0140 0.0073 0.0068

In Table 11, we list the IT and CPU of SKM, GSKM, PASKM2, RMR, and GRMR methods for the
linear feasible problem Ax ≤ b in Example 4. From Table 11, we know that Algorithm GRMR takes
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less computing time compared to the other algorithms.

5. Conclusions

In this paper, based on partial rows of the residual vector, the RMR method and its general framework
(GRMR) are provided to solve the linear feasibility problems. The GRMR method unifies various
RMR-type algorithms and adds the relaxation parameter ξ. The convergence results are proved. Some
numerical examples, including synthetic data and real-world applications, demonstrate that the two
methods often outperform the original methods. Especially, the GRMR method with ξ ∈ Q2 takes less
computing time. This implies that GRMR is a variant of the competitive row-action type for solving
linear feasibility problems. Meanwhile, from the numerical results, it can be seen that the appropriate
choice of parameters can lead to more effective methods for different types of problems. In future work,
we intend to identify the optimal choices of ξ.
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