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Abstract: We investigated a nonlinear singularly perturbed elliptic reaction-diffusion coupled system
having non-smooth data networked by a k-star graph. We considered all possible boundary conditions at
the free boundary located at the tail of the edge and imposed the continuity condition with Kirchhoff’s
junction law at the junction point of the k-star graph to obtain a continuous solution for this coupled
system. First, we showed the existence and uniqueness of the solution using the variational formulation
approach. Then, we reformulated it into a minimization problem over a function space to conclude
the uniqueness of the solution. For the approximation of the continuous problem, note that the upwind
scheme for the flux condition at the free boundary leads to a parameter uniform first-order approximation.
To obtain a higher-order uniform accuracy, we utilized a three-point scheme for first-order derivatives
and a five-point approximation at the point of discontinuity. These approximations typically did not
yield an M-matrix or strict diagonally dominant structure of the stiffness matrix. Hence, we provided
a suitable transformation that could lead to a sufficient condition for preserving the strict diagonally
dominant structure of the stiffness matrix. We performed a comprehensive convergence analysis to
demonstrate the almost second-order uniform accuracy on each edge of the k-star graph. Numerical
experiments highly validate the theory on the k-star graph.
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1. Introduction

Differential equations on connected graphs are an emerging research domain with several applications
in physical, chemical, and biological models. In physical processes, such as lateral oscillations within
a network of strings, beam vibrations connected by a network, and the stationary states of electrons
within a molecule, the modeling has been done typically through boundary value problems on each edge
of the network [1]. Pavlov et al. [2] gives a concrete example, where the free electrons encompass the
interaction between molecules and their surrounding medium by a second-order boundary value problem
connected by a graph. These problems are connected by a continuity condition at the junction nodes,
which imposes the equilibrium of forces acting on each node from the adjacent edges. In [3], Nagatani
formulates a traffic flow model on a star graph using a nonlinear diffusion equation. He examines
traffic flow management by employing cell transmission on the graphs. The concept of discontinuity in
traffic flow on each edge of the graph arises because the continuous flow may not be possible through
the connecting vertices of the star, cycle, and complete graphs. It is important to note that a graph G
is a finite set of vertices V(G) connected by a finite set of edges E(G) with a relation between each
edge and corresponding two vertices (endpoints) (see [4]). More concrete applications on differential
equations connected by a graph appear inside chemical models [5] where a neural network model
predicts the chemical reactivity. One can also look into reaction-diffusion models in ecological and
chemical contexts [6] and the blood flow model inside vessels in one-dimensional flow [7, 8].

Since graph theoretical models are different than usual problems, there are limited attempts to
consider the existence of solutions for problems connected by the star graphs. In [9], the authors find the
non-constant solution of the reaction-diffusion problem under the continuity and Kirchhoff conditions at
the junction vertices. After that, Iwasaki et al. investigated the stability and instability of wave solutions
of the reaction-diffusion problems on a metric graph in [10]. A theoretical approach to nonlinear
fractional differential equations is also presented in [11] to demonstrate the well-posedness with Ulam
Hyers stability. Existence and uniqueness results for fractional differential equations on a k-star graph
domain are explored in [12]. The numerical approximation of differential equations connected by star
graphs has received attention from a few authors. Gordezian et al. [13] considered a second-order linear
differential equation on each edge of the k-star graph (see Figure 1) and used the Dirichlet boundary
conditions at the outer vertices and the continuity preserving Kirchhoff’s condition at the junction vertex.
Their numerical analysis uses a central difference scheme for second-order derivatives and a forward
difference scheme for first-order derivatives to achieve linear accuracy across the domain.
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Figure 1. k- Star Graph (G).
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Singularly perturbed differential equations are crucial due to their extensive applications in hydrody-
namics and gas dynamics. The concepts of boundary and interior layers in these areas were introduced
in the nineteenth century. Ongoing efforts aim to understand the boundary and interior layer simulations
associated with various singularly perturbed differential equations, including the viscous Burgers’ and
Navier–Stokes equations. For a recent survey that references singularly perturbed boundary value
problems, one can refer to Gie [14]. In the present analysis, we focus on the effect of unbounded
solution derivatives due to the presence of the viscosity parameter and show its complicacy to obtain the
approximate solutions in maximum norm due to the presence of the viscosity parameter.

In [15], the authors provide a higher-order error analysis for the boundary layer-oriented singularly
perturbed reaction-diffusion coupled systems with mixed boundary conditions on an equidistributed
mesh. The nonlinear singularly perturbed problems and their coupled version are also considered for
optimal convergence analysis in [16–20] on the equidistributed meshes. Note that the computational
cost gradually increases with the number of equations in coupled systems. Therefore, the reduction of
computational cost is also an important feature, which is carried out in [21–23] for reaction-dominated
problems having different diffusion parameters. However, the generation of this mesh is relatively more
complicated than the piecewise uniform meshes used in this article. Analogously, the problems on the
k-star graph are also relatively complex and behave like a coupled system since edges are connected at a
junction point. We refer to [24–26] for the well-posedness of the nonlinear hyperbolic conservation
law on the network. Numerical approximation based on finite volume discretization for the hyperbolic
conservation problem has been developed in [24, 27]. Moreover, validation of these schemes has been
done in [28] by utilizing the exact solution of the Riemann problem.

Furthermore, the linear transport problem on the network has been considered for convergence
analysis of the analytical solution based on parabolic approximation by utilizing the suitable transmission
conditions in the inner node [29, 30]. For the numerical approximation, we refer to [31, 32], where the
authors proposed a hybrid discontinuous Galerkin method to find the numerical solution on the network
and provide the detailed analysis for the error estimate. Here, we are interested in the nonlinear singularly
perturbed elliptic problem with non-smooth data on the star-shaped network for the convergence analysis
of the higher-order scheme along with strong numerical evidence. However, some works are available
on studying singular perturbation problems on the k-star graphs with smooth data. Kumar et al. [33]
discuss a linear singularly perturbed reaction-diffusion problem connected by a star graph, with Dirichlet
boundary conditions at the outer vertices, and the continuity and Kirchhoff’s conditions at the junction
point. This work utilizes a central difference scheme for the first and second-order derivatives over a
piecewise uniform Shishkin mesh to obtain an almost second-order convergence. They consider the
M-matrix criteria to derive the maximum principle based on the discretization of the graph Laplacian.
However, it is unclear from the numerical point of view. Hence, there is a research gap on nonlinear
singularly perturbed boundary value problems with non-smooth data, particularly in producing higher-
order accurate uniformly stable solutions. In this regard, we mention the seminal monograph [34]
having non-smooth source functions, which considers a linear singularly perturbed reaction-diffusion
problem with Dirichlet boundary conditions on the fitted mesh to obtain parameter uniform linear
accurate solutions. Moreover, a higher-order accuracy was obtained for convection-dominated problems
having discontinuous convection terms to get an almost second-order accuracy based on a five-point
scheme at the point of discontinuity [35]. One can also see more higher-order schemes [36, 37] to
obtain uniformly convergent solutions in space. The increasing need for real-life issues such as flow
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rate optimization [7, 8], reaction-dominated processes [33], and convection-dominated processes [38]
drive the study of elliptic problems on networks. Elliptic partial differential equations (PDEs) describe
equilibrium states where the system is balanced and no temporal changes occur. While studying these
equations on networks, the solutions must account for the network’s specific structure and satisfy the
equilibrium conditions at each node to ensure continuity and compatibility across the network’s junction
points. These complexities are not typically encountered while studying scalar elliptic problems defined
on simple domains [34]. Therefore, we study a more general class of elliptic problems with non-smooth
source terms, which are typically applicable in real-world scenarios.

Based on the above motivations, we observe that nonlinear steady-state singularly perturbed reaction-
diffusion problems having discontinuous source terms with mixed boundary conditions are more general
and realistic from applied sciences on a star graph domain. Our major goals are the higher-order accurate
results for this class of problems and their mathematical analysis with numerical difficulties.

The structure of this paper is as follows: In Section 2, we state a nonlinear reaction-diffusion problem
with non-smooth data on a k-star graph. In Section 3, we analyze the properties of the analytic solution
and provide its derivative bounds. In Section 4, we present a discretization using a three-point scheme
and a five-point scheme on the Shishkin mesh on the k-star graph. We also estimate the maximum error
within the graph domain. In Section 5, we focus on the numerical experiments conducted on the 3-star
graph, investigate its errors, and analyze the convergence of experimental results of the test problem.

2. Problem description

A k-star graph G is a collection of a finite set of vertices V(G) = {vi; i = 0, 1, · · · , k}, and edges
E(G) = {ei; i = 1, · · · , k}, where all the k vertices v′i s for i = 1, · · · , k (see Figure 1) have degree (no. of
edges incident on that vertex) 1, and one central vertex (see, v0 in Figure 1) has degree k (v0 is incident
with k edges). Here v0 is called the junction point, and ei defines the edge joining the vertex vi to the
junction vertex v0, i.e., ei =

−−→viv0. We also consider ℓi = |ei| = |
−−→viv0|, for all i = 1, · · · , k. Then, the

singularly perturbed boundary layer-originated problems are defined on each edge of the k-star graph G
and connected at the junction point.

Hence, without loss of generality, we assume each outer vertex vi, for i = 1, · · · , k, as an origin. We
can identify each edge ei as ei := (0, ℓi). Then, the singularly perturbed semi-linear reaction-diffusion
problem with discontinuous source term as given on the k-star graph, where we represent u along the ith
edge ui, is defined by:

Tεiui(x) := −εiu′′i (x) + fi(x, ui(x)) = gi(x), on x ∈ Ω−i ∪Ω
+
i , i = 1, 2, · · · , k, (2.1)

T0iui(0) := −µi,1ui(0) + µi,2u′i(0) = ψi, i = 1, 2, · · · , k, (2.2)
Tℓiui(ℓi) = Tℓmum(ℓm) := uJ (Continuity condition), i , m, and i,m = 1, 2, · · · , k, (2.3)

k∑
i=1

εiu′i(ℓi) = 0 (Kirchoff’s Junction Law), (2.4)

where Tεi is a nonlinear operator, defined by Tεiui(x) := −εiu′′i (x)+ fi(x, ui(x)), T0i is the linear operator
at the free boundary vertices, defined by T0iui(0) := −µi,1ui(0) + µi,2u′i(0) and Tℓi ≡ I is the identity
operator, defined by Tℓiui(ℓi) := ui(ℓi) and, uJ is unknown where the superscript J indicates the junction
point, Ω−i = (0, di), Ω+i = (di, ℓi) and Ωi = Ω

−
i ∪ Ω

+
i . We assume that source term gi(x) is discontinuous
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at the point x = di, i.e., gi(di−) , gi(di+), where di ∈ ei = (0, ℓi). We also assume that ψi, µi,1 are positive
constants and µi,2 is either a constant or takes the value εi. The jump of any function δ at di is denoted by
[δ](di) = δ(di+) − δ(di−). For all x ∈ Ω̄i, we assume that the semi-linear term fi(x, ui(x)) is sufficiently
smooth, fi(x, 0) = 0 and satisfy the following condition

δ∗i ≥
∂ fi(x, ui(x))

∂ui
≥ δi > 0, for some positive constants δi and δ∗i . (2.5)

Note that ui(x) < C2(ei), as gi is discontinuous at di, and ui(di+) = ui(di−).

The reduced problem corresponding to Eqs (2.1)–(2.4) is defined by

fi(x, u0
i (x)) = gi(x), on Ωi. (2.6)

Since the source term gi(x) is discontinuous at the point x = di, we expect an interior layer of width
O(
√
ε) near the discontinuity point [34].

Notation: In this paper, C denotes a generic positive constant independent of the diffusion parameters
εi and the number of step sizes Ni. Here, ∂ f

∂u (x, .) denotes the partial derivative concerning the dependent
variable. ∥ · ∥ΩN denotes the maximum norm over a given mesh function on the domain ΩN . We use the
symbol Cp(Ω) to represent the space of p-th time continuously differentiable functions on the domain Ω.

3. Analytical properties

In this section, we discuss the analytical behavior of the solution on each edge of the k-star graph
domain. Let us assume ei = (0, ℓi) = (0, 1), on every edge of the k-star graph, for all i = 1, 2, · · · , k.

Theorem 1. On each edge of the k-star graph domain, let ui be the solution of the ith edge for 1 ≤ i ≤ k.
Then ui ∈ C0(ēi) ∩C1(ei) ∩C2(Ω−i ∪Ω

+
i ).

Proof. Let ui be the solution of the ith edge, and ui,1 and ui,2 be the particular solutions of the following
nonlinear differential equations

−εiu′′i,1(x) + fi(x, ui,1(x)) = gi(x), x ∈ Ω−i , and − εiu′′i,2(x) + fi(x, ui,2(x)) = gi(x), x ∈ Ω+i ,

where ui,1 ∈ C2(Ω−i ) and ui,2 ∈ C2(Ω+i ).
Consider the function

ui =

 ui,1(x) +
(
ψi − T0iui,1(0)

)
Υi,1(x) + AΥi,2(x), x ∈ Ω−i ,

ui,2(x) + BΥi,1(x) +
(
uJ − ui,2(1)

)
Υi,2(x), x ∈ Ω+i ,

(3.1)

where Υi,1 and Υi,2 are defined as follows

−εiΥ
′′
i,1(x) + fi

(
x,Υi,1(x)

)
= 0, Υi,1(0) = 1, Υi,1(1) = 0, on x ∈ ei, (3.2)

−εiΥ
′′
i,2(x) + fi

(
x,Υi,2(x)

)
= 0, Υi,2(0) = 0, Υi,2(1) = 1, on x ∈ ei. (3.3)

Here, we choose the constants A and B in such a way that ui ∈ C1(ei) and ui ∈ C2(Ω−i ∪Ω
+
i ). Note

that the solutions of Eqs (3.2) and (3.3) on (0, 1), 0 < Υi,1,Υi,2 < 1,. Thus, we cannot have maximum
and minimum in the interior points, and hence Υ′i,1 < 0, Υ′i,2 > 0 on the interval (0, 1).

Networks and Heterogeneous Media Volume 19, Issue 3, 1085–1115.
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Now, we choose the constants A and B by imposing the following condition, which ensures the
continuous differentiability at all the interior points, i.e., ui ∈ C1(ei). Based on this, we can write

ui(di−) = ui(di+), and u′i(di−) = u′i(di+).

From the above conditions, we get

AΥi,2(di) − BΥi,1(di) = (uJ − ui,2(1))Υi,2(di) −
(
ψi − T0iui,1(0)

)
Υi,1(di),

AΥ′i,2(di) − BΥ′i,1(di) = (uJ − ui,2(1))Υ′i,2(di) −
(
ψi − T0iui,1(0)

)
Υ′i,1(di).

For the existence of A and B, we need∣∣∣∣∣∣Υi,2(di) −Υi,1(di)
Υ′i,2(di) −Υ′i,1(di)

∣∣∣∣∣∣ , 0.

This gives Υ′i,2(di)Υi,1(di) − Υ′i,1(di)Υi,2(di) , 0. Hence, ui ∈ C0(ēi) ∩C1(ei) ∩C2(Ω−i ∪ Ω
+
i ) exists.

The well-posedness of the problem is considered in the Hilbert space framework. From Eq (2.1)
along with the homogeneous boundary conditions (2.2)–(2.4) (by assuming ψi = 0 and uJ = 0 ) on ith
edge ei, we define the pivotal space of the entire graph G as

H(G) := L2(G) :=
k∏

i=1

L2(0, ℓi) =
{
u; u|ei

= ui, ui ∈ L2(0, ℓi), for all i = 1, · · · , k
}
.

Now, we define the Sobolev space on ei:

H1
ei

:=
{
ui ∈ L2(ei); u′i ∈ L2(ei) for all i

}
,

and, the Sobolev space on the graph G

H1(G) =
{
u ∈ L2(G); u|ei

= ui, and ui ∈ H1
ei

for all ei ∈ E(G)
}
.

Define the corresponding Sobolev norm [30] as follows:

||η||2L2(G) =
∑

ei∈E(G)

||ηi||
2
L2(ei)

, and (η, λ)L2(G) =
∑

ei∈E(G)

(ηi, λi)L2(ei).

Similarly,
||η||2H1(G) =

∑
ei∈E(G)

||ηi||
2
H1(ei)

and (η, λ)H1(G) =
∑

ei∈E(G)

(ηi, λi)H1(ei).

Analogously, let us define the space on the edge ei as V∗i =
{
ui ∈ H1

ei
; T0iui(0) = 0

}
, and introduce

the dense space D∗(Tεi) :=
{
ui ∈ V

∗
i ; Tεiui ∈ L2(ei)

}
. Let us also define the spaces of the entire graph as

V∗ :=
{
u ∈ H1(G); Tℓiui(ℓi) = Tℓkuk(ℓk), for all i, k, and T0iui(0) = 0

}
and define the dense space on the

entire graph G is D∗(L) :=
{
u ∈ V∗; u ∈

∏k
i=1D

∗(Tεi),
∑k

i=1 εiu′i(ℓi) = 0
}

on which we define the operator
L as

L : D∗(L) ⊂ H(G) −→ H(G), Lu|ei
:= Tεiui.

Networks and Heterogeneous Media Volume 19, Issue 3, 1085–1115.
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Consider that g ∈ H(G) such that g|ei
= gi. Multiplying the state equation (2.1) by an arbitrary test

function v ∈ D∗(L) and integrating by parts, we get the weak formulation of the problems (2.1)–(2.4):

u ∈ D∗(L), B(u, v) = ⟨g, v⟩ for all v ∈ D∗(L). (3.4)

Here, the quadratic form B(·, ·) : D∗(L) × D∗(L) −→ R is defined by

B(u, v) :=
k∑

i=1

ai(ui, vi) =
k∑

i=1

∫
ei

(
εiu′iv

′
i + fi(x, ui)vi

)
dx, (3.5)

and

⟨g, v⟩ =
k∑

i=1

∫
Ω−i ∪Ω

+
i

gividx =
k∑

i=1

(∫ di

0
givi +

∫ ℓi

di

givi

)
dx. (3.6)

Now, we introduce the minimization problem corresponding to the weak formulation (3.4)

u ∈ D∗(L), E(u) = inf
v∈D∗(L)

E(v), (3.7)

where

E(v) =
k∑

i=1

∫
ei

(
εi

2
|v′i |

2 + Fi(x, vi)
)

dx −
k∑

i=1

∫
Ω−i ∪Ω

+
i

gividx, (3.8)

is the “energy functional” and Fi(x, vi) =
∫ vi

0
fi(x, s)ds.

Lemma 1. The energy function E(·) is coercive, continuous, strictly convex, Fréchet differentiable and
it satisfies

⟨E′(u), v⟩ =
k∑

i=1

∫
ei

(
εiu′iv

′
i + fi(x, ui)vi

)
dx −

k∑
i=1

∫
Ω−i ∪Ω

+
i

gividx.

Proof. The result follows from [39, 40]. The rigorous procedure can be seen in [41].

Theorem 2. Assume that g ∈ H(G). Then, the weak formulation (3.4) and the minimization problem (3.7)
are equivalent, and both admit a unique solution.

Proof. The results follow from Lemma 1 by considering the analysis given in [40, 41].

Moreover, considering the velocity vector zero in the convection-diffusion-reaction nonlinear problem
given in [42], the stability of the solution of the current nonlinear reaction-diffusion problem follows
for fi(x, ui(x)) = ki(ui)ui, where ki(ui) satisfies the Lipschitz condition with respect to ui. Note that we
consider the test function v = 0 at the boundary.

3.1. Bounds of solution and its derivatives

For singularly perturbed reaction-diffusion problems, it is well known that the solution can have
boundary and interior layers in its domain of definition depending on the smoothness of the data and
boundary conditions. In these layer regions, the solution varies abruptly and has large, steep gradients.
In contrast, outside these regions, the solution varies smoothly and has bounded derivatives up to some
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finite order. A rigorous convergence analysis of numerical approximations; requires derivatives of
the solution.

Hence, to simplify this convergence analysis, we decompose the solution into the regular component
ri and the singular component si such that ui = ri + si, on each ith edge of the graph. The regular
component ri, typically represents the smooth, well-behaved part of the solution that varies gradually
across the domain and has bounded derivatives up to some finite order. This part is often associated with
the domain’s bulk or interior regions with minimal perturbation parameter effects. The convergence
analysis for this component becomes more straightforward as the required derivatives for this analysis
are bounded. The singular component si captures the rapid variations and steep gradients near boundaries
or interfaces. In reaction-diffusion problems, these regions often exhibit behaviors not captured by the
regular part alone, such as boundary or interior layers where the solution changes abruptly. The singular
component si corrects the discrepancies between the regular part and the actual solution, especially near
regions where the perturbation parameter has a significant impact. The analysis of this component is
complicated, in general.

Let us assume µi,2 is a constant. Therefore, we decompose the solution into two parts on each ith
edge of the k-star graph domain, such that

ui(x) = ri(x) + si(x),

where ui(x) is a solution of the ith edge of the k-star graph domain.
Then, the regular component ri(x) satisfies the following problem

Tεiri(x) := −εir′′i (x) + fi(x, ri(x)) = gi, x ∈ Ω−i , T0iri(0) = T0iu
0
i (0), T1iri(di−) = T1iu

0
i (di−), (3.9)

Tεiri(x) := −εir′′i (x) + fi(x, ri(x)) = gi, x ∈ Ω+i , T0iri(di+) = T0iu
0
i (di+), T1iri(1) = T1iu

0
i (1). (3.10)

We further decompose the regular component solution ri of Eq (3.9) into two different parts of the
domain, so that the analysis available for problems having two boundary layers can be utilized in both
the part of the domains separately. This decomposition is done as follows ri = vi,1 + vi,2, where vi,1 is the
solution of the following problem

− εiv′′i,1 + fi(x, vi,1(x)) = 0, x ∈ Ω−i
T0ivi,1(0) = T0iri(0), T1ivi,1(di−) = T1iri(di−), (3.11)

and vi,2 is the solution of the following problem

− εiv′′i,2 + fi(x, (vi,2 + vi,1)(x)) − fi(x, vi,1(x)) = gi(x), x ∈ Ω−i
T0ivi,2(0) = 0, T1ivi,2(di−) = 0. (3.12)

Similarly, we can derive a similar expression from Eq (3.10) on the domain Ω+i .
Note that the singular component si(x) satisfies the following problem

Tεi si(x) := −εis′′i + fi(x, (ri + si)(x) − fi(x, ri(x)) = 0, x ∈ Ω−i ∪Ω
+
i ,

T0i si(0) = T0i(ui − ri)(0), T1i s(1) = T1i(ui − ri)(1),
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[si] (di) = − [ri] (di),
[
s′i
]
(di) =

[
r′i
]
(di).

Furthermore, we decompose the singular component si(x), as follows

si(x) =

sLi(x), x ∈ Ω−i ,

sRi(x), x ∈ Ω+i ,

i.e., sLi(x) is defined on Ω−i and sRi(x) is defined on Ω+i . Then, from Theorem 1, singular component si is
well defined; as follows

si =

T0i si(0)ϕi,1(x) + β1ϕi,2(x), for x ∈ Ω−i ,

β2ϕi,3(x) + T1i si(1)ϕi,4(x), for x ∈ Ω+i ,

where ϕi,m for m = 1, 2, 3, 4, satisfy the following boundary value problems

− εiϕ
′′
i,1(x) + fi(x, si + ϕi,1) − fi(x, si) = 0, x ∈ Ω−i , T0iϕi,1(0) = 1, T1iϕi,1(di) = 0,

− εiϕ
′′
i,2(x) + fi(x, si + ϕi,1 + ϕi,2) − fi(x, s + ϕi,1) = 0, x ∈ Ω−i , T0iϕi,2(0) = 0, T1iϕi,2(di) = 1,

− εiϕ
′′
i,3(x) + fi(x, si + ϕi,3) − fi(x, si) = 0, x ∈ Ω+i , T0iϕi,3(di) = 1, T1iϕi,3(1) = 0,

− εiϕ
′′
i,4(x) + fi(x, si + ϕi,3 + ϕi,4) − fi(x, si + ϕi,3) = 0, x ∈ Ω+i , T0iϕi,4(di) = 0, T1iϕi,4(1) = 1,

and β1 and β2 are constants that we need to choose in such a way that the jump condition at x = di is
satisfied, that is,

Tεi sLi(x) = 0, on Ω−i ,
T0i sLi(0) = T0i si(0), T1i sLi (di−) = T1i si (di−) , (3.13)

and

Tεi sRi(x) = 0 on Ω+i ,
T0i sRi (di+) = T0i si (di+) , T1i sRi(1) = T1i si(1). (3.14)

From above, we can write

−εis′′Li
(x) + b1

i (x)sLi(x) = 0, on Ω−i , (3.15)

where b1
i (x) =

∫ 1

0

∂ fi

∂ui
(x, ri + qsLi )dq, and

−εis ′′Ri
(x) + b2

i (x)sRi(x) = 0, on Ω+i , (3.16)

where b2
i (x) =

∫ 1

0

∂ fi

∂ui
(x, ri + tsRi )dt.

Let us use the following notations for the layer functions

Π1(x) = e−x
√
δi/εi + e−(di−x)

√
δi/εi and Π2(x) = e−(x−di)

√
δi/εi + e−(1−x)

√
δi/εi .
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Theorem 3. On the ith edge of the k-star graph domain, the regular component satisfies the following
derivatives bounds ∣∣∣r(m)

i (x)
∣∣∣ ≤ C, m = 0, 1, 2, 3,

∣∣∣r(4)
i (x)

∣∣∣ ≤ C ε−1/2
i , for x ∈ ei,

where C is independent of εi.

Proof. We can prove this theorem step by step. First, we establish the derivative bounds for the regular
component on the domain Ω−i using Eqs (3.9), (3.11) and (3.12). We employ a similar argument as in
Theorem 1; given in [43] to establish the bounds for the regular components and their derivatives. In a
similar way, we can establish the derivative bounds of the regular components on Ω+i using an analogous
decomposition of the regular component from Eq (3.10) on the domain Ω+i . Finally, we obtain the
bounds of the regular component and its derivatives by adding them over ei.

Theorem 4. On the ith edge of the k-star graph domain, the singular component satisfies the follow-
ing bounds ∣∣∣s (m)

Li
(x)

∣∣∣ ≤ C Π1(x), m = 0, 1∣∣∣s (m)
Li

(x)
∣∣∣ ≤ Cε−(m−1)/2

i Π1(x), m = 2, 3, 4,∣∣∣s (m)
Ri

(x)
∣∣∣ ≤ C Π2(x), m = 0, 1∣∣∣s(m)

Ri
(x)

∣∣∣ ≤ Cε−(m−1)/2
i Π2(x), m = 2, 3, 4, x ∈ ei,

where C is independent of εi.

Proof. The linear problems (3.15) and (3.16) together with the boundary conditions in Eqs (3.13)
and (3.14) are similar to the problems considered in [43]. Hence, we obtain the bounds for sLi and sRi

and their derivatives analogously.

Remark 1. Consider that µi,2 = εi. In this case, the derivative bounds of the components will be sharp;
compared to µi,2 as a constant. Therefore, the bounds for Dirichlet type problems; will be used for
further analysis, which is as follows∣∣∣r(m)

i (x)
∣∣∣ ≤ C(1 + ε−(m−2)/2

i ), m = 0, 1, 2, 3, 4, for x ∈ ei,

and ∣∣∣s(m)
i (x)

∣∣∣ ≤ Cε−m/2
i Π1(x), x ∈ Ω−i ,

Cε−m/2
i Π2(x), x ∈ Ω+i ,

for m = 0, 1, 2, 3, 4.

4. Discretization and convergence analysis

Assume that ei = (0, 1) which is obtained by setting ℓi = 1, for all i = 1, 2, · · · , k, as shown in
Figure 1. We discretize each edge using a fitted mesh approach with Ni + 1 number of mesh points to
discretize the domain Ω̄i = Ω̄

−
i ∪ Ω̄

+
i .

Now, partition the domain Ω̄−i = [0, di] into following three sub-intervals[
0, τi,1

]
,

[
τi,1, di − τi,1

]
and

[
di − τi,1, di

]
,
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and the domain Ω̄+i = [di, 1] into following three sub-intervals[
di, di + τi,2

]
,

[
di + τi,2, 1 − τi,2

]
and

[
1 − τi,2, 1

]
,

where

τi,1 = min
{

di

4
, 2

√
εi

δi
ln Ni

}
, and τi,2 = min

{
1 − di

4
, 2

√
εi

δi
ln Ni

}
.

On the sub-intervals
[
τi,1, di − τi,1

]
and

[
di + τi,2, 1 − τi,2

]
, a uniform mesh with Ni/4 mesh-intervals

are placed, whereas on the sub-intervals
[
0, τi,1

]
,
[
di − τi,1, di

]
,
[
di, di + τi,2

]
and

[
1 − τi,2, 1

]
, a uniform

mesh with Ni/8 mesh-intervals are placed. So, we define the discrete domain as follows:

Ω
Ni
i = {xi, j : 1 ≤ j ≤ Ni/2 − 1} ∪ {xi, j : Ni/2 + 1 ≤ j ≤ Ni − 1}.

Now consider ΩNi
i = Ω

Ni
i,1 ∪ Ω

Ni
i,2, whereΩNi

i,1 =
{
xi, j

} Ni
2 −1

j=1
, ΩNi

i,2 =
{
xi, j

}Ni−1

j= Ni
2 +1

, xi,0 = 0, xi,Ni = 1 and

Ω
Ni
i∗ = Ω

Ni
i ∪ {xi,Ni}. It is clear that xi, Ni

2
= di. Therefore, we consider the whole discretize domain for ith

edge denoted by D̄Ni
hi
=

{
xi, j

}Ni

j=0
, the step size is defined by hi, j = xi, j+1 − xi, j.

4.1. Discrete problem

Consider that Ui, j = Ui(xi, j) be the numerical solution on the ith edge of the k-star graph domain on
the fitted mesh. The following expressions offer the discrete formulation corresponding to Eqs (2.1)–(2.4):

T Ni
εi

Ui, j := −εiδ
2Ui, j + fi

(
xi, j,Ui, j

)
= gi(xi, j), xi, j ∈ Ω

Ni
i , for all i, (4.1)

T Ni
di

Ui,Ni/2 := D+∗Ui,Ni/2 − D−∗Ui,Ni/2 = 0, for all i, (4.2)

T Ni
0i

Ui,0 := −µi,1Ui,0 + µi,2D+∗Ui,0 = ψi, for all i, (4.3)

T Ni
Ni

Ui(xi,Ni) = T Nm
Nm

Um(xi,Nm) := uJ, for i , m, for all i,m, (4.4)
k∑

i=1

εiD−∗Ui(xi,Ni) = 0, (4.5)

where i,m = 1, 2, · · · , k, δ2Ui, j =
2

hi, j+1 + hi, j

(Ui, j+1−Ui, j

xi, j+1−xi, j
−

Ui, j−Ui, j−1

xi, j−xi, j−1

)
, D+∗Ui, j =

−Ui, j+2+4Ui, j+1−3Ui, j

2hi, j+1
(three-

point approximation at right hand side) and D−∗Ui, j =
Ui, j−2−4Ui, j−1+3Ui, j

2hi, j
(three point approximation at left

hand side). Note that; the order of convergence for Kirchhoff’s condition at the junction point; is also
almost second-order by using the derivative bound from Remark 1, i.e.,

k∑
i=1

εi

∣∣∣∣∣∣u′(1) −
Ui,Ni−2 − 4Ui,Ni−1 + 3Ui,Ni

2hi,Ni

∣∣∣∣∣∣ ≤ C

 k∑
i=1

h2
i,Ni

 = C

 k∑
i=1

N−2
i ln2 Ni

 , C is a constant. (4.6)

Consider that T Ni
εi is the Fréchet derivative [43] of T Ni

εi . Hence, it satisfies the following linear problem:

T Ni
εi

Ui, j := −εiδ
2Ui, j + ai, jUi, j = gi, j, on ΩNi

i , for i = 1, 2, · · · , k, (4.7)
T Ni

di
Ui,Ni/2 := D+∗Ui,Ni/2 − D−∗Ui,Ni/2 = 0, for i = 1, 2, · · · , k, (4.8)
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T Ni
0i

Ui,0 := −µi,1Ui,0 + µi,2D+∗Ui,0 = ψi, for i = 1, 2, · · · , k, (4.9)

T Ni
Ni

Ui,Ni = T Nm
Nm

Um,Nm := uJ, for i , m, and i,m = 1, 2, · · · , k, (4.10)
k∑

i=1

εiD−∗Ui,Ni = 0, (4.11)

where ai(xi, j) =
∂ fi
∂ui

(
xi, j, ξ j

)
is provided through the mean value theorem and T Ni

εi is a linear operator.
Note that we use the three-point discretization at the left and right boundary points and the point of
discontinuity (i.e., xi,Ni/2 = di).

At the point xi,Ni/2 = di , we use the difference operator T Ni
di

from [44], i.e.,

T Ni
di

Ui,Ni/2 :=
−Ui,Ni/2+2 + 4Ui,Ni/2+1 − 3Ui,Ni/2

2hi,Ni/2+1
−

Ui,Ni/2−2 − 4Ui,Ni/2−1 + 3Ui,Ni/2

2hi,Ni/2
= 0, (4.12)

where hi,Ni/2+1, and hi,Ni/2 are the right and left step sizes of the point xNi/2 and hi,Ni/2+1 = 8τi,2/Ni and
hi,Ni/2 = 8τi,1/Ni.

Similarly, for the left boundary point, we employ the right-hand side three-point approximation

T Ni
0i

Ui,0 := −µi,1Ui,0 + µi,2

[
−Ui,2 + 4Ui,1 − 3Ui,0

2hi,1

]
= ψi, (4.13)

and at the right boundary point, we discretize Kirchhoff’s condition using the following three-
point approximation

k∑
i=1

εi

[
Ui,Ni−2 − 4Ui,Ni−1 + 3Ui,Ni

2hi,Ni

]
= 0. (4.14)

Therefore, we get the following:

T
Ni
H,εi

Ui, j =

T Ni
εi Ui, j, for j , Ni

2 ,

T Ni
di

Ui, j, for j = Ni
2 .

(4.15)

By Eqs (4.13) and (4.14) and the continuity condition (4.10), the matrix corresponding to
Eqs (4.12)–(4.14) is not an M-matrix. To assure the invertibility of the discrete system through the
M-matrix criterion, we must transform Eqs (4.12)–(4.14) using Eq (4.7) as follows:

Ui,Ni/2+2 =

(
− gi,Ni/2+1 + ai,Ni/2+1Ui,Ni/2+1 +

εi

hi,Ni/2+1

Ui,Ni/2+1 − Ui,Ni/2

hi,Ni/2+1

+
εi

h2
i,Ni/2+1

Ui,Ni/2+1

)h2
i,Ni/2+1

εi
, (4.16)

Ui,Ni/2−2 =

(
− gi,Ni/2−1 + ai,Ni/2−1Ui,Ni/2−1 −

εi

hi,Ni/2

Ui,Ni/2 − Ui,Ni/2−1

hi,Ni/2

+
εi

h2
i,Ni/2

Ui,Ni/2−1

)h2
i,Ni/2

εi
, (4.17)
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Ui,2 =

−gi,1hi,1 +

2εi + ai,1h2
i,1

hi,1

 Ui,1 −
εi

hi,1
Ui,0

 hi,1

εi
, (4.18)

Ui,Ni−2 =
hi,Ni

εi

−gi,Ni−1hi,Ni −
εi

hi,Ni

Ui,Ni +

2εi + ai,Ni−1h2
i,Ni

hi,Ni

 UNi−1

 . (4.19)

For simplicity, we consider that hi,Ni/2+1 = hi,Ni/2 = hi. After using the values Ui,Ni/2+2 and Ui,Ni/2−2 in
Eq (4.12), we obtain

T Ni
Di

Ui,Ni/2 : =
1

2hi

[
−

(
2 −

ai,Ni/2−1h2
i

εi

)
Ui,Ni/2−1 + 4Ui,Ni/2 −

(
2 −

ai,Ni/2+1h2
i

εi

)
Ui,Ni/2+1

]
=

hi

2εi

(
gi,Ni/2+1 + gi,Ni/2−1

)
. (4.20)

Consider that hi,Ni = hi,1 = Hi and from Eqs (4.18) and (4.13), we get

T Ni
πi

Ui,0 : =
1

2Hi

[
−

(
2 −

a1H2
i

εi

)
µi,2Ui,1 +

(
2µi,1Hi + 2µi,2

)
Ui,0

]
=
µi,2Hi

2εi
gi,1 − ψi. (4.21)

and from Eq (4.19) and Kirchhoff’s condition (4.14), we get

k∑
i=1

εi

2Hi

[
−

(
2 −

ai,Ni−1H2
i

εi

)
Ui,Ni−1 + 2Ui.Ni

]
=

k∑
i=1

Hi

2
gi,Ni−1. (4.22)

Now, we define the discrete operator as follows:

T
Ni
M,εi

Ui, j =

T Ni
εi Ui, j, for j , Ni

2 ,

T Ni
Di

Ui, j, for j = Ni
2 ,

and

g̃i, j =

gi, j, for j , Ni
2 ,

hi
2εi

(
gi, j+1 + gi, j−1

)
, for j = Ni

2 .

Then, we have the following system of equations:

T
Ni
M,εi

Ui, j = g̃i, j, for i = 1, 2, · · · , k, and j = 1, · · · ,Ni − 1, (4.23)

T Ni
πi

Ui,0 =
µi,2Hi

2εi
gi,1 − ψi, (4.24)

T Ni
Ni

Ui,Ni = T Nm
Nm

Um,Nm := uJ (unknown), for i , m, and i,m = 1, 2, · · · , k, (4.25)
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with the transformed Kirchoff condition
k∑

i=1

εi

2Hi

[
−

(
2 −

ai,Ni−1H2
i

εi

)
Ui,Ni−1 + 2Ui.Ni

]
=

k∑
i=1

Hi

2
gi,Ni−1. (4.26)

Lemma 2. Assume that N2
i / ln2 Ni ≥ 128 δ∗i

δi
, where δ∗i = maxx∈ei ai(x) and δi = minx∈ei ai(x). Then,

the operator T Ni
M,εi

defined in Eq (4.23), with the boundary conditions (4.24)–(4.26), will lead to an
M-matrix.

Proof. By Eqs (4.20)–(4.22) and (2.5), it is clear that ai, jh2
i

εi
> 0, for j = Ni/2 − 1, Ni/2 + 1 and

ai, jH2
i

εi
> 0 for j = 1, Ni − 1. Hence, the discretization produces an M-matrix, provided

(
2 − ai, jh2

i
εi

)
≥ 0,

and
(
2 − ai, jH2

i
εi

)
≥ 0. We use a central difference scheme except for the boundary and discontinuous

points. Therefore, we get
N2

i

ln2 Ni
≥ 32

δ∗i
δi

and
N2

i

ln2 Ni
≥ 128

δ∗i
δi
.

Thus, the operator T Ni
M,εi

satisfies the discrete maximum principle on each edge of the k-star graph.
Therefore, by consequences of the discrete maximum principle, the discrete solution is stable in the
k-star graph domain G. Then, the graph Laplacian for the discrete graph produces an M-matrix and
satisfies the discrete maximum principle [33, 45]. Thus, Eqs (4.23)–(4.26) lead to a unique solution as
describes an invertible M-matrix.

Remark 2. Here, we are specifying the conditions for individual edges of the k-star graph (Figure 1).
The boundary conditions for the outer vertices will remain unchanged. However, the continuity and
Kirchhoff’s conditions at the junction point will not apply to single edges. For instance, we consider a
Dirichlet-type boundary condition at the junction point, where uJ will be treated as a known value at
the boundary (junction point).

4.1.1. Discrete stability result

Lemma 3. On each edge ei with 1 ≤ i ≤ k, let us denote Ψi, j as a mesh function such that Ψi,0 = 0, and
Ψi,Ni = uJ. Then,

|Ψi, j| ≤
1
δi

max
1≤ j≤Ni−1

∣∣∣T Ni
M,εi
Ψi, j

∣∣∣ + ∣∣∣uJ
∣∣∣ , for 0 ≤ j ≤ Ni.

Proof. Let Φ±i, j be mesh functions defined as Φ±i, j =
xi, j

δidi
max1≤ j≤Ni−1 |T

Ni
M,εi
Ψi, j|+ |uJ | ±Ψi, j, 0 ≤ j ≤ Ni/2

and Φ±i, j =
(1−xi, j)
δi(1−di)

max1≤ j≤Ni−1 |T
Ni
M,εi
Ψi, j|+ |uJ | ±Ψi, j, Ni/2 < j ≤ Ni. It is clear that Φ±i,0 > 0 and Φ±i,Ni

> 0.
Again, T Ni

M,εi
Φ±i, j ≥ 0, for 1 ≤ j ≤ Ni − 1.

Hence, by using the discrete maximum principle [33], we get

|Ψi, j| ≤
1
δi

max
1≤ j≤Ni−1

∣∣∣T Ni
M,εi
Ψi, j

∣∣∣ + ∣∣∣uJ
∣∣∣ , for 0 ≤ j ≤ Ni.

Networks and Heterogeneous Media Volume 19, Issue 3, 1085–1115.



1099

4.2. Convergence analysis

In this section, we provide the convergence result for each edge of the k-star graph domain.

Theorem 5. On each edge ei of the k-star graph domain, let ui,0 be the solution of the problem (2.1) at
the left boundary point, and Ui,0 be the solution of the corresponding discrete problem (4.7) at the left
boundary point. Then,

sup
0<ϵi≤1

∥Ui,0 − ui,0∥ ≤ CN−2
i ln2 Ni,

where C is independent of εi and Ni.

Proof. At the left boundary point xi,0 = 0, we have

∣∣∣T Ni
πi

(Ui,0 − ui,0)
∣∣∣ = ∣∣∣∣∣∣

(
µi,2hi

2εi
gi,1 − ψi

)
− T Ni

πi
ui,0

∣∣∣∣∣∣
≤

∣∣∣T Ni
0i

ui,0 − µi,2u′i,0
∣∣∣ +C

∣∣∣T Ni
0i

ui,1 − gi,1

∣∣∣
≤ µi,2

∣∣∣∣∣−ui,2 + 4ui,1 − 3ui,0

2hi
− u′i,0

∣∣∣∣∣ +C
∣∣∣T Ni

0i
ui,1 − Tεiui,1

∣∣∣
≤ Cµi,2h2

i,1

∣∣∣u′′′i (0)
∣∣∣

= CN−2
i ln2 Ni.

Hence, we get the following by using Lemma 3∣∣∣Ui,0 − ui,0

∣∣∣ ≤ CN−2
i ln2 Ni.

The case µi,2 = εi leads to the same result based on a suitable choice of a suitable barrier function.
Note that the derivatives are bound by Cε−3/2

i for this case (see Remark 1). However, the convergence
proof will be simpler as µi,2 = εi.

Theorem 6. On each edge ei of the k-star graph domain, let ui be the solution of the problem (2.1) ,
and Ui be the solution of the corresponding discrete problem (4.7). Then,

sup
0<ϵi≤1

∥Ui − ui∥ΩNi
i∗
≤ CN−2

i ln2 Ni, on ΩNi
i∗ ,

where C is independent of εi and Ni.

Proof. We consider the following two cases to prove this theorem.
Case I: Consider µi,2 as a constant. Here, we decompose the discrete solution into a regular component

Ri(xi, j) and a singular component S i(xi, j), such that

Ui(xi, j) = Ri(xi, j) + S i(xi, j),

where Ri(xi, j) is the solution of the non-homogeneous problem and S i(xi, j) is the solution of the
homogeneous problem [46]. Correspondingly, the error (Ui − ui)(xi, j) can be decomposed as

(Ui − ui)(xi, j) = (Ri − ri)(xi, j) + (S i − si)(xi, j).
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From the original problem and the discretized problem, we get∣∣∣∣T Ni
εi

(Ui − ui)
(
xi, j

)∣∣∣∣ = ∣∣∣T Ni
εi

((Ri − ri) + (S i − si)) (xi, j)
∣∣∣

≤

∣∣∣∣(T Ni
εi
− Tεi

)
ri

(
xi, j

)∣∣∣∣ + ∣∣∣∣(T Ni
εi
− Tεi

)
si

(
xi, j

)∣∣∣∣
≤ εi

(∣∣∣∣∣∣
(
δ2 −

d2

dx2

)
ri

(
xi, j

)∣∣∣∣∣∣ +
∣∣∣∣∣∣
(
δ2 −

d2

dx2

)
si

(
xi, j

)∣∣∣∣∣∣
)
.

Now, we find the error estimate separately. Let us first derive it for the regular component. Note

εi

∣∣∣∣∣∣
(
δ2 −

d2

dx2

)
ri

(
xi, j

)∣∣∣∣∣∣ ≤
 Ciεi

(
hi, j+1 + hi, j

)
max j

∣∣∣∣r(3)
i

(
xi, j

)∣∣∣∣ , xi, j ∈ {τi,1, di − τi,1, di + τi,2, 1 − τi,2},

Ciεi

(
hi, j+1 + hi, j

)2
max j

∣∣∣∣r(4)
i

(
xi, j

)∣∣∣∣ , otherwise,

≤

{
CiεiN−1

i , xi, j ∈ {τi,1, di − τi,1, di + τi,2, 1 − τi,2},

Ci
√
εiN−2

i , otherwise.

Here, we use the piecewise uniform mesh and its property hi, j+1 + hi, j ≤ 2N−1, and have applied
Theorem 4. Now, let us introduce the function

Θi, j = CiN−2
i +CiN−2

i τi,1


xi, j

τi,1
, 0 < xi, j ≤ τi,1,

1, τi,1 ≤ xi, j ≤ di − τi,1,
di−xi, j

τi,1
, di − τi,1 ≤ xi, j < di,

on the interval (0, di) and introduce the func-

tion Θi, j = CiN−2
i + CiN−2

i τi,2


xi, j−di

τi,2
, di < xi, j ≤ di + τi,2,

1, di + τi,2 ≤ xi, j ≤ 1 − τi,2,
1−xi, j

τi,2
, 1 − τi,2 ≤ xi, j ≤ 1,

on the interval (di, 1]. Note that

Θi, j ≤ Ci
√
εiN−2

i ln Ni and

T Ni
εi
Θi, j ≥

{
Ci(εiN−1

i + N−2
i ), xi, j ∈ {τi,1, di − τi,1, di + τi,2, 1 − τi,2},

Ci
√
εiN−2

i , otherwise.

Now, consider the barrier function

Φi, j = Θi, j ± εi

[(
δ2 −

d2

dx2

)
ri

(
xi, j

)]
.

By the discrete maximum principle [45], we obtain

εi

∣∣∣∣∣∣
(
δ2 −

d2

dx2

)
ri

(
xi, j

)∣∣∣∣∣∣ ≤ Ci
√
εiN−2

i ln Ni. (4.27)

Now, we decompose the singular component S i along the interval (0, d) and (d, 1]; as follows

S i = S Li + S Ri ,

where S Li is defined on (0, d); and S Ri is defined on (d, 1]; and are given by

T Ni
εi

S Li(xi, j) = 0, T0iS Li(0) = T0i sLi(0), T1iS Li(d−) = T1i sLi(d−),
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T Ni
εi

S Ri(xi, j) = 0, T0iS Ri(d+) = T0i sRi(d+), T1iS Ri(1) = T1i sRi(1).

Note that either τi,1 =
di
4 , and τi,2 =

1−di
4 , or τi,1 = τi,2 = 2

√
εi
δi

ln Ni ≤
di
4 . Thur, if xi, j = di =

1
2 , we

have τi,1 = τi,2. For τi,1 = τi,2 =
1
8 , the mesh will be uniform throughout the domain ΩNi

i∗ .
Hence, by using the argument in [47] for the singular component S Li on ΩNi

i,1, we get

εi

∣∣∣∣∣∣
(
δ2 −

d2

dx2

)
S Li

(
xi, j

)∣∣∣∣∣∣ ≤ CN−2
i ln2 Ni. (4.28)

Similarly, for the singular component S Ri on ΩNi
i,2 ∪ {xi,Ni}, we get

εi

∣∣∣∣∣∣
(
δ2 −

d2

dx2

)
S Ri

(
xi, j

)∣∣∣∣∣∣ ≤ CN−2
i ln2 Ni. (4.29)

Combining Eqs (4.28) and (4.29), we get∣∣∣T Ni
εi

(S i − si) (xi, j)
∣∣∣ ≤ CN−2

i ln2 Ni. (4.30)

Hence, by utilizing Lemma 3, from Eqs (4.27) and (4.30), we obtain

|Ui − ui| ≤ CN−2
i ln2 Ni.

Case II: Here, we assume µi,2 = εi, we determine the error estimate in a similar way as given
in [33].

Theorem 7. On each edge ei of the k-star graph, let ui,Ni/2 be the solution of the problem (2.1) at
the discontinuity point, and Ui,Ni/2 be the solution of the corresponding discrete problem (4.7) at the
discontinuity point. Then,

sup
0<ϵi≤1

∥Ui,Ni/2 − ui,Ni/2∥ ≤ CN−2
i ln2 Ni,

where C is independent of εi and Ni.

Proof. Let us take the case that µi,2’s are positive constants. Then, we have the following consistency
estimate at the point of discontinuity xi,Ni/2 = di:∣∣∣∣∣T Ni

M,εi
ui,Ni/2 −

hi

2εi
gi,Ni/2+1 −

hi

2εi
gi,Ni/2−1

∣∣∣∣∣ = ∣∣∣∣∣T Ni
Di

ui,Ni/2 −
h+
2εi

gi,Ni/2+1 −
h−
2εi

gi,Ni/2−1

∣∣∣∣∣
≤

∣∣∣T Ni
di

ui,Ni/2 + [u′](di)
∣∣∣

+
h+
2εi

∣∣∣T Ni
εi

ui,Ni/2+1 − gi,Ni/2+1

∣∣∣
+

hi

2εi

∣∣∣T Ni
εi

ui,Ni/2−1 − gi,Ni/2−1

∣∣∣
≤

∣∣∣∣∣−ui,Ni/2+2 + 4ui,Ni/2+1 − 3ui,Ni/2

2hi
− u′i,Ni/2

∣∣∣∣∣
+

∣∣∣∣∣ui,Ni/2−2 − 4ui,Ni/2−1 + 3ui,Ni/2

2hi
− u′i,Ni/2

∣∣∣∣∣
+Ci

∣∣∣Tεiui,Ni/2−1 − T
Ni
εi

Ui,Ni/2−1

∣∣∣
+Ci

∣∣∣Tεiui,Ni/2+1 − T
Ni
εi

Ui,Ni/2+1

∣∣∣
≤ Cih2

i, j

∣∣∣u′′′i (ξi, j)
∣∣∣ .
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Hence, by applying Theorem 4 with hi = 8
√

εi
δi

N−1
i ln Ni, we get∣∣∣Ui,Ni/2 − ui,Ni/2

∣∣∣ ≤ CN−2
i ln2 Ni. (4.31)

For case µi,2 = εi, let us consider the barrier function ηdi , defined by

−εiδ
2ηdi(xi, j) + δiηdi(xi, j) = 0, for all xi, j ∈ Ω

Ni
i ,

ηdi(0) = 0, ηdi(di) = 1, ηdi(1) = 0.

From the discrete maximum principle on each intervals [0, di] and [di, 1], one can easily get

0 ≤ ηdi ≤ 1,

and
T Ni
εi
ηdi(xi, j) = (a(xi, j) − δi)ηdi(xi, j) ≥ 0, for all xi, j ∈ Ω

Ni
i ∪ {di}.

Define the ancillary continuous functions wi,1, wi,2 by

−εiw′′i,1 + δiwi,1 = 0, wi,1(0) = 0, wi,1(di) = 1,

−εiw′′i,2 + δiwi,2 = 0, wi,2(di) = 1, wi,2(1) = 0.

In addition, define

w̃(xi, j) =

wi,1(xi, j), for xi, j ∈ (0, di),
w2(xi, j), for xi, j ∈ (di, 1).

Hence, from [45], we get the following estimate

T Ni
di

w̃ ≤
−C
√
εi
.

Therefore, for the intervals [0, di] and [di, 1] respectively, we have the following estimates

|ηdi(xi, j) − wi,1(xi, j)| ≤ CN−2
i ln2 Ni, j ≤ N/2,

|ηdi(xi, j) − wi,2(xi, j)| ≤ CN−2
i ln2 Ni, j ≥ Ni/2.

For j = Ni/2,

T Ni
di
ηdi(di) =

−ηdi(di + 2hi,Ni/2+1) + 4ηdi(di + hi,Ni/2+1) − 3ηdi(di)
2hi,Ni/2+1

−
ηdi(di − 2hi,Ni/2−1) − 4ηdi(di − hi,Ni/2−1) + 3ηdi(di)

2hi,Ni/2−1

= T Ni
di

w̃ ±
Cih2

i, j

ε
3
2
i

≤
−Ci
√
εi
. (4.32)

For sufficiently large Ni, let us consider the function

∆i(xi, j) = C(N−1
i ln Ni)2 +C

h2

εi
ηdi(xi, j) ± ei(xi, j).
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Note that, for i = Ni/2
T Ni

di
∆i(di) ≤ 0.

Hence, for sufficiently large Ni, we have∣∣∣Ui,Ni/2 − ui,Ni/2

∣∣∣ ≤ CN−2
i ln2 Ni. (4.33)

Hence, we get the required result from Eqs (4.31) and (4.33).

Theorem 8. On each edge ei of the k-star graph domain, let ui be the solution of the problems (2.1)
and (2.2), with the Dirichlet boundary condition (2.3) where uJ is known at the junction point, and
Ui be the solution of the corresponding discrete problems (4.7)–(4.9) with the Dirichlet boundary
condition (4.10) where uJ is known at the junction point. Then

sup
0<ϵi≤1

∥Ui − ui∥D̄Ni
hi

≤ CN−2
i ln2 Ni, on D̄Ni

hi
,

where C is independent of εi and Ni.

Proof. Utilizing the Theorems 5–7, the desired result follows.

Remark 3. The present numerical scheme provides an almost second-order parameter uniform conver-
gence on piecewise uniform meshes; as depicted in Theorems 5–8. This order of accuracy is sharper
than the numerical approximations, where we use upwind discretizations for mixed-type boundary con-
ditions and the Kirchhoff law at the junction point. In addition, the logarithmic term inside the order of
accuracy O(N−2

i ln2 Ni) cannot be removed if the continuous domain is replaced by a piecewise uniform
mesh [48]. The simple structure of this mesh assumes the boundary and interior locations and their
widths in advance. If this information is unavailable, one can use other kinds of adaptive moving meshes
or equidistributed meshes, like in [17, 20, 21] to enhance the rate of accuracy. However, the adaptive
mesh generation algorithms are complicated and these algorithms also increase the computational
costs [22] for coupled systems, which can be greatly reduced by splitting of the coupled matrices [23],
appearing in the original model.

Now, we present the main result of this paper on the k-star graph, which gives the almost second-order
εi-uniform estimate.

Theorem 9. On the k-star graph domain, let uε be the solution of the problems (2.1)–(2.4), and Uε be
the solution of the corresponding discrete problems (4.7)–(4.11). Then,

sup
0<ϵ≤1
∥Uε − uε∥D̄Ni

h
≤ CN−2 ln2 N,

where Ni = N, over all edges; and C is independent of ε and N.

Proof. We have proved in Theorem 8 that an almost second-order error estimate holds throughout
every edge of the k-star graph when uJ is known. In the present k-star graph domain, all the edges are
connected at a single point on the boundary, known as the junction point, where the uJ is unknown.
Thus, we need to solve the solution components over all edges simultaneously, instead of edge-wise, as
uJ is unknown. Note that the continuity condition (2.3) for the continuous problem; is equivalent to
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the continuity condition (4.10) at the discrete problem. In addition, to match the number of equations
with the number of discrete variables, we need another equation, which will be given by the Kirchhoff
equation (4.11). Hence, the number of variables of discrete problems matches the number of equations
for the discrete problem along the k star graph domain. We have proved that the rate of accuracy
along every edge is preserved up to N−2

i ln2 Ni in Theorem 8. This rate is also preserved for the present
discretization of the Kirchhoff equation, see Eq (4.6). In addition, the discrete problems (4.23)–(4.26) is
uniformly stable, as provided in Lemma 3. Hence, we can write the following:

Now, let Uε and uε be the discrete and analytical solutions on the k-star graph, respectively. Then,
the error estimate on the k-star graph is given by:

sup
0<ϵ≤1
∥Uε − uε∥D̄Ni

h
≤ CN−2 ln2 N,

where N−2 ln2 N = max(N−2
i ln2 Ni) for all i = 1, 2, . . . , k, and C is a constant independent of ε and N,

and D̄N
h represents the k-star graph domain.

Hence, the maximum global error on the entire k-star graph domain is independent of ε and bounded
by CN−2 ln2 N.

5. Numerical experiments

In this section, we discuss the numerical experiments to verify the theoretical results, obtained in the
earlier sections. Here, we consider the perturbation parameters from the set ε = (ε1, ε2, ε3) and use the
same number of mesh intervals N for k = 3 star graph in Example 1. We take the singular perturbation
parameters from the set S = {2−(p−1); p = 1, 2, · · · , 40}, and discretize the problem having the transition
parameters τ1, τ2, and τ3 on the 3-star graph. We compute the nodal errors of the approximate solution
using the double mesh principle [17, 21] as follows:

EN
i = max

εi∈S
max
0≤ j≤N

|UN,εi
i, j − U2N,εi

i, j |, EN = max
i=1,2,3
{EN

i },

where UN,εi
i, j represents the approximate solution components at xi, j across the ith edge of the 3-star

graph with N + 1 mesh points for each edge, and U2N,εi
i, j represents the solution with 2N + 1 mesh points,

obtained by bisecting the previous mesh points on each edge. The corresponding order of convergence
is calculated as follows:

ρN
i = log2(EN

i /E
2N
i ), ρN = log2(EN/E2N).

Example 1. Let us consider the following nonlinear reaction-diffusion problem with discontinuous
source terms on the 3-star graph over [0, 1] (see Figure 2):

Tε1u1(x) := −ε1u′′1 + (1 − u2
1)u1 =

0.1 − x(x − 0.5), for 0 ≤ x < 0.5,
−0.2 − (x − 1)(x − 0.5), for 0.5 < x ≤ 1,

(5.1)

Tε2u2(x) := −ε2u′′2 + u2 − 0.5 − (0.5 − u2)5 + eu2
2 =

ex, for x < 0.5,
1 − log(|x − 0.5| + 1), for x ≥ 0.5,

(5.2)

Tε3u3(x) := −ε3u′′3 + u3 =

0.7, for 0 ≤ x < 0.5,
−0.6, for 0.5 < x ≤ 1,

(5.3)
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x = 0
x = 0

x = 0

x = 1

e1

e2

e3

u1(0)

u2(0)
u3(0)

Figure 2. 3- Star Graph.

with any one of the boundary conditions at the free vertices

(a)


u1(0) = 0,
u2(0) = 0,
u3(0) = 0,

(b)


2u1(0) − u′1(0) = 1,
u2(0) − 4u′2(0) = 0,
2u3(0) − u′3(0) = 1,

(c)


2u1(0) − ε1u′1(0) = 1,
u2(0) − 3ε2u′2(0) = 3,
2u3(0) − ε3u′3(0) = 8.

(5.4)

The continuity condition at the junction point is

u1(1) = u2(1) = u3(1) = uJ, (5.5)

where uJ is unknown (here, J stands for junction point), and Kirchhoff’s condition at the junction
point is

3∑
i=1

εiu′i(1) = 0. (5.6)

We use Newton’s quasi-linearization technique to linearize the given nonlinear problem. Let us
first approximate Kirchhoff’s junction law with the standard upwind scheme. At discontinuity points,
we employ the scheme (4.8), and for Neumann conditions, a first-order upwind approximation of the
derivative is utilized. Tables 1–3 depict the uniform errors of overall solution components and the
corresponding linear accuracy of the numerical solution. Hence, it illustrates that the upwind scheme
yields an almost first-order uniformly convergent approximate solution of the current Example 1.

Table 1. Uniform errors overall solution components across all edges of 3-star graph, and
corresponding rate of convergences throughout the discrete domain, for Example 1(a).

N 64 128 256 512 1024
EN 1.7498e-02 9.8782e-03 4.9769e-03 2.6413e-03 1.3748e-03
ρN 8.2487e-01 9.8900e-01 9.1400e-01 9.4203e-01
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Table 2. Uniform errors over all solution components across all edges of the 3-star graph, and
corresponding rate of convergences throughout the discrete domain, for Example 1(b).

N 64 128 256 512 1024
EN 6.0992e-03 3.1313e-03 1.4399e-03 6.6872e-04 3.2107e-04
ρN 9.6184e-01 1.1208 1.1065 1.0585

Table 3. Uniform errors over all solution components across all edges of the 3-star graph, and
corresponding rate of convergences throughout the discrete domain, for Example 1(c).

N 64 128 256 512 1024
EN 2.2695e-02 1.5914e-02 9.8826e-03 5.7780e-03 3.2725e-03
ρN 5.1209e-01 6.8735e-01 7.7432e-01 8.2017e-01

Moreover, we apply our proposed scheme, which utilizes a three-point scheme (4.9) for the first-
order derivatives in Kirchhoff’s junction law (4.11) and mixed boundary conditions. At the points of
discontinuities, we employ a five-point scheme (4.8) for higher-order accuracy. We consider three
different types of boundary conditions for Example 1: Dirichlet boundary conditions (5.4a), mixed
boundary conditions (5.4b), and scaled mixed boundary conditions (5.4c). By applying this scheme,
we obtain a higher-order accurate solution for each boundary condition. To justify this, we find the
uniform maximum error on each edge of the 3-star graph domain. Then, we take the maximum of these
errors over all edges of the 3-star graph domain to compute the uniform errors. Let us first discuss
the Example 1 with the boundary conditions (5.4a): Table 4 shows that the maximum error estimate
on the single edge e1 for problem (5.1) with the boundary condition given in (5.4a), where ε ∈ S.
Similarly, Table 5 presents the maximum error for problem (5.2) on the edge e2, with the boundary
conditions (5.4a), where we take the perturbation parameters from the set ε ∈ S. Analogously, Table 6
shows the maximum error for problem (5.3) on the edge e3, with the boundary conditions (5.4a).

Table 4. Uniform maximum error and its rate of accuracy across the edge e1 for component
u1 for Example 1(a) with ε ∈ S.

N 64 128 256 512 1024
EN

1 4.5593e-03 2.0357e-03 7.0952e-04 2.3028e-04 7.1749e-05
ρN

1 1.1633 1.5206 1.6234 1.6824

Table 5. Uniform maximum error and its rate of accuracy across the edge e2 for solution
component u2 for Example 1(a) with ε ∈ S.

N 64 128 256 512 1024
EN

2 4.0778e-03 1.4439e-03 4.9194e-04 1.5719e-04 4.8688e-05
ρN

2 1.4978 1.5534 1.6460 1.6909
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Table 6. Uniform maximum error and its rate of accuracy across the edge e3 for solution
component u3 for Example 1(a) with ε ∈ S.

N 64 128 256 512 1024
EN

3 7.9016e-03 2.8153e-03 9.6233e-04 3.0754e-04 1.2652e-04
ρN

3 1.4889 1.5487 1.6458 1.2814

Note that the nonlinear problems (5.1)–(5.3) are coupled at the junction point. Hence, we impose
the continuity condition (5.5) and Kirchhoff’s condition (5.6) to preserve the continuity of the solution,
even though the source function is non-smooth. Now, we produce the effect of these conditions and their
discretizations for the coupled system (1) with the boundary conditions (5.4a), continuity condition (5.5),
and Kirchhoff’s condition (5.6). This is shown in Table 7, where we also observe an almost second-order
convergence overall perturbation parameters from the range ε ∈ S.

Table 7. Uniform errors overall solution components across all edges of the 3-star graph, and
corresponding rate of convergences throughout the discrete domain, for Example 1(a).

N 64 128 256 512 1024
EN 7.9016e-03 2.8153e-03 9.6233e-04 3.0754e-04 1.2652e-04
ρN 1.4889 1.5487 1.6458 1.2814

Next, we discuss the conditions at the free vertices of the 3-star graph. The maximum error and
corresponding order of convergence on each edge of the 3-star graph are provided for this example,
with the boundary conditions (5.4b), continuity condition (5.5), and Kirchhoff’s condition (5.6). The
results shown in Tables 8–10, clearly indicate almost second-order uniform convergence. The coupled
system in this example with boundary conditions (5.4b) with (5.5) and (5.6), also demonstrates the
almost second-order convergence, as presented in Table 11, for ε ∈ S. Similarly, The results shown in
Tables 12–14, clearly indicate almost second-order uniform convergence for each solution component
u1, u2, and u3 respectively for (5.4c) along with the (5.5) and (5.6). Finally, considering the mixed
boundary conditions (5.4c), the numerical approximation for the coupled system of the 3-star graph (see
Figure 1) shows the almost uniform second-order convergence, as seen in Table 15, for ε ∈ S. Note
that the obtained accuracy is higher than the discretizations, where the stiffness matrices are generated
through the simple upwind two-point schemes for first-order derivatives. We want to note that the
round-off errors can affect the order of accuracy when the tolerance is minimal, like 10−6, and dominate
the errors.

Table 8. Uniform maximum error and its rate of convergence across the whole domain for
approximating solution component u1 along edge e1, for Example 1(b), with ε ∈ S.

N 64 128 256 512 1024
EN

1 1.1154e-02 7.1656e-03 2.3076e-03 7.9499e-04 2.9411e-04
ρN

1 0.63835 1.6347 1.5374 1.4346
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Table 9. Uniform maximum error and its rate of convergence across the edge e2 for solution
component u2 for Example 1(b) with ε ∈ S.

N 64 128 256 512 1024
EN

2 8.4386e-03 4.1114e-03 1.4553e-03 4.9621e-04 1.8232e-04
ρN

2 1.0374 1.4983 1.5523 1.4445

Table 10. Uniform maximum error and its rate of convergence across the edge e3 for solution
component u3 for Example 1(b) with ε ∈ S.

N 64 128 256 512 1024
EN

3 1.2070e-02 4.8465e-03 1.8153e-03 6.4873e-04 2.5092e-04
ρN

3 1.3164 1.4167 1.4845 1.3704

Table 11. Uniform error and its rate of convergence overall solution components across
the 3-star graphs throughout the discrete domain, for Example 1(b).

N 64 128 256 512 1024
EN 1.2070e-02 4.8465e-03 1.8153e-03 6.4873e-04 2.5092e-04
ρN 1.3164 1.4167 1.4845 1.3704

Table 12. Uniform maximum error and its rate of convergence across the whole domain for
approximating solution component u1 along edge e1, for Example 1(c), with ε ∈ S.

N 64 128 256 512 1024
EN

1 2.7623e-01 7.9917e-02 2.0449e-02 5.6750e-03 1.7093e-03
ρN

1 1.7893 1.9665 1.8493 1.7312

Table 13. Uniform maximum error and its rate of convergence across the edge e2 for solution
component u2 for Example 1(c) with ε ∈ S.

N 64 128 256 512 1024
EN

2 8.3638e-01 1.1290e-01 2.6808e-02 7.2255e-03 2.0394e-03
ρN

2 2.8891 2.0743 1.8915 1.8250

Table 14. Uniform maximum error and its rate of convergence across the edge e3 for solution
component u3 for Example 1(c) with ε ∈ S.

N 64 128 256 512 1024
EN

3 5.4386e-01 1.4482e-01 3.9684e-02 1.1364e-02 3.4270e-03
ρN

3 1.9090 1.8677 1.8041 1.7294

Networks and Heterogeneous Media Volume 19, Issue 3, 1085–1115.



1109

Table 15. Uniform error over all solution components across the 3-star graph and correspond-
ing rate of convergence throughout the discrete domain, for Example 1(c).

N 64 128 256 512 1024
EN 8.3638e-01 1.4482e-01 3.9684e-02 1.1364e-02 3.4270e-03
ρN 2.5299 1.8677 1.8041 1.7294

The boundary and interior layers, along with their sharpness, are visible across all edges of the
solution components, as shown in Figures 3a–5a for very small values of perturbation parameters.
Additionally, Figures 3b–5b illustrate that the experimental rate of convergences match with the
established theoretical rate of convergences over all edges of the 3-star graphs. Moreover, Figure 6
demonstrates that the solution components along the corresponding edges agree with the continuity
condition (4.10).

Hence, we conclude that a suitable transformation of row entries of stiffness matrices (corresponding
to the three-point scheme at interior and boundary points and the five-point scheme at the point of
discontinuity) can lead to higher-order accurate solutions (compared to first order accurate solutions as
available in [49]) for nonlinear reaction-dominated problems that are connected by the 3-star graph.
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Figure 3. Loglog plot of uniform errors overall solution components.
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Figure 4. Boundary and interior layers originated solution components with N = 256 and
εi = 2−40.
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Figure 5. Layers originated solution components and Loglog plot for Example 1(c).
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(a) Magnified version of Figure 3a .
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(b) Magnified version of Figure 5a.

Figure 6. A magnified view of the solution components near the right boundary is provided,
here. This view clearly illustrates that each solution component adheres to the continuity
condition (5.5) at the junction point (1, 1.766e−13).

6. Conclusions

We examine a semi-linear singularly perturbed reaction-diffusion problem with non-smooth data on
a k-star graph. Here, we consider all possible boundary conditions at the free boundary, specifically at
the tail of the edge. At the junction point of the graph, we impose the natural and relevant requirements
of continuity and Kirchhoff’s junction law. Kirchhoff’s junction law involves the first derivative at
the junction point. Hence this makes the original problem coupled. First, we apply the flux condition
at the free boundary, which is approximated by a first-order upwind approximation. To enhance this
accuracy, we employ a three-point scheme for first-order derivatives and a central difference scheme
for second-order derivatives. Generally, these approximations do not lead to an M-matrix or diagonal
dominant structure of the stiffness matrix. Hence, we transform this scheme and establish sufficient
conditions under which the stiffness matrix will be diagonally dominant. Additionally, we conduct a
rigorous convergence analysis of this scheme, demonstrating almost second-order accuracy for each
problem defined on the edges of the graph and for the coupled system defined on the star graph as
well. Our numerical experiments further confirm the practical significance of our scheme, supported by
experimental evidence. In the future, we aim to extend this work to a system of weakly and strongly
coupled differential equations connected by more general graphs, such as cycles and complete graphs.
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In these cases, the computational costs will be high and will be considered future goals.
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