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Abstract:
Mechanical metamaterials are most often assemblies of stocky beam elements connected through rigid
connections, hinges, or flexural joints. The description of these materials through classical beam
theories is challenging because of the wide variety of complex phenomena observed in the severe
deformation regime mechanical metamaterials must undergo and because most classical beam theories
can only be applied to elements with sufficiently high slenderness. In the spirit of Hencky, Turco et al.
(2020) has recently formulated an intrinsically discrete nonlinear elastic model suitable for the design
of mechanical metamaterials. The objective of this contribution was to present a numerical study of
the nonlinear generalization of the Timoshenko beam that results from the asymptotic homogenization
of the discrete model introduced by Turco et al. The present numerical study took into account
several loading cases and elucidated the sensitivity of the homogenized continuum with respect to
axial, bending, and shear stiffness parameters, as well as to load imperfections, in terms of mechanical
behavior, including buckling onset and post-critical behavior. It was found that the predictions obtained
with the homogenized model in the large deformation regime matched excellently with those of the
discrete model proposed by Turco et al.
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1. Introduction

Because of the increasing demands in engineering applications [20, 47], the need for advanced
engineering materials is increasing, too. Mechanical metamaterials are becoming relevant in this
regard in that they can achieve high strength-to-density ratio, vibration control, and energy
absorption [42] properties. Mechanical metamaterials owe their performances to their relevant
micro-structure–at a given sub-length-scale–rather than to the inherent characteristics of the
manufacturing materials [45]. Mechanical metamaterials are currently being studied for potential
application to civil engineering, aeronautical engineering, mechanical engineering–especially soft
robotics–and biomedical engineering [24, 37, 50]. Mechanical metamaterials have been proved as
viable for protecting infrastructures against strong explosions and impacts and, more generally,
damage [19, 21, 52], thanks to their excellent energy-absorption capabilities [7, 26]. Still concerning
civil engineering, they have also been explored to mitigate the consequences of ordinary impacts that
may occur in accidents, e.g., in highways [50]. Thanks to their high strength-to-density ratios, they
could also be used as resistant and lightweight materials enabling the redesign of some traditional
civil infrastructure systems [6]. Metamaterials can be designed so as to be capable of controlling
passive vibrations, which confers to them the potential to improve the seismic resilience of
buildings [51] and bridges [40]. While not strictly mechanical, metamaterials with enhanced
hygro-thermo-mechanical properties may also be employed for building’s façade design, to achieve
low energy consumption and improve indoor comfort [29].

Beam theory is of great importance for the development of efficient mathematical models to be used
for obtaining design predictions, whose empirical test would be not viable economically or technically.
In most cases, when dealing with mechanical metamaterials, one deals with large deformations and
displacements, for which nonlinear models must be employed [33]. The small-scale slender structural
elements that make up lattice mechanical metamaterials, simply called sometimes microbeams, are
also susceptible to large deformations [32, 35, 36, 48, 49]. Therefore, the use of nonlinear models for
describing these elements is necessary for the prediction of the macroscopic mechanical phenomena
involving metamaterials [1, 16, 30, 31, 41]. Moreover, when the slenderness is insufficiently high, it is
necessary to consider shear deformation effects, which are neglected in the classical Euler-Bernoulli
theory [11, 27]. The Timoshenko model can consider these effects, although it is originally a model
for small deformations [2, 28]. In that sense, classical beam theories of continuum media cannot be
applied for the description of metamaterial microstructures, so it is necessary to enrich such theories
[8, 9, 12, 17, 22, 38]. Timoshenko’s theory, however, has stood out for its multiple applications in
various engineering fields where a more accurate analysis of beam deformations is required. Therefore,
many discretizations have been formulated to be able to apply it in multiple contexts, being a valuable
inspiration for the creation of generalized models [43]. In the work by Giorgio et al. [23], a 2D
continuous model was compared with a 3D microstructured model, considering in both the geometry
of pantograph networks. The simulations evidenced not only that the 2D model is computationally
less expensive, but also that satisfactory and similar results were produced between both models. This
was achieved despite visually ignoring the details of each beam element. Despite this, working with
mesoscale discrete models, element by element, can easily become complex, especially for periodically
repeated structural elements such as metamaterials. For that reason, it may be more convenient to work
with homogenized continuum models of discrete models, known as multi-scale modeling [3].
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Multiscale modeling, however, is a great challenge due to multiple reasons. First of all, complex
interactions at small scales produce exotic behavior at the macroscopic scale of the metamaterial that
does not necessarily follow the physical principles that are fulfilled at the small scale. However, it
is this exotic behavior that most often is the target of metamaterial design, so accurate modeling of
this coupling between scales is necessary. As a consequence, this coupling is very difficult to model
accurately using general continuum models that consider the system as a whole, i.e., direct continuum
formulations [10]. Discrete models, along with computational methods, can help in understanding this
coupling, at the usual cost of demanding computational needs. Asymptotic homogenization techniques
can exploit the understanding brought by discrete models to get continuum models that properly take
into account the coupling between scales [34] in metamaterials and, hence, to get an understanding of
the metamaterial at the macroscopic level [46]. Asymptotic homogenization techniques are, however,
mostly heuristic and, even when rigorous convergence results are available, there is no guarantee that
the obtained homogenized continuum model adequately captures the desired behaviors of the original
discrete model, since asymptotic homogenization intrinsically implies an information loss [5]. Indeed,
continuum models offer a simplified version of the discrete model by averaging the microscopic scale
behaviors.

The nonlinear discrete elastic model formulated by Turco et al. [43] is introduced as a
generalization of the Timoshenko model. This model is indeed able to consider not only bending
deformation effects, but also axial and shear deformation effects, which could not necessarily be
neglected in mechanical metamaterials. It is discrete in nature and can analyze large deformations in
beams, hence proving suitable for the design of mechanical metamaterials. For example, Eremeyev
and Turco [18] employed it in the numerical modeling of pantograph-shaped metamaterial beams.
Furthermore, Barchiesi et al. [4] studied a duoskelion (Greek word meaning ‘two legs’) beam making
use of this discrete model. Although it was possible to satisfactorily predict in several benchmarks or
more application-oriented cases the equilibrium shapes of beams at large deformations with the
discrete model introduced in [43], its continuum counterpart, obtained by heuristic asymptotic
homogenization, must still be validated against the discrete model. This may allow for the
identification of possible issues and the assessment of the reliability of the model for design. Thus,
the question arises: How are large deformations in beams manifested using the continuum
homogenized nonlinear Timoshenko model for mechanical metamaterials? Aimed at addressing this
question, the present numerical study, performed using the commercial finite element software
COMSOL Multiphysics, takes into account several loading cases and elucidates the sensitivity of the
homogenized continuum with respect to axial, bending, and shear stiffness parameters, as well as to
load imperfections, in terms of mechanical behavior, including buckling onset and post-critical
behavior. The main novelty of this paper lies in the numerical computation of the continuum
homogenized model derived as the asymptotic limit, when the cell size tends to zero, of a nonlinear
generalization of the Timoshenko beam proposed by Turco et al in [43], with the objective of
validating its predictions with respect to those of the discrete model. The plan of the work is the
following. In Section 2, we recall the employed discrete model and its homogenization. In Section 3,
we report the results of some tests, taken from [43], performed by means of the homogenized model:
cantilever beam subjected to varying transverse end-load, cantilever beam subjected to varying axial
end-load with varying imperfection, clamped-hinged semicircular arch subjected to varying
concentrated pressure force at its midpoint, hinged-hinged semicircular arch subjected to concentrated
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pressure force at its midpoint, and cantilever beam subjected to varying axial-transverse end-load
leading to a curled configuration. Section 4 reports the conclusions of the present study and future
outlooks.

2. Modeling

This section focuses on describing the mathematical formulation and homogenization of the model
proposed by Turco et al. [43]. As mentioned in the introduction, it corresponds to a generalization of
the Timoshenko-Ehrenfest beam; see the work by Elishakoff [13].
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Figure 1. Reference configuration (light gray) and current configuration (dark gray) of a
discrete Hencky-type Timoshenko beam. Axial deformation ∆wa, j+1 and shear deformation
∆wc, j+1 are highlighted in blue.

2.1. Discrete model

For the discrete model, an approach in the spirit of Hencky [25] is considered. Indeed, having
in mind the augmented kinematic of the Timoshenko beam, a discrete beam is introduced made up
of several straight elements that may not nencessarily form a rectilinear line. These elements are
connected at nodes, as shown in Figure 1. Each node has a position P j and p j, where j = 1, 2, ...,N,
in the reference and current configuration, respectively. In the reference configuration, each straight
element is associated with a unit vector D1, j =

P j+1−P j

∥P j+1−P j∥
. A triad of unit vectors orthogonal to each other,

namely, {D1, j,D2, j,D3, j}, is also considered, with D3, j = D1, j × D2, j. This orthogonal triad transforms
in the current configuration into {d1, j = Q jD1, j,d2, j = Q jD2, j,d3, j = Q jD3, j}, where Q j is a rotation
tensor. Referring to Figure 1, we define the deformation measure ∆w j+1 through the following vector
subtraction:

∆w j+1 = (p j+1 − p j) − ∥P j+1 − P j∥Q jD1, j . (2.1)

Axial deformation ∆wa, j+1 and shear deformation ∆wc, j+1 measures are defined for each straight
element as, respectively:

∆wa, j+1 = (p j+1 − p j)
(
1 −
∥P j+1 − P j∥

∥p j+1 − p j∥

)
(2.2)

and
∆wc, j+1 = ∆w j+1 − ∆wa, j+1, (2.3)
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where this last definition makes use of the deformation ∆w j+1. We now seek to define the tensor ∆Q j+1,
which represents a measure of bending deformation of the discrete beam. It is defined as the relative
rotation between the two straight elements concurring at node j + 1. Restricting ourselves to in-plane
motions, denoting with ϕ j the rotation angle (positive when rotation occurs in the counterclockwise
direction) associated to the tensor Q j, we are led to the following elementary matrix-form expression
for the tensor Q j in the othornormal basis (e1, e2) in Figure 1:

Q j =


cos ϕ j − sin ϕ j 0
sin ϕ j cos ϕ j 0

0 0 1

 (2.4)

Having now expressed the tensor Q j in terms of the rotation angle ϕ j, we define the bending measure
∆Q j+1 of the beam as the difference between the relative rotations of the current configuration and the
reference configuration, such that:

∆Q j+1 =


cos(ϕ j+1 − ϕ j) − sin(ϕ j+1 − ϕ j) 0
sin(ϕ j+1 − ϕ j) cos(ϕ j+1 − ϕ j) 0

0 0 1

 −

cos(0) − sin(0) 0
sin(0) cos(0) 0

0 0 1

 (2.5)

that in direct form reads as:
∆Q j+1 = QT

j Q j+1 − I (2.6)

After having introduced the kinematic quantities of the discrete model describing the current
configuration of the system, we can introduce the deformation energy of the discrete beam, which is
defined as the sum over the whole system of the following elementary contributions, namely, the
axial/extensional contribution:

Ea =
1
2

a∥∆wa, j+1∥
2 , (2.7)

the bending contribution:

Eb =
1
2

b∥∆Q j+1∥
2 , (2.8)

and the shear contribution:
Ec =

1
2

c∥∆wc, j+1∥
2 . (2.9)

The first and the third are associated to a single straight element, while the second to two adjacent
straight elements. The quantities ∆wa, j+1 and ∆wc, j+1 are vectorial strain measures, therefore, the
energies are defined making use of their Euclidean norm. The quantity ∆Q j+1 is a tensorial strain
measure, its norm appears in the bending contribution, and its square is computed as the sum of the
squares of each component:

∥∆Q j+1∥
2 = [cos(ϕ j+1 − ϕ j) − 1]2 + [sin(ϕ j+1 − ϕ j)]2

+ sin2(ϕ j+1 − ϕ j) + [cos(ϕ j+1 − ϕ j) − 1]2 ,
(2.10)

which can be expressed in direct form as:

∥∆Q j+1∥
2 = tr(∆QT

j+1∆Q j+1) . (2.11)
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2.2. Homogenization toward the continuum model

We now focus on the derivation of the continuum model describing the discrete one illustrated in
the previous subsection. To this end, we first declare the independent Lagrangian parameters for the
continuum model and their relationship with those of the discrete model. Thereafter, we will take the
number of straight elements to infinity, keeping fixed the total length of the considered system. Hence,
the length ||P j+1 − P j|| = ℓ of the straight elements will be let to zero.

Let us now define the arclength abscissa s ∈ [0, L] on the curve χ0 : [0, L] → E2 with length L
that gathers all the points P j in the continuum model. The independent Lagrangian parameters of the
continuum model are declared to be the functions:

χ : [0, L]→ E2, ϕ : [0, L]→ [0, 2π) (2.12)

The function χ positions the one-dimensional continuum beam in the two-dimensional space E2,
and hence describes–from a microscopic standpoint–the motion of the points P j. On the other hand,
the function ϕ gives the rotation angle of the beam cross-section, and, hence–from a microscopic
standpoint–describes the rotation of all unit vectors D1, j. Mathematically, the following relationships
between the continuum independent Lagrangian parameters and the discrete ones are considered as:

χ(s j) = p j, ϕ(s j) = ϕ j (2.13)

It is worth mentioning that, henceforth, anytime differentiation will be performed, indicated by a prime,
it will be done with respect to s. For convenience, the expression Q jD1, j = d1, j will be denoted as e(ϕ j).
The Lagrangian parameters χ and ϕ are expressed through Taylor expansions performed with respect
to s truncated at the first order as:

χ(s j+1) = χ(s j) + ℓχ′(s j) + o(ℓ) → χ(s j+1) − χ(s j) = ℓχ′(s j) + o(ℓ) (2.14)

ϕ(s j+1) = ϕ(s j) + ℓϕ′(s j) + o(ℓ) → ϕ(s j+1) − ϕ(s j) = ℓϕ′(s j) + o(ℓ) (2.15)

Using elementary trigonometric identities, the quantity ∥∆Q j+1∥
2 = tr(∆QT

j+1∆Q j+1) can be written as:

tr(∆QT
j+1∆Q j+1) = 4[1 − cos(ϕ j+1 − ϕ j)] . (2.16)

Using the Taylor expansion in Eq (2.15), the quantity cos(ϕ(s j+1) − ϕ(s j)) can be approximated at the
second order as:

cos(ϕ(s j+1) − ϕ(s j)) = 1 −
ℓ2ϕ′2(s j)

2
+ o(ℓ3) (2.17)

that can be replaced along with Eq (2.14) in the Eqs (2.7)–(2.9). With an abuse of notation, denoting
with ϕ j the angle formed by d1, j with a fixed line, any line parallel to e1, as an instance, we obtain
the deformation energy of the discrete system in terms of the Lagrangian parameters of the continuum
computed at s j:

E =
∑

j

{Ea + Eb + Ec} =
∑

j

ℓ2a
2

∥∥∥∥∥∥χ′(s j) −
χ′(s j)
∥χ′(s j)∥

+ o(ℓ)

∥∥∥∥∥∥2

+ℓ2b[(ϕ′(s j) − κ0(s j))2 + o(ℓ)] +
ℓ2c
2

∥∥∥∥∥∥d1(ϕ j) −
χ′(s j)
∥χ′(s j)∥

+ o(ℓ)

∥∥∥∥∥∥2
 ,

(2.18)
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where κ0 is the initial curvature of the beam, namely that of the curve that is parametrized over the
arclength abscissa s, which can be obtained as κ0 = χ′′0 · χ

′
0. We now specify the scaling law for micro-

scale stiffnesses, by defining the macro-scale stiffnesses a, b and c which relate with the axial, bending
and shear stiffness, respectively, of the discrete model as follows:

a =
a
ℓ
, b =

b
ℓ
, c =

c
ℓ
. (2.19)

The scaling law above, where the macro-scale stiffnesses a, b, and c are independent of the cell size
ℓ, means that the micro-scale stiffnesses scale with ℓ in the same way, thus yielding in the limit of ℓ
approaching zero a system where none of the stiffnesses is negligible with respect to the others. To get
the continuum model, the limit ℓ → 0 is considered, neglecting the higher order infinitesimals o(ℓ).
Indeed, this is the error generated in the homogenization process when passing from the discrete model
to the continuum. In conclusion, the deformation energy of the homogenized continuum model reads
as:

Ẽ =
∫ L

0

(
a
2

∥∥∥∥∥χ′ − χ′∥χ′∥
∥∥∥∥∥2

+ b(ϕ′ − κ0)2 +
c
2

∥∥∥∥∥d1(ϕ) −
χ′

∥χ′∥

∥∥∥∥∥2)
ds . (2.20)

It is noted that, the homogenized deformation energy above characterizes the continuum as one of
micropolar type [14, 15, 44] and that, when ∇u ≈ 0 and ϕ ≈ 0, it coincides with that of a classical
Timoshenko beam. The deformation above energy is needed to compute equilibrium configurations
predicted by the model. The weak form equation that is discretized and then solved numerically within
the framework of a Galerkin approach is obtained by equating to zero the first variation of the potential
energy, which is defined as the difference between the deformation energy and the work done by
external generalized forces. In formulas, we have that the potential energy reads as

U = Ẽ −Wext (2.21)

and, assuming that only external boundary forces and couples can be possibly acting onto the system,
it can be re-written as

U = Ẽ (u(·), ϕ(·)) −
∑

s∈{0,L}

Fs · u(s) −
∑

s∈{0,L}

Msϕ(s) , (2.22)

where Fs and Ms, with s ∈ {0, L}, are boundary forces and couples (Ms is positive when it induces a
counterclockwise rotation), respectively, and u(·) is the displacement function defined as

u(s) = χ(s) − se1, (2.23)

where e1 is the first unit vector of the orthonormal basis (e1, e2) in Figure 1. Replacing the displacement
in the potential energy formula, taking into account the expression of the deformation energy, we get

U =

∫ L

0


a
2


1 + u′1 −

1 + u′1√
(1 + u′1)2 + u′22


2

+

u′2 − u′2√
(1 + u′1)2 + u′22


2+ (2.24)

b
[
ϕ′ −

(
χ′′0

)
1
(
χ′0

)
1 −

(
χ′′0

)
2
(
χ′0

)
2

]2
+ (2.25)
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c
2


cos ϕ −

1 + u′1√
(1 + u′1)2 + u′22


2

+

sin ϕ −
u′2√

(1 + u′1)2 + u′22


2
 ds − (2.26)

∑
s∈{0,L}

Fs · u(s) −
∑

s∈{0,L}

Msϕ(s) . (2.27)

where (·)1 and (·)2 denote the first and second components of the argument in the parentheses in the
basis (e1, e2), respectively, and u1 and u2 are the first and second components of the displacement vector
u in the basis (e1, e2), respectively. After simplification, the expression above reads as

U =

∫ L

0


a
2


1 + u′1 −

1 + u′1√
(1 + u′1)2 + u′22


2

+

u′2 − u′2√
(1 + u′1)2 + u′22


2 + (2.28)

b
[
ϕ′ −

(
χ′′0

)
1
(
χ′0

)
1 −

(
χ′′0

)
2
(
χ′0

)
2

]2
+ (2.29)

c

1 − cos ϕ
1 + u′1√

(1 + u′1)2 + (u′2)2
+ sin ϕ

u′2√
(1 + u′1)2 + (u′2)2


 ds − (2.30)∑

s∈{0,L}

Fs · u(s) −
∑

s∈{0,L}

Msϕ(s) . (2.31)

The Galerkin method is used to approximate the fields u1, u2 and ϕ appearing in the weak form.
Specifically, each field has been approximated by considering its projection over the finite dimensional
space of Lagrangian quadratic polynominal built over the spatial mesh. A simple equispaced mesh
has been considered and the weak form has been inserted in the COMSOL software using the Weak
Form PDE interface. As mentioned above, the weak form equation governing the system is obtained
by equating to zero the first variation δU of the potential energy, namely

0 = δU =
∫ L

0

∂Ũ
∂u′
· δu′ +

∂Ũ
∂ϕ′
δϕ′ +

∂Ũ
∂ϕ
δϕ

 ds −
∑

s∈{0,L}

Fs · δu(s) −
∑

s∈{0,L}

Msδϕ (2.32)

where Ũ is the integrand of the deformation energy and the two components of ∂Ũ
∂u′ are given according

to the formula

∂Ũ
∂u′1

= a
[(

1 + u′1 −
1 + u′1
∥χ′∥

) (
1 −

u′22
∥χ′∥3

)
+

u′2(1 + u′1)
∥χ′∥3

(
u′2 −

u′2
∥χ′∥

)]
(2.33)

−
c
∥χ′∥3

[
u′22

(
cos ϕ −

1 + u′1
∥χ′∥

)
+ u′2(1 + u′1)

(
sin ϕ −

u′2
∥χ′∥

)]
(2.34)

and the formula

∂Ũ
∂u′2

= a
[(

1 + u′1 −
1 + u′1
∥χ′∥

) (
−

(1 + u′1)u′2
∥χ′∥3

)
+

(
u′2 −

u′2
∥χ′∥

) (
1 −

(1 + u′1)2

∥χ′∥3

)]
(2.35)
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−c
[
(1 + u′1)u′2
∥χ′∥3

(
cos ϕ −

1 + u′1
∥χ′∥

)
+

(1 + u′1)2

∥χ′∥3

(
sin ϕ −

u′2
∥χ′∥

)]
, (2.36)

while the quantities ∂Ũ
∂ϕ

and ∂Ũ
∂ϕ′

are given by the simple expressions ∂Ũ
∂ϕ
= c

(
χ′·e⊥(ϕ)
∥χ′∥

)
, where the simbol

⊥ means that the vector e(ϕ) has been rotated by an angle of π/2 in the anticlockwise direction, and
∂Ũ
∂ϕ′
= 2b

[
ϕ′ −

(
χ′′0

)
1

(
χ′0

)
1
−

(
χ′′0

)
2

(
χ′0

)
2

]
, respectively. Making use of a standard variational deduction

procedure, in the Appendix A we provide the governing continuum equations for the studied beam as
well as possible consistent boundary conditions.

3. Numerical results

The main results obtained from the computational study of the beam model introduced in the
previous section are reported in this section. The governing Euler-Lagrange equations have been
numerically solved in weak form by means of the commercial finite element software COMSOL
Multiphysics. Both straight and curved beams have been considered. The main acting force will be
denoted with the symbol F, while the (relatively small) load imperfections will be denoted with the
symbol ε. It is worth mentioning that, except for the last case that was carried out in two steps, the
figures showing the evolution of the deformed shape with the loading step will make use of the blue
color to indicate the unloaded/stress-free configuration, of the orange color to indicate the final
deformed configuration, and of intermediate colors for correspondingly intermediate configurations.
The bending stiffness b is assumed to take the value 0.021 N throughout the whole paper.

3.1. Buckling of a cantilever beam

The problem of analyzing the pre- and post-critical buckling of a cantilever beam in large
displacements and deformations has been addressed. The problem, including the analyzed loading
conditions, is illustrated graphically in Figure 2. The beam has a length L equal to 1 m and a dead
increasing axial load F is applied at its free end. In addition, a small non-monotonously variable dead
transverse load p(F) is applied, which, as the loading step increases, reaches a maximum value equal
to εF f , where F f is the maximum applied axial force, which is reached at the final loading step.
Figure 3 reports graphically the behavior of the imperfection load. The ratios among the stiffnesses of
the beam have been chosen so as to fulfill aL2/b = 10000 and cL2/b = 10000, which implies a
predominance of the bending behavior. It is to be noted that the previous ratios do have a physical
dimension. Indeed, while they were considered in the paper by Turco et al. [43]–and this is why we
are considering them here–to have nondimensional comparable quantities, due to the scaling laws and
the appearance of the integration operator, they are no more nondimensional.

p(F)
F

L

Figure 2. Cantilever beam subjected to an axial F and transverse force p(F) at its free end.
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εFf

Ff/2 Ff
F

p(F)

(I) (II)

0

p(F ) =

{
2εF , if F ≤ Ff/2 (I)

2ε (Ff − F ) , if F > Ff/2 (II)

Figure 3. Plot of the imperfection force p(F) against the axial force F. The axial force is
increased linearly as the loading step increases.

Simulation results for this test are reported in Figure 4 and Figure 5. Figure 4 reports the evolution
of the deformed shape of the beam as the loading step increases, with the parameter ε equal to 5×10−4,
while Figure 5 reports the force-displacement diagram for several values of the parameter ε. More
specifically, up to scaling, it reports the force F against the transverse displacement u2 of the free end
of the cantilever beam. It is seen that, as the imperfection load decreases, it affects in an increasingly
less significant way the force-displacement diagram, while still keeping its beneficial effect in terms
of observing the occurrence of buckling and, hence, compute the post-buckling behavior. Due to
the higher axial stiffness coefficient–compared to the bending stiffness coefficient–the beam initially
resists by mainly deforming only axially, until the imperfection, due to, e.g., load eccentricity, makes
the transverse displacement sufficiently relevant for the axial load to further increase dramatically the
non-axial deformation. The higher the ratio a/b and the parameter ε, the sooner the buckling-like
behavior onset is observed. Proper buckling behavior is observed when ε becomes extremely small
and it can be seen that the quantity FL2/b in Figure 5, at buckling onset, which occurs in the small
deformation linear regime, converges to the value π2/2, which can be analytically related with the Euler
elastic buckling load.
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Figure 1: My Plot generated using GNU OctaveFigure 4. Evolution of the current shape of the cantilever beam considered in the first test
case.
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Figure 5. Force-displacement diagram for the cantilever beam considered in the first test
case subjected to an imperfect axial force at its free end for different values of the parameter
ε. The utilized displacement is the transverse one at the free end of the beam.

3.2. Cantilever beam subjected to a transverse force at its free end

The objective of considering this case is to have a comparison with one of the cases reported in Turco
et al. [43] in discrete form, where a cantilever beam subjected to a transverse end load is considered as
shown in Figure 6. The beam has a length L equal to 1 m and a dead increasing transverse load F is
applied at its free end. Several stiffness ratios were considered in the analysis to assess the sensitivity
of the beam model behavior upon the constitutive parameters: at first, the ratios aL2/b = 100 and
cL2/b = 10000 were considered, then aL2/b = 10000 and cL2/b = 10000, and, finally, aL2/b = 10000
and cL2/b = 10.

F

L

Figure 6. Cantilever beam subjected to a transverse force p(F) at its free end.
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Figure 7. Evolution of the current shape of the cantilever beam considered in the second test
case. (a) aL2/b = 100 and cL2/b = 10000. (b) aL2/b = 10000 and cL2/b = 10000. (c)
aL2/b = 10000 and cL2/b = 10.
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Figure 8. Force-displacement diagrams for the cantilever beam considered in the second
test case. The utilized displacement is the transverse one at the free end of the beam. (a)
aL2/b = 100 and cL2/b = 10000. (b) aL2/b = 10000 and cL2/b = 10000. (c) aL2/b = 10000
and cL2/b = 10.

Simulation results for this test are reported in Figures 7 and 8. Figure 7 reports the evolution of the
deformed shape of the beam as the loading step increases for the considered stiffness ratios, while
Figure 8 reports the force-displacement diagram for the considered stiffness ratios. More specifically,
up to scaling, it reports the force F against the transverse displacement u2 of the free end of the
cantilever beam. For the first scenario in Figure 7a, due to the high value of the axial and shear
stiffnesses with respect to the bending stiffness, the beam tends to deform mostly by bending, initially.
Subsequently and after having reached a certain deflection, the beam is positioned almost vertically
and deforms axially until the end, which is why we observe a progressive stiffening (see Figure 8a).
Figure 7b reports the same behavior, except for stiffening that is more pronounced due to the
significantly higher value considered for the axial stifness with respect to the bending one. In the third
scenario in Figure 7c, although again a similar behavior occurs, the curvature of the beam is mostly
concentrated at its clamped end towards the final part of the test, the great majority of the beam being
straight and, hence, not subjected to bending. When comparing the results of the first scenario with
those obtained by Turco et al. [43]–second and third scenario were not analyzed therein–similar
behaviors can be observed.

3.3. Buckling of semicircular arches subjected to a vertical force at their midpoint

The cases analyzed in this sub-section concern semicircular arches in large deformation regime
and seek to compare some simulations reported by Turco et al. [43] with the model in its discrete
form. The studied problems, including the analyzed loading conditions, are illustrated graphically in
Figure 9. The beam has a length L equal to π m and a dead increasing vertical load F is applied at its
midpoint. In addition, for the third analyzed problem Figure 9c, a small constant dead horizontal load ε
is applied, where ε is equal to 0.01F f , being F f the final vertical force applied in the third scenario. The
considered semicircular arches all have the same radius r = 1 m and, therefore, a uniform curvature
κ0 = 1/r. The three studied scenarios consider stiffness ratios such as aL2/b = 1000 and cL2/b = 1000,
hence being bending predominant.
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Figure 9. Semicircular arches subjected to a vertical force F at their midpoint. (a) Clamp-
horizontal roller kinematic boundary conditions. (b) Hinge-hinge boundary conditions. (c)
Hinge-hinge boundary conditions with an imperfect horizontal load.
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Figure 10. Evolution of the current shape of the semicircular arches considered in the third
test case with aL2/b = 1000 and cL2/b = 1000. (a) One fixed end and another free horizontal
end. (b) Hinged. (c) Hinged and with an imperfect horizontal load.
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Figure 11. Force-displacement diagram for the arches considered in the third test case. The
utilized displacement is the vertical one of the midpoint of the semicircular arches. The
considered stiffness ratios are aL2/b = 1000 and cL2/b = 1000. (a) One fixed end and
another free horizontal end. (b) Hinged. (c) Hinged and with an imperfect horizontal load.
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The simulation results are shown in Figures 10 and 11. For the first scenario in Figure 10a, it is
observed that, when the right end of the arc reaches a certain horizontal displacement, said end tarts
moving in the opposite direction. This is because the arch tends to maintain its total length due to its
relatively high axial stiffness with respect to the bending stiffness. Different deformation modes can
be found for the same arch, altering the boundary conditions and adding small forces as imperfections.
The results are very similar to those reported in Turco et al. [43].

3.4. Curled equilibrium configuration of a cantilever beam subjected to a transverse force

The simulation reported in this sub-section deals with the large deformation of a cantilever beam
subjected to two sets of external forces that are applied in a sequence. The objective of this two-part
loading procedure is to prove that there exist two different solution for the cantilever beam problem
with an applied transverse end load. Such a loading procedure indeed allows for computing a curled
solution when a purely transverse, i.e., vertical, force is applied. Clearly, when a purely transverse
force is applied at the free end of a cantilever beam, one also has the more classical solution showing
only deflection, see Figure 7a. The simulation presented in this sub-section aims at comparing with
the results obtained by Turco et al. (2020) using the discrete form of the model, as well as
experimental equilibrium configurations reported in Baroudi et al. (2019). The two sets of applied
forces are visualized in Figure 12. In the first part of the loading procedure, an increasing axial
compression force µ is applied along with a small constant transverse force ε pointing upward, that
constitutes an imperfection load. In the second part of the loading procedure, a decreasing axial
tensile force µ is applied along with an increasing transverse vertical force F pointing downward,
until the force µ vanishes and one gets the desired solution. The stiffness ratios employed for this
simulation are aL2/b = 100 and cL2/b = 10000, namely those leading to the results in Figure 7a. The
same final vertical force utilized in the second test case is considered, too.

The simulation results of the test case analyzed in this sub-section are shown in Figure 13 and
Figure 14. Results for the first part of the loading procedure are reported in blue, while those for the
second one are reported in magenta. In the first loading part, the action of the constant imperfection
force ε = 0.003µ f , being 0.003 an arbitrary value, allows sudden buckling along with the action of the
force µ. In the second part of the loading procedure the forces that act on the beam are linearly varied
so as to being led at the final step to an acting vertical force F only.

ε

µ

L

F
µ

L

(a) (b)

Figure 12. Cantilever beam subjected to two subsequent different loading conditions. (a)
First loading conditions: compression force µ and downward transverse imperfection force
ε. (b) Second loading conditions: tensile force µ and upward transverse force F.
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Figure 13. Evolution of the current shape of the cantilever beam considered in the fourth test
case. The loading procedure consists of a first (blue) and second (magenta) part.
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Figure 14. Force-displacement diagram for the cantilever beam considered in the fourth test
case. The utilized displacement is the axial one at the free end of the beam. The loading
procedure consists of a first (blue) and second (magenta) part.

3.5. Mesh convergence

In order to demonstrate that the number of mesh elements is sufficient for the simulations to give
accurate results, the energy has been plotted against the load parameter, using different mesh elements,
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considering the test case of Figure 9b. Figure 15 reports such results and it is observed that the number
of elements used for all simulations gives a solution that is adequately accurate with respect to that
obtained by making use of exponentially finer meshes.
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Figure 15. Mesh convergence plot. The asterisk indicates the size of the mesh elements used
in all the simulations reported in the paper. The symbol ms denotes the employed mesh size.

4. Conclusions

The present investigation carried out the analysis of a homogenized continuum model that has
been developed to model the large deformation mechanical regime of one-dimensional systems of
particles having enriched kinematics, which is inspired by the Timoshenko model, considering not
only bending deformations, but also axial and shear deformations. With the study of four test cases,
we have tried to elucidate the features of the continuum and discrete models, as well as to assess to
what extent the discrete model can be considered a good approximation of the continuum, and
viceversa. At first, it shall be remarked that, although the results shown were mostly calculated with
1000 loading steps, calculations with up to 100 loading steps can be considered sufficient for
obtaining accurate force-displacement diagrams, especially if there are no sudden changes in the
curves, and can be obtained in a few seconds. By using the same stiffness ratios as those utilized in
Turco et al. [43], the deformation results are quite similar, hence proving that the homogenized
continuous model developed by Turco et al. [43] is suitable for metamaterials design and synthesis,
being sufficiently descriptive of its discrete counterpart, hence being capable to model shear-type
elements. At the same time, the continuum is more efficient than its discrete counterpart for
performing computational calculations when the number of straight elements is very large. For small
systems, the continuum is still comparable with the naturally discrete approach in terms of
computational cost, since even with as few elements as about sixteen, the accuracy of the finite
element solution of the continuum seems satisfactory. All considered, the continuum model analyzed
in this paper may yield viable moving forward with the development of future research towards the
evolution of two-dimensional or three-dimensional models for the analysis of complex mechanical
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metamaterials, which need to consider a greater number of elements in their structure.
We conclude this contribution by pointing out the fact that, although the homogenized model has

given satisfactory results, it is still necessary to judiciously and reasonably establish the rigidities of
the model and the applied loads. Very low values of the stiffnesses or incorrect relationships between
them can cause the solution to diverge, as well as very high values of the loads or insufficient loading
conditions. On the other hand, it may be beneficial for the model to study or incorporate more
sophisticated calculation methods than Newton’s method, such as the arc length method of [39],
which can consider bifurcation behaviors and above limit forces. Furthermore, it is also advisable to
carry out studies on the possibility of considering dynamic effects when, for example, the mass of the
beam cannot be neglected.
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16. V. A. Eremeyev, L. P. Lebedev, V. Konopińska-Zmysłowska, On solvability of initial boundary-
value problems of micropolar elastic shells with rigid inclusions, Math Mech Solids, 27 (2022),
1800–1812. https://doi.org/10.1177/10812865211073149

17. V. A. Eremeyev, W. Pietraszkiewicz, Material symmetry group and constitutive equations
of micropolar anisotropic elastic solids, Math Mech Solids, 21 (2016), 210–221.
https://doi.org/10.1177/1081286515582862

Networks and Heterogeneous Media Volume 19, Issue 3, 1133–1155.

https://dx.doi.org/https://doi.org/10.1016/j.ijnonlinmec.2020.103628
https://dx.doi.org/https://doi.org/10.1016/j.ijsolstr.2020.09.036
https://dx.doi.org/https://doi.org/10.1002/adma.202211027
https://dx.doi.org/https://doi.org/10.1016/j.engstruct.2022.115377
https://dx.doi.org/https://doi.org/10.1007/s00033-021-01480-3
https://dx.doi.org/https://doi.org/10.1177/1081286520965646
https://dx.doi.org/https://doi.org/10.1080/15376494.2019.1655613
https://dx.doi.org/https://doi.org/10.1016/j.ijengsci.2020.103338
https://dx.doi.org/https://doi.org/10.1016/j.ijengsci.2020.103338
https://dx.doi.org/https://doi.org/10.1177/1081286519856931
https://dx.doi.org/https://doi.org/10.1007/s00707-019-02527-3
https://dx.doi.org/https://doi.org/10.1177/10812865211073149
https://dx.doi.org/https://doi.org/10.1177/1081286515582862


1151

18. V. A. Eremeyev, E. Turco, Enriched buckling for beam-lattice metamaterials, Mech Res Commun,
103 (2020), 103458. https://doi.org/10.1016/j.mechrescom.2019.103458

19. F. Fabbrocino, M. Funari, F. Greco, P. Lonetti, R. Luciano, R. Penna, Dynamic crack
growth based on moving mesh method, Compos Part B-eng, 174 (2019), 107053.
https://doi.org/10.1016/j.compositesb.2019.107053

20. N. Feng, Y. Tie, S. Wang, J. Guo, A novel 3D bidirectional auxetic metamaterial with lantern-
shape: Elasticity aspects and potential for load-bearing structure, Compos Struct, 321 (2023),
117221. https://doi.org/10.1016/j.compstruct.2023.117221

21. M. F. Funari, S. Spadea, F. Fabbrocino, R. Luciano, A moving interface finite element formulation
to predict dynamic edge debonding in frp-strengthened concrete beams in service conditions,
Fibers, 8 (2020), 42. https://doi.org/10.3390/fib8060042

22. I. Giorgio, F. Hild, E. Gerami, F. dell’Isola, A. Misra, Experimental verification of 2D cosserat
chirality with stretch-micro-rotation coupling in orthotropic metamaterials with granular motif,
Mech Res Commun, 126 (2022), 104020. https://doi.org/10.1016/j.mechrescom.2022.104020

23. I. Giorgio, V. Varano, F. dell’Isola, N. L. Rizzi, Two layers pantographs: A 2D continuum model
accounting for the beams’ offset and relative rotations as averages in SO(3) lie groups, Int J Solids
Struct, 216 (2021), 43–58. https://doi.org/10.1016/j.ijsolstr.2021.01.018

24. D. Han, X. Ren, Y. Zhang, X. Y. Zhang, X. G. Zhang, C. Luo, Y. M. Xie, Lightweight
auxetic tamaterials: Design and characteristic study, Compos Struct, 293 (2022), 115706.
https://doi.org/10.1016/j.compstruct.2022.115706
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Appendix A

Making use of a standard variational deduction procedure, we here provide the governing continuum
equations for the studied beam as well as possible consistent boundary conditions. Integrating by parts
the weak form Eq (2.32), we get by standard arguments of calculus of variations the governing Euler-
Lagrange equations and associated boundary conditions. The Euler-Lagrange equations read as

∂Ũ∂ϕ − d
ds
∂Ũ
∂ϕ′

= 0
d
ds
∂Ũ
∂u′ = 0 ,

(A.1)

where
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]
(A.2)
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and the expression of d
ds
∂Ũ
∂u′ reads component-wise as

d
ds
∂Ũ
∂u′1

= a
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Finally, the boundary conditions read as
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[
∂Ũ
∂u′ (L) − FL

]
· δu(L) = 0[

∂Ũ
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]
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∂ϕ′

(L) − ϕL
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(A.5)
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