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Abstract: This work aimed to derive new analytical formulas for the stress–strength reliability of the
type P(X < Y) when both X and Y follow Fréchet, reversed Weibull or Weibull distributions. The new
expressions were given in terms of extreme value H-functions and have been obtained under fewer
parameter restrictions while compared to similar results in the literature of these distributions. The
performance of the maximum likelihood estimator was evaluated through Monte-Carlo simulations and
the results were compared with a nonparametric estimator. Three real dataset applications were carried
out. First, we analyzed the statistical behavior of financial assets’ returns, showing how P(X < Y)
can be used to build an interesting approach to perform asset selection. Second, minimum monthly
flows of water were analyzed. Finally, we compared failure voltage levels of two types of electrical
cable insulation. For all the real case applications, confidence intervals for P(X < Y) were obtained by
Bootstrap methods.
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1. Introduction

Let X1, X2, · · · be a sequence of random variables (RVs), independent and identically distributed
(iid) with a common distribution G(·). The extreme value theory (EVT) [1] proposes asymptotic
distribution functions F(·) for partial maximum Mn = max{X j; j = 1, · · · , n}. The derivation of
extreme distributions is based on the asymptotic approximation of the normalized partial maximum.
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More specifically,
Mn − bn

an

d
→ F(x), as n→ ∞, (1.1)

where an > 0, bn ∈ R, F(·) is a nondegenerate distribution function and
d
→ denotes convergence

in distribution.
Fisher and Tippet theorem [2, 3] guarantees us that there are three extreme values distributions

F(·) satisfying Eq (1.1). These distributions are known as Fréchet, reversed Weibull, and Gumbel.
Note that min{X1, · · · , Xn} = −max{X1, · · · , Xn} results presented for the maximum can be converted
to the minimum. The conditions on the distribution function G(·) for Eq (1.1) to hold true are well-
documented and can be referenced in [1, 3, 4]. Applications of EVT are found in finance, natural
catastrophes, and equipment failures, among others [5].

In order to study extreme value distributions in a stress-strength framework, lets assume that a
random stress Y is applied to a random strength X and both are independent and possess the same
extreme distribution, but with different parameters. Then the stress-strength probability (or reliability)
is defined as R = P(X < Y), where X is the strength and Y is the stress. The probability of
stress-strength relationships for extreme value distributions such as the Fréchet and Weibull (which
are the possible limiting distributions of partial minima) distributions has been extensively explored in
the literature. Nadarajah [6] examined the class of extreme value distributions and derived their
corresponding reliability forms, expressed in terms of special functions. Krishnamoorthy and Lin [7]
presented confidence limits for reliability (R) incorporating Weibull models. Kundu and Raqab [8]
introduced a modified maximum likelihood estimator for R and established the asymptotic
distribution of these estimators, which was then used to construct confidence intervals for R. Nojosa
and Rathie [9] extended previous findings on R for the Weibull distribution by expressing it in terms
of H-functions [10]. Bayesian estimation of R for both the Fréchet and Weibull distributions was
carried out by [11, 12].

The stress-strength theory is naturally extended to a multicomponent system that consists of k
strength components with common stress, and the system functions when at least s (1 ≤ s ≤ k)
components simultaneously survive. Estimation of reliability in a multicomponent stress-strength
model was done by several authors (e.g., [13, 14]).

In real-world data modeling, a fundamental step after selecting an appropriate model family is
estimating the parameters involved. Several estimation methods for stress-strength probability and
multicomponent stress-strength have been proposed in the literature. When paired datasets are
available, nonparametric or copula search methods can be employed (cf. [15]). If X and Y are
independent, a common approach is to model each variable separately. In this case, maximum
likelihood procedures or Bayesian methods can be used to estimate the parameters of the distributions
(cf. [16]). Then, estimates of R = P(X < Y) are obtained using the marginal fits of X and Y applied to
possible analytical expressions of R.

In this paper, we consider the problem of deriving new analytical expressions to the stress–strength
reliability R = P(X < Y) when X and Y are independent Fréchet, Weibull, or reversed Weibull random
variables. Our main contributions are:

• to derive R analytically in terms of the extreme value H-function recently introduced in [17],
which also allowed for fewer parameter restrictions comparing to previous results in the literature;
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• to validate the maximum likelihood estimation procedure for R via a simulation study and
• to apply the theoretical results in real dataset modeling.

Our Theorems 3.1–3.3 show that for Fréchet, reversed Weibull, and Weibull distributions,
respectively, the stress-strength probability R is written in terms of the H-function (recently
introduced in [17]) with the advantage that we do not use transformations in the dataset and its
expression requires fewer parameter restrictions as possible. Also, some additional parameter
restrictions lead us to expressions in terms of the H-function or even closed-form expressions can be
obtained in terms of elementary functions. These new results generalize the previous work of [6] for
Fréchet and Weibull distributions by removing parameters’ restrictions. Parametric estimation of
R—based on estimating location, scale, and shape parameters of extreme distributions—and
nonparametric estimation—based only on empirical information—are also addressed (cf.
Algorithms 1 and 2).

Applications of our theoretical results are presented (cf. Section 5). First, we analyze the statistical
behavior of financial assets’ returns, showing how P(X < Y) can be used to build an interesting
approach to perform asset selection as previously illustrated by Rathie and Ozelim [18]. Estimates are
obtained by both maximum likelihood and nonparametric procedures, while confidence intervals for
each estimator are obtained by the Bootstrap method. Second, minimum monthly flows of water are
analyzed. Finally, we obtain stress-strength measures to compare failure voltage levels of two types of
electrical cable insulation.

The paper is organized as follows: In Section 2, we define the H-function, H-function and the
extreme distributions (Fréchet, reversed Weibull and Weibull). Section 3 deals with the derivation of
R when X and Y are independent extreme RVs. The maximum likelihood estimation and a
nonparametric estimation procedure for R are addressed in Section 4. Section 5 presents Monte-Carlo
simulations for the estimation of R and also deals with three real situations. The last section presents
concluding remarks.

2. Preliminaries

In this section, we present definitions and results on which our contributions are based.

2.1. Special functions

Let us consider the extreme-value H-function, recently defined in [17]. This function, hereby
denoted as H, can be defined as

H(a1, a2, a3, a4, a5, a6) :=
∫ ∞

0
ya6 exp{−a1y − (a2ya3 + a4)a5}dy, (2.1)

where ℜ(a1),ℜ(a2),ℜ(a4) ∈ R+, a3, a5 ∈ C, not both ℜ(a1) and ℜ(a2) can be equal to zero at the
same time,ℜ(a6) > −1 when a1 , 0 or a1 = 0 and sign(a3) = sign(a5),ℜ(a6) < −1 when a1 = 0 and
sign(a3) , sign(a5). In this paper, R, C, and ℜ denote the real numbers, complex numbers, and the
real part of a complex number, respectively.

Note that Eq (2.5) generalizes some important cases of the H-function (cf. [10]) defined by

Hm,n
p,q

[
z
∣∣∣∣ (a1, A1), · · · , (ap, Ap)

(b1, B1), · · · , (bq, Bq)

]
=

1
2πi

∫
L

∏m
k=1 Γ(b j + B js)

∏n
j=1 Γ(1 − a j − A js)∏q

k=m+1 Γ(1 − b j − B js)
∏p

j=n+1 Γ(a j + A js)
z−sds, (2.2)
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where 0 ≤ m ≤ q, 0 ≤ n ≤ p (not both m and n simultaneously zero), A j > 0 ( j = 1, · · · , p), Bk > 0
(k = 1, · · · , q), and a j and bk are complex numbers such that no poles of Γ(bk + Bks) (k = 1, · · · ,m)
coincide with poles of Γ(1 − a j − A js) ( j = 1, · · · , n). L is a suitable contour w − i∞ to w + i∞, w ∈ R,
separating the poles of the two types mentioned above. For more details, see [10].

An important special case of Eq (2.5) is obtained by taking a4 = 0, which represents an upper (or
lower) bound for its value depending on the sign of a5. This case is, therefore, an extreme value of the
function and can be written in terms of the H-function as [17]

H(a1, a2, a3, 0, a5, a6) =
∫ ∞

0
ya6 exp{−a1y − aa5

2 ya3a5}dy

=
1

a(1+a6)/a3
2 a3a5

H1,1
1,1

[
a1a−1/a3

2

∣∣∣∣ (1 − (1+a6)
a3a5
, 1

a3a5
)

(0, 1)

]
=

1

aa6+1
1

H1,1
1,1

[(
a2

aa3
1

)a5 ∣∣∣∣ (−a6, a3a5)
(0, 1)

]
, (2.3)

when sign(a3) = sign(a5) and

H(a1, a2, a3, 0, a5, a6) =
1

a(1+a6)/a3
2 |a3a5|

H2,0
0,2

[
a1a−1/a3

2

∣∣∣∣ −

(0, 1), ( (1+a6)
a3a5
, 1
|a3a5 |

)

]
=

1

aa6+1
1

H2,0
0,2

[(
a2

aa3
1

)a5 ∣∣∣∣ −

(0, 1), (1 + a6, |a3a5|)

]
, (2.4)

otherwise.
In this work, we are interested in the case a6 = 0. Thus, we omit such a parameter from the

representation and denote only

H(a1, a2, a3, a4, a5) :=
∫ ∞

0
exp{−a1y − (a2ya3 + a4)a5}dy, (2.5)

where a1, a2 ∈ R+, a3, a4, a5 ∈ R. Another interested special case of the extreme value H-function,
taking a1 = 1 and a4 = 0, we have that H(1, a2, a3, 0, a5) can be rewritten as

H(1, a2, a3, 0, a5) =
∫ ∞

0
exp{−y − aa5

2 ya3a5}dy =
1

a1/a3
2 a3a5

H1,1
1,1

[
a−1/a3

2

∣∣∣∣ (1 − 1
a3a5
, 1

a3a5
)

(0, 1)

]
, (2.6)

and when a3a5 = 1, Eq (2.6) reduces to explicit form

H(1, a2, a3, 0, 1/a3) =
1

1 + aa5
2

.

In the following sections, we generalize the results of [6] proving that all stress-strength
probabilities involving Fréchet, reversed Weibull, and Weibull distributions can be written as
H−functions, with as few parameter restrictions as possible.
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2.2. Three-parameter distributions

Next, we describe the cumulative distribution function (CDF) and the probability density function
(PDF) of Fréchet, reversed Weibull and Weibull models. The parameters µ, σ, and α denote the
location, scale, and shape of the CDFs.

We say that a random variable X has three-parameter Fréchet distribution, and denote by X ∼
Fréchet(µ, σ, α) with µ ∈ R, σ, α ∈ R+, if X has CDF and PDF, respectively, given by

F(x; µ, σ, α) =

 0, x < µ,

exp
{
−

(
x−µ
σ

)−α}
, x ≥ µ,

and

f (x; µ, σ, α) =
α

σ

( x − µ
σ

)−α−1
F(x; µ, σ, α)1(µ,∞), (2.7)

where 1A denotes the indicator function on the set A. Figure 1 shows the behavior of Fréchet PDFs
when parameters vary.

Figure 1. Fréchet distribution PDFs with shape α, location µ, and scale σ parameters.

We say that a random variable X has three-parameter reversed Weibull distribution, and denote by
X ∼ RWeibull(µ, σ, α) with µ ∈ R, σ, α ∈ R+, if X has CDF and PDF, respectively, given by

F(x; µ, σ, α) =

 exp
{
−

(
µ−x
σ

)α}
, x < µ,

1, x ≥ µ,

and

f (x; µ, σ, α) =
α

σ

(
µ − x
σ

)α−1
F(x; µ, σ, α)1(−∞,µ)(x). (2.8)

Figure 2 shows the behavior of reversed Weibull PDFs when parameters vary.
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Figure 2. Reversed Weibull PDFs distribution with shape α, location µ, and scale σ
parameters.

Figure 3. Weibull distribution PDFs with shape α, location µ, and scale σ parameters.

Finally, we say that a random variable X has three-parameter Weibull distribution, and denote by
X ∼Weibull(µ, σ, α) with µ ∈ R, σ, α ∈ R+, if X has CDF and PDF, respectively, given by

F(x; µ, σ, α) =

 0, x < µ,
1 − exp

{
−

(
x−µ
σ

)α}
, x ≥ µ,

and

f (x; µ, σ, α) =
α

σ

( x − µ
σ

)α−1
F(x; µ, σ, α)1(µ,∞)(x).

Figure 3 presents Weibull PDFs generated using different parameter sets. When compared to
Figure 2, PDFs with the same α and σ but opposite µ are symmetric with respect to the ordinate axis.
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3. Stress-strength probability

Table 1 presents references that worked with the Fréchet and Weibull models to calculate and
estimate R, as well as the respective parameter restrictions adopted. The results that we present in the
following subsections are obtained without such restrictions, allowing greater freedom in application
to real dataset modeling, as presented in Section 5.

Table 1. Extreme distributions and previous studies of stress-strength probability.

Distribution Reference Parameter restriction
Fréchet [6] µ1 = µ2 and (γ1 = γ2 or γ2 = 2γ1

or γ2/γ1 = p/q)*
[11] µ1 = µ2 = 0 and γ1 = γ2

[12] µ1 = µ2 = 0
[19] µ1 = µ2 = 0

Weibull [6] µ1 = µ2 and (γ1 = γ2 or γ2 = 2γ1

or γ2/γ1 = p/q)*
[7] µ1 = µ2 = 0 and γ1 = γ2 = γ

[8] µ1 = µ2 = µ and γ1 = γ2 = γ

[9] µ1 = µ2 = 0
*Here p and q are coprime integers.

3.1. Fréchet distribution

Theorem 3.1. Let X ∼ Fréchet(µ2, σ2, α2) and Y ∼ Fréchet(µ1, σ1, α1) be independent random
variables, with µ j ∈ R, σ j, α j ∈ R+, j = 1, 2. Then,

R = P(X < Y) =

 H
(
1, σ1
σ2
,− 1
α1
, µ1−µ2
σ2
,−α2

)
, if µ1 ≥ µ2,

1 − H
(
1, σ2
σ1
,− 1
α2
, µ2−µ1
σ1
,−α1

)
, if µ1 < µ2.

(3.1)

In particular, if µ1 = µ2, then

R =
(
σ1

σ2

)α1 α1

α2
H1,1

1,1

[(
σ1

σ2

)α1
∣∣∣∣∣∣ (1 − α1/α2, α1/α2)

(0, 1)

]
. (3.2)

When α = α1 = α2, R can be written explicitly by

R =
σα1

σα1 + σ
α
2
. (3.3)

Proof. Denote M = max{µ1, µ2}. Then,

R = P(X < Y) =
∫ ∞

−∞

F(x; µ2, σ2, α2) f (x; µ1, σ1, α1)dx

=

∫ ∞

M
exp

{
−

(
x − µ2

σ2

)−α2

−

(
x − µ1

σ1

)−α1
}
α1

σ1

(
x − µ1

σ1

)−α1−1

dx. (3.4)
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Substituting y =
(

x−µ1
σ1

)−α1
and taking M = µ1, we can rewrite Eq (3.4) as

R =

∫ ∞

0
exp

{
−y −

(
σ1

σ2
y−1/α1 +

µ1 − µ2

σ2

)−α2
}

dy. (3.5)

Hence, for the case µ1 ≥ µ2, Eq (3.1) follows from Eqs (2.5) and (3.5). For the case µ1 < µ2, it
suffices to notice that P(X < Y) = 1 − P(Y < X) and interchange subindices of Eq (3.5). In addition,
applying Eq (2.6) with µ1 = µ2, we obtain Eq (3.2). In the case where α = α1 = α2, we have the
explicit form Eq (3.3).

3.2. Reversed Weibull distribution

Theorem 3.2. Let X ∼ RWeibull(µ2, σ2, α2) and Y ∼ RWeibull(µ1, σ1, α1) be independent random
variables, with µ j ∈ R, σ j, α j ∈ R+, j = 1, 2. Then,

R = P(X < Y) =

 H
(
1, σ1
σ2
, 1
α1
, µ2−µ1
σ2
, α2

)
, if µ1 ≤ µ2,

1 − H
(
1, σ2
σ1
, 1
α2
, µ1−µ2
σ1
, α1

)
, if µ1 > µ2.

(3.6)

In particular, if µ1 = µ2, then

R =
(
σ2

σ1

)α1 α1

α2
H1,1

1,1

[(
σ2

σ1

)α1
∣∣∣∣∣∣ (1 − α1/α2, α1/α2)

(0, 1)

]
. (3.7)

When α = α1 = α2, R can be written explicitly by

R =
∫ ∞

0
exp

{
−

[
1 +

(
σ1

σ2

)α]
y
}

dy =
σα2

σα1 + σ
α
2
. (3.8)

Proof. Denote m = min{µ1, µ2}. Then,

R = P(X < Y) =
∫ ∞

−∞

F(x; µ2, σ2, α2) f (x; µ1, σ1, α1)dx

=

∫ m

−∞

exp
{
−

(
µ2 − x
σ2

)α2

−

(
µ1 − x
σ1

)α1
}
α1

σ1

(
µ1 − x
σ1

)α1−1

dx. (3.9)

Substituting y =
(
µ1−x
σ1

)α1
and taking m = µ1, we can rewrite Eq (3.4) as

R =

∫ ∞

0
exp

{
−y −

(
σ1

σ2
y1/α1 +

µ2 − µ1

σ2

)α2
}

dy. (3.10)

Hence, the first equation in (3.6) follows from Eqs (2.5) and (3.10). For the second case, it suffices
to notice that P(X < Y) = 1− P(Y < X) and interchange subindices of Eq (3.10). In addition, applying
Eq (2.6) with µ1 = µ2, we obtain Eq (3.7). In the case where α = α1 = α2, we have the explicit form
Eq (3.8).
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3.3. Weibull distribution

Theorem 3.3. Let X ∼ Weibull(µ2, σ2, α2) and Y ∼ Weibull(µ1, σ1, α1) be independent random
variables, with µ j ∈ R, σ j, α j ∈ R+, j = 1, 2. Then,

R = P(X < Y) =

 1 − H
(
1, σ1
σ2
, 1
α1
, µ1−µ2
σ2
, α2

)
, if µ1 ≥ µ2,

H
(
1, σ2
σ1
, 1
α2
, µ2−µ1
σ1
, α1

)
, if µ1 < µ2.

(3.11)

In particular, if µ1 = µ2, then

R = 1 −
(
σ2

σ1

)α1 α1

α2
H1,1

1,1

[(
σ2

σ1

)α1
∣∣∣∣∣∣ (1 − α1/α2, α1/α2)

(0, 1)

]
. (3.12)

When α = α1 = α2, R can be written explicitly by

R =
σα1

σα1 + σ
α
2
. (3.13)

Proof. Denote M = max{µ1, µ2}. Then,

R = P(X < Y) =
∫ ∞

−∞

F(x; µ2, σ2, α2) f (x; µ1, σ1, α1)dx

=

∫ ∞

M

[
1 − exp

{
−

(
x − µ2

σ2

)α2
}]

exp
{
−

(
x − µ1

σ1

)α1
}
α1

σ1

(
x − µ1

σ1

)α1−1

dx. (3.14)

Substituting y =
(

x−µ1
σ1

)α1
and taking M = µ1, we can rewrite Eq (3.14) as

R = 1 −
∫ ∞

0
exp

{
−y −

(
σ1

σ2
y1/α1 +

µ1 − µ2

σ2

)α2
}

dy. (3.15)

Hence, the first equation in (3.11) follows from Eqs (2.5) and (3.15). Second equation in (3.11)
follows by noticing that P(X < Y) = 1 − P(Y < X) and interchanging subindices of Eq (3.15). In
addition, applying Eq (2.6) with µ1 = µ2, we obtain Eq (3.12). In the case where α = α1 = α2, we have
the explicit form Eq (3.13).

We finish this section by noting that Theorems 3.1 and 3.2 can be generalized to random samples
of a given CDF G(·) that is in the domain of attraction of Fréchet or reversed Weibull distributions
(see [3] for a complete characterization of the domains of attraction of these CDFs). We describe
below these generalizations.

Let Y be an RV with PDF fY(·;α1, β1, γ1) given in Eq (2.7) or (2.8). Let X1, · · · , Xn be a random
sample from some CDF G(·), independent of Y , and assume that there exist sequences of real numbers
{an} and {bn} with an > 0, bn ∈ R such that Eq (1.1) holds for FY(·; µ2, σ2, α2). That means,

lim
n→∞

P
(

Mn − bn

an
≤ x

)
= lim

n→∞
Gn(anx + bn) = FY(x; µ2, σ2, α2), (3.16)

Networks and Heterogeneous Media Volume 19, Issue 4, 1424–1447.
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for all x continuity points of FY , where Mn = max{X1, · · · , Xn}. Set M̃n =
Mn−bn

an
. Then,

Eq (3.16) implies

lim
n→∞

P(M̃n < Y) = lim
n→∞

∫ ∞

−∞

GM̃n
(x) fY(x)dx

=

∫ ∞

−∞

lim
n→∞

Gn (anx + bn) fY(x;α1, β1, γ1)dx (3.17)

=

∫ ∞

−∞

FY(x;α2, β2, γ2) fY(x;α1, β1, γ1)dx.

Using the corresponding Theorem 3.1 or 3.2, Eq (3.18) can be obtained in terms of the H-function.

Remark 3.4. Especially concerning the Fréchet distribution, one can arrive at the same conclusion as
in Eq (3.18) without relying on the assumption of iid RVs X1, · · · , Xn. Refer to Theorem 3.1 in [20] for
a broader application of Eq (3.16).

4. Estimation

This section deals with parameter estimation for R = P(X < Y) given two independent random
variables X and Y following the distribution Fréchet, Weibull, or reversed Weibull. The literature
presents maximum likelihood estimators (MLEs) for R considering explicit forms of R obtained after
severe parameter restrictions on extreme value distributions (such as [8, 11, 12]). Those approaches
require the estimation of the parameters to be done jointly in the two samples. In our case, such
restrictions are not required since we worked with expressions of R in terms of extreme value H-
functions.

Consider a random sample X = (X1, · · · , Xn) from a Fréchet distribution with parameter
θ = (µ, σ, α). The likelihood function is given by the following:

L(θ)F =
αn

σn exp

− n∑
j=1

(
X j − µ

σ

)−α n∏
j=1

(
X j − µ

σ

)−α−1

1(µ,∞)(X j),

where 1A denotes the indicator function on the set A.
Analogously, the likelihood function of the Weibull and reversed Weibull distributions are given,

respectively, by

L(θ)W =
αn

σn

n∏
j=1

(
X j − µ

σ

)α−1 [
1 − exp

{
−

(
X j − µ

σ

)α}]
1(µ,∞)(X j),

and

L(θ)RW =
αn

σn exp

− n∑
j=1

(
µ − X j

σ

)α n∏
j=1

(
µ − X j

σ

)α−1

1(−∞,µ)(X j).

Note that the location parameter µ in the support of the distributions makes the three likelihood
functions non-regular.

Let X ∼ Fréchet(µx, σx, αx) and Y ∼ Fréchet(µy, σy, αy) be independent random variables.
Theorem 3.1 indicates that R = R(θx, θy), where we denote θx = (µx, σx, αx) and θy = (µy, σy, αy).

Networks and Heterogeneous Media Volume 19, Issue 4, 1424–1447.



1434

Thus, let X = (X1, · · · , Xn) be a random sample of X and consider an independent random sample
Y = (Y1, · · · ,Ym) of Y . Let θ̂x = (µ̂x, σ̂x, α̂x) and θ̂y = (µ̂y, σ̂y, α̂y) be the estimates of θxand θy. Then,
we consider the natural estimator of R simply as R̂ = R(θ̂x, θ̂y). Similarly, we estimate R in the
distributions reversed Weibull (Theorem 3.2) and Weibull (Theorem 3.3).

In this work, we concentrate on estimating θx and θy through maximum likelihood. Thus, we denote
the estimator of R by

R̂MLE := R
(
θ̂

MLE
x , θ̂

MLE
y

)
. (4.1)

In future work, we aim to employ alternative parameter estimation techniques, including Bayesian
acceptance and rejection methods (e.g., [16]).

In the next sections, we will compare the results of R̂MLE with an empirical (nonparametric)
estimator denoted as R̂E, which is defined as:

R̂E =
1
n

n∑
j=1

1{X j≤Y j}.

To illustrate the suitability of the analytical closed-form expressions hereby derived, a simulation
study and real-world applications are carried out in the next section.

5. Applications

We present Monte-Carlo simulations for the distribution families under study in Section 5.1 as well
as the modeling of three real datasets involving financial records, minimum river flows, and insulation
failure voltages in Section 5.2.

5.1. Simulation study

Departing from Theorems 3.1–3.3, we assessed the consistency of results using Monte-Carlo
simulations to get an estimate R̂MC. The expressions for R in Eqs (3.5), (3.10), and (3.15) were
evaluated numerically.

For each distribution family F(x; µ, σ, α), we took a pair of RVs X1 and X2 to compare R to R̂MC. A
Monte-Carlo simulation consists of 1000 draws, from which we evaluate R̂MC and its confidence
interval at the 95% significance level. In each Monte-Carlo draw, we take 10,000 samples from each
distribution F(x1; µ1, σ1, α1) and F(x2; µ2, σ2, α2) and evaluate R = P(X2 < X1) by
nonparametric approaches.

The results for the family of Fréchet distributions are shown on Table 2. The bias and the RMSE
(root mean squared error) between R̂MC and R are also presented and indicate an accurate estimation
procedure with bias values below 4 × 10−4 in absolute value.

Tables 3 and 4 present results for the families of reversed Weibull and Weibull distributions
respectively. The bias values remained below 4 × 10−4 in absolute value for the same Monte-Carlo
simulation parameters, which indicates good accuracy on the estimation procedure. It should be noted
that Theorems 3.2 and 3.3 require minor restrictions regarding the order of µ1 and µ2, which can be
achieved by means of simple RV swapping. Due these restrictions for each family, the simulations
yielded R ≥ 0.5 for reversed Weibull distributions meanwhile R ≤ 0.5 for Weibull distributions.
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Despite results from Table 2 showing R > 0.4, R can assume any value in the interval [0, 1] for
Fréchet distributions.

Table 2. Simulation results for Fréchet distributions. R = P(X2 < X1) is numerically
evaluated from Eq (3.5) and the Monte-Carlo simulations yield R̂MC at the 95% significance
level. CI low and CI high are the lower and upper confidence-interval endpoints.

α2 µ2 σ2 α1 µ1 σ1 R R̂MC CI low CI high Bias RMSE
1.0 0.0 0.5 4.0 0.0 0.5 0.41733 0.41749 0.40730 0.42710 0.00016 0.00496
1.0 0.0 0.5 2.0 0.0 0.5 0.45436 0.45445 0.44460 0.46430 0.00009 0.00501
1.0 2.0 2.0 2.0 4.0 0.5 0.48361 0.48366 0.47400 0.49280 0.00004 0.00490
1.0 0.0 2.0 1.0 2.0 0.5 0.52951 0.52943 0.51910 0.53891 -0.00008 0.00510
1.0 0.0 2.0 1.0 2.0 1.0 0.60084 0.60076 0.59170 0.60930 -0.00009 0.00469
3.0 0.0 2.0 3.0 2.0 0.5 0.64057 0.64046 0.63100 0.64970 -0.00012 0.00483
3.0 0.0 2.0 1.0 2.0 0.5 0.70043 0.70027 0.69120 0.70880 -0.00016 0.00438
4.0 0.0 2.0 1.0 2.0 0.5 0.75162 0.75125 0.74240 0.75930 -0.00037 0.00438
1.0 0.0 0.5 1.0 0.0 2.0 0.80000 0.80002 0.79230 0.80810 0.00002 0.00397
4.0 0.0 2.0 1.0 2.0 1.0 0.85213 0.85233 0.84510 0.85880 0.00020 0.00345
3.0 0.0 2.0 3.0 2.0 2.0 0.90012 0.90001 0.89420 0.90580 -0.00011 0.00299
3.0 2.0 2.0 3.0 4.0 2.0 0.90012 0.89995 0.89410 0.90550 -0.00017 0.00289
1.0 0.0 0.5 2.0 4.0 0.5 0.90038 0.90043 0.89470 0.90650 0.00005 0.00299
3.0 0.0 1.0 1.0 2.0 0.5 0.95306 0.95307 0.94900 0.95690 0.00001 0.00208
4.0 0.0 1.0 1.0 2.0 0.5 0.98068 0.98069 0.97790 0.98340 0.00001 0.00138
4.0 0.0 0.5 4.0 4.0 2.0 0.99996 0.99996 0.99980 1.00000 -0.00000 0.00006

Table 3. Simulation results for reversed Weibull distributions. R = P(X2 < X1) is numerically
evaluated from Eq (3.10) and the Monte-Carlo simulations yield R̂MC at the 95% significance
level. CI low and CI high are the lower and upper confidence-interval endpoints.

α2 µ2 σ2 α1 µ1 σ1 R R̂MC CI low CI high Bias RMSE
1.0 -0.1 1.0 1.0 -4.0 1.0 0.01012 0.01015 0.00820 0.01220 0.00003 0.00101
2.0 -2.0 2.0 1.0 -4.0 2.0 0.10484 0.10451 0.09870 0.11040 -0.00033 0.00300
1.0 -0.1 0.5 1.0 -0.1 2.0 0.20000 0.20003 0.19230 0.20840 0.00003 0.00395
1.0 -0.1 2.0 4.0 -2.0 0.5 0.30895 0.30915 0.30020 0.31870 0.00020 0.00470
2.0 -4.0 1.0 1.0 -4.0 2.0 0.34135 0.34113 0.33210 0.35110 -0.00022 0.00475
1.0 -0.1 0.5 4.0 -0.1 0.5 0.41733 0.41749 0.40690 0.42741 0.00016 0.00507
1.0 -0.1 0.5 2.0 -0.1 0.5 0.45436 0.45437 0.44500 0.46350 0.00002 0.00482
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Table 4. Simulation results for Weibull distributions. R = P(X2 < X1) is numerically
evaluated from Eq (3.15) and the Monte-Carlo simulations yield R̂MC at the 95% significance
level. CI low and CI high are the lower and upper confidence-interval endpoints.

α2 µ2 σ2 α1 µ1 σ1 R R̂MC CI low CI high Bias RMSE
3.0 0.0 0.5 4.0 0.0 0.5 0.51937 0.51943 0.50970 0.52910 0.00006 0.00492
2.0 4.0 2.0 4.0 4.0 2.0 0.54564 0.54558 0.53560 0.55560 -0.00006 0.00518
1.0 0.0 0.5 3.0 0.0 0.5 0.56889 0.56888 0.55860 0.57831 -0.00001 0.00497
1.0 4.0 2.0 4.0 4.0 2.0 0.58267 0.58280 0.57290 0.59210 0.00013 0.00486
4.0 0.0 0.5 1.0 0.0 1.0 0.64077 0.64079 0.63160 0.64990 0.00002 0.00475
1.0 0.0 2.0 2.0 2.0 0.5 0.70329 0.70326 0.69440 0.71190 -0.00003 0.00438
1.0 0.0 2.0 1.0 2.0 1.0 0.75475 0.75477 0.74600 0.76300 0.00002 0.00437
1.0 0.0 0.5 1.0 0.0 2.0 0.80000 0.80002 0.79210 0.80810 0.00002 0.00406
2.0 0.0 2.0 2.0 2.0 1.0 0.85588 0.85607 0.84910 0.86330 0.00019 0.00364
4.0 0.0 2.0 1.0 2.0 1.0 0.90336 0.90346 0.89750 0.90910 0.00011 0.00299
4.0 2.0 2.0 2.0 4.0 1.0 0.94826 0.94826 0.94410 0.95270 0.00000 0.00224
2.0 4.0 0.5 3.0 4.0 2.0 0.97993 0.97995 0.97720 0.98270 0.00002 0.00137

5.2. Real datasets

Real datasets are modeled according Theorems 3.1–3.3 and discussed in Sections 5.2.4 and 5.2.5.
Besides providing R by applying Eqs (3.5), (3.10) and (3.15) directly on estimated parameters
distribution, we used the Bootstrap method [21] to evaluate confidence intervals of R according to two
different approaches: a parametric estimation R̂P and an empirical estimation R̂E. R̂P is a parametric
estimation in a sense that we first fit distribution from data to later apply the results from
Eqs (3.5), (3.10), and (3.15). The empirical approach R̂E relies on the relative counts of samples such
that X < Y .

5.2.1. Bootstrap Parametric estimation

Algorithm 1 provides an estimation R̂P of R and its confidence intervals.

Algorithm 1 Bootstrap Parametric Estimation of R = P(X < Y).
Input: Let X and Y be samples of sizes nx and ny of distribution functions belonging to the same
family (Fréchet, Weibull, or reversed Weibull) and a positive integer M.
Output: Estimate R̂P.

1: Generate independent bootstrap samples X and Y.
2: Compute the distribution parameters estimation based on X and Y.
3: Obtain R̂ from Eqs (3.5), (3.10) or (3.15), according to the family under analysis.
4: Repeat steps 1 to 3 M times.
5: The approximate 100(1 − α)% confidence interval of R̂P is given by [R̂(α/2), R̂(1 − α/2)], where

R̂P(α) ≈ Ĝ−1(α) and Ĝ is the CDF of R̂.
6: Return R̂P.

Networks and Heterogeneous Media Volume 19, Issue 4, 1424–1447.



1437

5.2.2. Bootstrap Empirical estimation

The empirical (nonparametric) estimation R̂E of R and its confidence intervals are computed
according to Algorithm 2.

Algorithm 2 Bootstrap Nonparametric Estimation of R = P(X < Y).
Input: Let X and Y be samples of sizes nx and ny of distribution functions belonging to the same
family and a positive integer M.
Output: Estimates R̂E.

1: Generate independent bootstrap samples X and Y.
2: Compute the R̂ based on the relative counts of samples such that X < Y.
3: Repeat steps 1 to 2 M times.
4: The approximate 100(1 − α)% confidence interval of R̂E is given by [R̂(α/2), R̂(1 − α/2)], where

R̂E(α) ≈ Ĝ−1(α) and Ĝ is the CDF of R̂.
5: Return R̂E.

In the Sections 5.2.4 and 5.2.5, R̂E and R̂P were computed using M = 10, 000 Bootstrap draws in
Algorithms 2 and 1, respectively.

5.2.3. Asset selection

The proposed framework can be used to orient financial asset selection when managing a portfolio.
So, instead of relying on the conventional approach of solely comparing expected values of X and Y ,
which is based on modern portfolio theory, we investigate the application of the reliability measure
P(X < Y) as an alternative parameter for assessing returns.

The real dataset under analysis is composed by RVs X1, X2, X3, and X4, which are the stock price
log-returns from tickers* BBAS3.SA (Banco do Brasil S.A.), ITUB4.SA (Itaú Unibanco Holding S.A.),
VALE3.SA (Vale S.A.) and VIIA3.SA (Via Varejo S.A.), respectively. The daily closing prices between
2022-01-01 and 2023-04-30 were retrieved from Yahoo! Finance, providing samples of length n = 331.
From now on, we will omit the .SA suffixes present on the four tickers under analysis. To model
stock prices log-returns and compare them in a reliability sense, we assume that the log-returns are
independent [22].

In order to start the investigation, a first step is to test for the best distribution fit between Fréchet,
Weibull, and reversed Weibull distributions. Summary statistics for the datasets X1, X2, X3, and X4 are
presented in Table 5 and Figure 4 to show the boxplots from the RVs, revealing certain symmetry of
log-returns around zero and greater variability for X4.

Table 5. Summary statistics for the stock price log-returns X1, X2, X3, and X4.

RV Data set Min. 1st Qu. Median Mean 3rd Qu. Max. n
X1 BBAS3 -0.1057 -0.0097 0.0019 0.0012 0.0135 0.0736 331
X2 ITUB4 -0.0492 -0.0105 0.0004 0.0006 0.0109 0.0794 331
X3 VALE3 -0.0689 -0.0139 0.0000 -0.0002 0.0128 0.0989 331
X4 VIIA3 -0.1075 -0.0344 -0.0055 -0.0030 0.0228 0.1504 331

*Traded on BOVESPA, São Paulo Stock Exchange.
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Figure 4. Boxplots for stock price log-returns for tickers BBAS3, ITUB4, VALE3, and
VIIA3. VIIA3 (X4) presented the greater variability (volatility) in the period.

Table 6. Estimated parameters and information criteria for model selection. † VIIA3 highest
volatility is supported by the greatest shape parameter.

Dataset PDF α̂ µ̂ σ̂ AIC BIC EDC
X1 Fréchet 4014503 -104714 104714 -1481.61 -1470.2 -1492.9

Weibull 2.4356 -0.1076 0.1175 -1321.1 -1309.7 -1332.4
Rev. Weibull 3.9482 0.0799 0.0862 -1607.6 -1596.1 -1618.8

X2 Fréchet 6847951 -101913 101913 -1702.2 -1690.8 -1713.5
Weibull 2.4356 -0.1076 0.1175 -1345.0 -1333.6 -1356.3
Rev. Weibull 6.4765 0.1004 0.1068 -1741.5 -1730.1 -1752.7

X3 Fréchet 2974 -66.5539 66.5422 -1513.6 -1502.2 -1524.8
Weibull 2.4356 -0.1076 0.1175 -1317.9 -1306.5 -1329.2
Rev. Weibull 6.1330 0.1266 0.1361 -1547.8 -1536.4 -1559.0

X4 Frechet 285677733 -12074285 120742845 -1119.7 -1108.3 -1131.0
Weibull 2.4356 -0.1076 0.1175 -1115.6 -1104.2 -1126.9
Rev. Weibull 8.5189† 0.3155 0.3371 -1133.7 -1122.3 -1145.0

Theorems 3.1–3.3 constrain the reliability measure P(X < Y) to a scenario when the RVs belong to
the same distribution family. Thus, besides some evidence of independence between RVs, the same
PDF should model the RVs under comparison. One way to choose the most suitable family of
distributions for modeling each dataset is by comparing their information criteria such as the akaike
information criterion (AIC), bayesian information criterion (BIC), and efficient determination
criterion (EDC). For each of RVs X1 to X4, Table 6 shows the estimated parameters and information
criteria for the PDFs Fréchet, Weibull, and reversed Weibull.
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Figure 5. Plots for BBAS3 (left) and ITUB4 (right). On top, histogram and fitted PDFs; on
bottom, Empirical CDF (ECDF) and fitted CDFs.

Figure 6. Plots for VALE3 (left) and VIIA3 (right). On top, histogram and fitted PDFs; on
bottom, Empirical CDF (ECDF) and fitted CDFs.
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Reversed Weibull emerged as the best candidate distribution to model all the RVs X1 to X4, as
supported by the information criteria AIC, BIC, and EDC and the histograms and CDFs shown in
Figures 5 and 6. This choice was also supported by the Kolmogorov-Smirnov tests, whose p-values
were 0.564, 0.662, 0.596, and 0.410, for X1 to X4, respectively, indicating that we could not reject the
null hypothesis that the RVs follow a reversed Weibull distribution. The Weibull distribution provided
the worst fit both in terms of information criteria as well as in terms of the severe impairment observed
on Figures 5 and 6.

The estimation of probabilities of the type R = P(X < Y) according Theorems 3.1–3.3 requires X
and Y to be independent RVs. In this sense, we analyzed the dependency structures of X1, · · · , X4 using
the Pearson, Kendal, and Spearman correlation matrices. Table 7 suggests that the suitable pairs to be
compared are X3–X1, X3–X2, and X3–X4.

Table 7. Pearson, Spearman, and Kendall correlation matrices.

Pearson Spearman Kendall

X1 X2 X3 X4 X1 X2 X3 X4 X1 X2 X3 X4

X1 1.00 0.61 0.10 0.29 1.00 0.63 0.15 0.31 1.00 0.45 0.10 0.21
X2 1.00 0.15 0.31 1.00 0.22 0.34 1.00 0.16 0.24
X3 1.00 0.03 1.00 0.06 1.00 0.04
X4 1.00 1.00 1.00

Reliability measures of the type R = P(X < Y) can orient the decision process of an investor. In
summary, when X and Y represent return RVs and R < 1/2, it is advisable that the investor chooses the
variable X. If R > 1/2, the opposite occurs. The case R = 1/2 is inconclusive. Thus, knowing how to
evaluate R accurately is important to support the decision process. In this sense, Table 8 presents the
estimates of P(X3 < X1), P(X3 < X2) and P(X3 < X4) and the 95% Bootstrap confidence intervals (CI).
The estimates R̂MLE (4.1), R̂P (Algorithm 1) and R̂E (Algorithm 2) are compared.

Table 8. Stress-strength probability estimates and Bootstrap CIs at 95% significance level
(95% CI). R̂MLE is given by applying Theorem 3.2 on the parameters of Table 6.

Measure R̂MLE R̂P 95% CI R̂E 95% CI
P(X3 < X1) 0.5282 0.5287 (0.4862, 0.5819) 0.5317 (0.4773, 0.5861)
P(X3 < X2) 0.5174 0.5144 (0.4661, 0.5728) 0.5147 (0.4592, 0.5680)
P(X3 < X4) 0.4508 0.4679 (0.4077, 0.6260) 0.4542 (0.4018, 0.5076)

Using Theorem 3.2 on the parameters of Table 6, we get estimates of R that indicate that within
the analyzed time period, BBAS3 and ITUB4 would be preferred over VALE3, while VALE3 would
be preferred over VIIA3. Both the parametric R̂P and nonparametric R̂E estimates yielded consistent
values belonging to overlapping CIs at 95% significance level.

An impairment is observed on the assessment of R for X3–X4, whose nonparametric R̂E estimate
performed better than R̂P in a sense of shorter CIs and smaller bias. Figure 4 has already shown that
VIIA3 (X4) has the greater volatility on the time period, which reveals a heavy tailed RV as supported
by the highest shape parameter on Table 6. The R̂P estimation procedure seems to be more sensitive to
the Bootstrap sampling strategy when dealing with a heavy tailed RV: heavy tailed RVs carry
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information on their tails [23] and removing some extreme samples resulted in distribution parameters
estimations far from the parameters obtained from the complete dataset for RV X4. On the other hand,
the Bootstrap CI estimates indicate that only the case P(X3 < X4) has less uncertainty because the CI
for R̂E includes 0.5 on its upper bound.

5.2.4. Minimum monthly flows of water

Ramos et al. [24] presented five real datasets related to minimum monthly flows of water (m3/s) on
the Piracicaba River, located in São Paulo state, Brazil. The datasets were provided by the Department
of Water Resources and Power of the agency responsible for managing the water resources of the state
of São Paulo from 1960 to 2014. Their study concluded that Fréchet distribution fitted the data better
than the Weibull, Gamma, Lognormal, Gumbel, and Generalized Exponential distributions.

We model R = P(X < Y) using the Theorem 3.1, taking the flows from May (X) and September (Y).
Data from May (X) and September (Y) minimum monthly flows of water are presented below:

X = (29.19, 18.47, 12.86, 151.11, 19.46, 19.46, 84.30, 19.30, 18.47, 34.12,
374.54, 19.72, 25.58, 45.74, 68.53, 36.04, 15.92, 21.89, 40.00, 44.10,
33.35, 35.49, 56.25, 24.29, 23.56, 50.85, 24.53, 13.74, 27.99, 59.27,
13.31, 41.63, 10.00, 33.62, 32.90, 27.55, 16.76, 47.00)

and
Y = (29.19, 8.49, 7.37, 82.93, 44.18, 13.82, 22.28, 28.06, 6.84, 12.14,

153.78, 17.04, 13.47, 15.43, 30.36, 6.91, 22.12, 35.45, 44.66, 95.81,
6.18, 10.00, 58.39, 24.05, 17.03, 38.65, 47.17, 27.99, 11.84, 9.60,
6.72, 13.74, 14.60, 9.65, 10.39, 60.14, 15.51, 14.69, 16.44).

Table 9. Descriptive statistics for X and Y (Fréchet RVs).

Dataset Min. 1st Qu. Median Mean 3rd Qu. Max. n
X 10.0 19.46 28.59 44.96 44.51 374.54 40
Y 6.18 11.115 16.44 28.28 32.91 153.78 39

Descriptive statistics for X and Y are presented in Table 9. The boxplot shown in Figure 7 shows
that X looks slightly greater than Y , and its maximum is more than 2 times the greatest observed sample
for Y . Computing the value of the statistic R is important to probabilistically measure such a difference
observed in the datasets.

Table 10. Estimated parameters and KS (Kolmogorov–Smirnov) p-values for Fréchet
models.

RV α̂ µ̂ σ̂ p-value
X 1.8330 0.3873 23.0361 0.9806
Y 1.3427 1.9640 11.3537 0.9933
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Figure 7. Boxplots of X (May) and Y (September).

Figure 8 shows the fit of distributions to datasets meanwhile the estimated parameters are
presented in Table 10. The findings of [24] demonstrate the suitability of zero-mean Fréchet
distributions† in modeling the minimum monthly flow of water. By modeling datasets using
3-parameter Fréchet distributions, we extend previous results [6, 11, 12, 19] on stress-strength
reliability analysis. Results from the KS test indicate that 3-parameter Fréchet distribution provides
an adequate model for the datasets: the distance between the fitted and the empirical distribution
functions for X and Y were 0.0917 and 0.0833 with the corresponding p-values 0.9806 and
0.9933, respectively.

Figure 8. Empirical and fitted Fréchet distribution functions for (top) X and (bottom) Y RVs.

Using Theorem 3.1 on the parameters of Table 10, we obtain R̂MLE = 0.2993 from the fitted
distributions and R̂P = 0.2996, whose CI is (0.1928, 0.4258) at 95% significance level. That indicates
a low probability that the minimum monthly flows of September will be superior to May minimum
monthly flows. By its turn, R̂E = 0.3166 in the CI (0.175, 0.45) at 95% significance level. The results
from the empirical evaluation R̂E were consistent with the results from the parametric evaluation R̂P,
however the CI was larger for the empirical approach. The greater uncertainty is justified by the small

†2-parameter Fréchet distributions.
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number of samples available on the dataset when compared to the amount of samples suitable to
provide accurate relative frequencies computation.

5.2.5. Failure voltage levels of two types of electrical cable insulation

As an application involving Weibull distributions, we take a dataset of voltage levels (stress) at
which dielectric ruptures were observed. The rupture is a failure on the insulation of electrical cables
and can be provoked by subjecting cables specimens to increasing voltage levels. In a laboratory test
reported by [25], two types of cable insulation (TypeS I and II) were tested. From each type, twenty
specimens were selected and the failure voltages (in kilovolts per millimeter) were recorded as follows:

Type I Insulation =(32.0, 35.4, 36.2, 39.8, 41.2, 43.3, 45.5, 46.0, 46.2, 46.4,
46.5, 46.8, 47.3, 47.3, 47.6, 49.2, 50.4, 50.9, 52.4, 56.3)

and
Type II Insulation =(39.4, 45.3, 49.2, 49.4, 51.3, 52.0, 53.2, 53.2, 54.9, 55.5,

57.1, 57.2, 57.5, 59.2, 61.0, 62.4, 63.8, 64.3, 67.3, 67.7).

Descriptive statistics for X (Type I Insulation) and Y (Type II Insulation) are presented in Table 9.
The boxplot shown in Figure 9 shows that Y looks greater than X. Computing the value of the statistic
R is important to probabilistically measure such a difference observed in the datasets.

Table 11. Descriptive statistics for X and Y (Weibull RVs).

Dataset Min. 1st Qu. Median Mean 3rd Qu. Max. n
X 32.00 42.78 46.45 45.33 48.00 56.30 20
Y 39.40 51.83 56.30 56.04 61.35 67.70 20

Figure 9. Boxplots of X (Type I insulation) and Y (Type II insulation).

Figure 10 shows the fit of distributions to datasets meanwhile the estimated parameters are show
in Table 12. Engineering experience suggests that failure voltages for the two types of cable could be
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suitably represented by Weibull distributions [25]. By modeling datasets using 3-parameter Weibull
distributions, we extend previous results [6–9] on stress-strength reliability analysis. Results from the
KS test indicate that 3-parameter Weibull distribution provides a reasonable model for the datasets:
the distance between the fitted and the empirical distribution functions for X and Y were 0.1833 and
0.3000 with the corresponding p-values 0.6670 and 0.1214, respectively.

Table 12. Estimated parameters and KS p-values for Weibull models.

RV α̂ µ̂ σ̂ p-value
X 8.1339 6.1324 41.6041 0.6670
Y 5.4781 22.5811 36.2828 0.1214

Figure 10. Empirical and fitted Weibull distribution functions for (top) X and (bottom) Y
RVs.

Using Theorem 3.3 on the parameters of Table 12, we obtain R̂MLE = 0.8808 from the fitted
distributions and R̂P = 0.8811, whose CI is (0.7393, 0.9734) at 95% significance level. That indicates
that the Type II insulation specimens are more robust to dielectric ruptures when stressed under
increasing voltage levels. By its turn, R̂E = 0.8807 in a CI of (0.7000, 1.000) at 95% significance
level. The results from the empirical evaluation R̂E of R were consistent to results from the parametric
evaluation R̂P, however the former CI was larger. As elucidated on Section 5.2.4, the greater
uncertainty is justified by the small number of samples available on the dataset. Besides uncertainty
involved in the modeling and up to our best knowledge, results are in accordance with the most recent
work [9] regarding the dataset.

6. Conclusions

In this paper, we studied the stress-strength reliability R for 3 families of EVT-distributions: Fréchet,
reversed Weibull, and Weibull. To the best of our knowledge, novel exact expressions for R have been
obtained in terms of the extreme-valueH−function with the least parameter restrictions to date. Monte-
Carlo simulations and applications in real datasets were carried out to show the performance of the
proposed estimators R̂MC (cf. Tables 2–4), R̂MLE, R̂P and the nonparametric R̂E estimator. The modeling
on real datasets was extensive in a sense that all distribution families were evaluated in Sections 5.2.3
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1445

and 5.2.4, and demonstrated coherency between parametric and nonparametric (empirical) estimators.
Furthermore, we expanded upon earlier analyses involving comparable study cases, demonstrating that
the novel expressions offer more versatile modeling alternatives. In summary, compared to previous
studies, the findings of this paper enable a more accurate representation of the statistical behavior of
real-world datasets.

The framework we explored in this work can be generalized to derive closed-form expressions for
multicomponent system reliability with components following Fréchet, Weibull, or reversed Weibull
distributions. Another possibility for future studies is the modeling of other datasets. For example,
these distributions can successfully model data involving wind speeds.
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