

NHM, 19(3): 992–1012. [DOI: 10.3934](http://dx.doi.org/10.3934/nhm.2024044)/nhm.2024044 Received: 11 May 2024 Revised: 03 September 2024 Accepted: 18 September 2024 Published: 26 September 2024

http://[www.aimspress.com](http://http://www.aimspress.com/journal/nhm)/journal/nhm

Research article

Microstructures and anti-phase boundaries in long-range lattice systems

Andrea Braides *, Edoardo Voglino and Matteo Zanardini

SISSA, via Bonomea 265, Trieste, Italy

* Correspondence: Email: abraides@sissa.it.

Abstract: We study the effect of long-range interactions in non-convex one-dimensional lattice systems in the simplified yet meaningful assumption that the relevant long-range interactions are between *M*-neighbors for some $M \geq 2$ and are convex. If short-range interactions are non-convex, we then have a competition between short-range oscillations and long-range ordering. In the case of a double-well nearest-neighbor potential, thanks to a recent result by Braides, Causin, Solci, and Truskinovsky, we are able to show that such a competition generates *M*-periodic minimizers whose arrangements are driven by an interfacial energy. Given *M*, the shape of such minimizers is universal and independent of the details of the energies, but the number and shapes of such minimizers increase as *M* diverges.

Keywords: lattice systems; long-range interactions; non-convex energies; discrete-to-continuum; interfaces; Gamma-convergence

1. Introduction

In this paper we study the behavior of boundary-value minimum problems related to one-dimensional long-range lattice energies, which in the greatest generality can be stated as the asymptotic behavior as $n \to +\infty$ of solutions $u^n = \{u^n_i\}_i$ of the minimization of functionals of the form

$$
E_n(u) = \sum_{k=1}^n \sum_{i=k}^n \psi_k(u_i - u_{i-k})
$$
\n(1.1)

on $n + 1$ -tuples $u = \{u_i\}$ of parameters with $u_i \in \mathbb{R}$, subjected to boundary conditions $u_0 = 0$ and $u_n = n\ell$. In this generality, the problem is very complex and leads to a variety of different issues with competing short and long-range oscillations and concentration effect, except for the trivial case when all ψ_k are convex, for which the minimizer is essentially unique and coincides with the linear function $u_i = i\ell$, except for boundary effects, which are asymptotically negligible upon some technical assumptions on ψ_k . Nevertheless, an averaged description of minimizers is possible in the spirit of

^Γ-convergence. To this end, we regard the energies *^Eⁿ* as defined on functions *^u*: [0, 1] [→] ^R, with domain the piecewise-affine functions defined, for some $(n + 1)$ -tuple $\{u_i\}_i$, as the interpolation of the points $\{(i/n, u_i)\}_{i=0,\dots,n}$. The Γ -convergence of such energies can then be studied with respect to the L^1 -convergence. Upon some growth hypotheses on u_k that ensure that limits of sequences u_k with energy convergence. Upon some growth hypotheses on ψ_k that ensure that limits of sequences u_n with energy of order *n* belong to some $W^{1,p}(\Omega, 1)$ the Γ limit of $\frac{1}{2}F$ can be written as of order *n* belong to some $W^{1,p}(0, 1)$, the Γ-limit of $\frac{1}{n}E_n$ can be written as

$$
F(u) = \int_0^1 \psi_{\text{hom}}(u')dt,
$$
\n(1.2)

for a convex function ψ_{hom} resulting from a nonlinear homogenization process (see [\[5\]](#page-20-0) and [\[2\]](#page-19-0) for the higher-dimensional case).

The Γ-convergence above only ensures that the (interpolations of the) minimizers of boundary-value problems for *Eⁿ* converge to the corresponding minimizer, or to one of the minimizers, of the analogous continuum boundary-value problem related to *F*, but brings no further information on their behavior, which may depend on ℓ . Note that if ψ_{hom} is strictly convex at ℓ then the unique minimizer is the linear function $u(x) = \ell x$, while at non-strictly convex points discrete solutions may converge to a particular choice among minimizers.

A particular class of energies for which an analysis of ψ_{hom} leading to a description of the convergence of discrete minimizers has been possible is the one studied in [\[7\]](#page-20-1), where the non-convexity is confined to nearest-neighbour interactions governed by $\psi = \psi_1$, and the long-range potentials are quadratic; that is, $\psi_k(z) = a_k z^2$, with a_k non negative, and the energies can be written as

$$
E_n(u) = \sum_{i=1}^n \psi(u_i - u_{i-1}) + \sum_{k=2}^n \sum_{i=k}^n a_k (u_i - u_{i-k})^2.
$$
 (1.3)

In that case, the properties of minimizers can be linked to properties of the sequence *a^k* . In particular, in [\[7\]](#page-20-1) the case of double-well ψ is studied, for which a prototype is

$$
\psi(z) = \min\{(z-1)^2, (z+1)^2\},\tag{1.4}
$$

in which case it is possible to describe the patterns of the minimizers by tracing whether the value $z_i = u_i - u_{i-1}$ lies in one "well" (i.e., $z_i \le 0$) or the other one (i.e., $z_i \ge 0$). As such patterns of minimizers are concerned, we recall the following interesting characterization of minimizers of energies [\(1.3\)](#page-1-0) subjected to Dirichlet boundary conditions $u_0 = 0$ and $u_n = \ell n$ in the case when $a_k = 0$ for all $k \ge 2$ except for one value $k = M$: either

- (a) minimizers u_i are such that $z_i = u_i u_{i-1}$ tend (for *n* large) to be *M*-periodic with average ℓ , and take only two values: one, for *m* indices in the period, in one well and the second one, for $M - m$ indices in the period, in the second well, or
- (b) z_i defined as above tends (for *n* large) to be a mixture of two periodic functions as in (a) with some ' and ℓ '' in the place of ℓ and for two consecutive values *m* and $m + 1$ between 0 and *M*.

This characterization extends a formula known before when only $a_2 \neq 0$ (see [\[5\]](#page-20-0)), in which case we have the only three possibilities that either the parameters z_i tends to take a constant value in the first or in the second well, or that we have a 2-periodic pattern mixing values in both wells.

The appearance of microstructure is a recurring feature of non-convex variational systems. Such microstructures may be driven by a scale-free relaxation phenomenon described by convexification or quasi-convexification of the original energy densities (see, e.g., the books by Buttazzo [\[10\]](#page-20-2) or Dacorogna [\[11\]](#page-20-3)), or present more regular patterns at a specific scale due to competing long-range and short-range effects (as in the seminal paper by S. Müller [[14\]](#page-20-4); see also [\[1\]](#page-19-1)). Minimizers of E_n are similar to the latter, with oscillations both driven by short- and long-range microscopic interactions and by mesoscopic non-convexity.

Simple examples of variational problems exhibiting microscopic oscillations are lattice systems defined on "spin functions", i.e., functions taking only a finite number of values, the traditional choice being −1 and 1. If the energies are "frustrated", that is, the system presents interaction potentials that cannot be all separately minimized at the same time by a single function, then minimization may produce periodically modulated phases (see [\[3,](#page-19-2) Chapter 7]). Often, the determination of the period and shape of such minimizers is a nontrivial matter as in the case of infinite-range antiferromagnetic systems studied by Giuliani et al. [\[13\]](#page-20-5), and has interesting continuum counterparts (see, e.g., [\[12\]](#page-20-6)).

In the case of double-well problems, the location of the parameter in one or the other well relaxes the strict constraint that the parameter takes two values, that is, the constraint $z \in \{-1, 1\}$ is replaced by a potential $\psi(z)$ where ψ is a strictly positive continuous function minimized in {-1, 1}. To distinguish between them, we will call the first type of parameters "hard spins" and the second ones "soft spins". For the prototypical double-well potential ψ in Eq [\(1.4\)](#page-1-1), it is clear that the two "wells" coincide with *z* negative and *z* positive. If also long-range interactions are taken into account, minimization for soft spins may produce patterns analogous to those for frustrated hard spins. Furthermore, the "soft" approach allows us to include more easily boundary-value problems as above.

In this paper we carry on a fine analysis of the energies E_n in [\(1.3\)](#page-1-0) by examining not only minimizers, but also parameters u_i whose energy in Eq [\(1.3\)](#page-1-0) differs from the minimum by a finite quantity bounded as *n* tends to +∞. This is done by using a development by Γ-convergence ([\[4,](#page-19-3) Section 1.10] and [\[6\]](#page-20-7)), and it is performed for double-well ψ and $a_k \neq 0$ only for $k = M$, so that the descriptions (a) and (b) above provide the value of minima. The meaningful definition of convergence for functions *u* depends on whether we are in case (a) or (b) above. For simplicity of illustration, consider that the boundary datum ℓ is such that case (a) holds for some m . Then, given a sequence u_i^n with bounded energy, the sequence is compact in the following sense: there are a finite number of indices i_j^n , which we may suppose to converge after scaling, that is, $i_j^n/n \to x_j$, such that in
the intervals in the complement of such indices, each function coincides with an *M* periodic the intervals in the complement of such indices, each function coincides with an *M*-periodic minimizer \bar{u}_i as in (a), up to an arbitrary small error. Hence, up to subsequences, each such sequence determines a continuum limit **u** whose derivative **u**' takes values in the finite set M_m of M-periodic minimizers as in (a). A similar argument holds in case (b), for which we can conclude that the continuum limit **u** has derivative with values in $M_m \cup M_{m+1}$. Once such a piecewise-affine limit is defined, we will prove that the Γ-limit has the form

$$
F(u) = \sum_{t \in S(\mathbf{u}')} \Phi(\mathbf{u}'(t^-), \mathbf{u}'(t^+)),
$$
\n(1.5)

where $S(\mathbf{u}')$ denotes the discontinuity set of \mathbf{u}' in (0, 1). This shows that minimization may give rise
to microscopic patterns \mathbf{M} and microscopic incompatibility may give rise to interfaces between to microscopic patterns M*m*, and microscopic incompatibility may give rise to interfaces between elements of M_m (antiphase boundaries) and/or interfaces between elements of M_m and M_{m+1}

(macroscopic interfaces). In order to avoid boundary effects, the analysis will be carried out under some periodicity assumptions.

It is interesting to note that even though the values of the slopes of microscopic minimizers in M_m depend on the average slope or boundary datum, ℓ , the set M_m has a 'universal' form, and its elements are in correspondence with *M*-tuples with *m* values equal to 1 and (*m* − 1)-values equal to 0 (a prototypical version of this is in the case $m = 2$; see [\[8\]](#page-20-8)). A final remark is that the presence of *M*-th-neighbor interaction is often compared to that of a singular perturbation with a term containing the *M*-th derivative for continuum double-well problems. However, while in the continuum case the resulting phase-transition energy is essentially independent of *M* (see [\[9,](#page-20-9) [15\]](#page-20-10)), in the discrete case our result shows an increasing complexity of minimizers as *M* increases.

2. Statement of the result

We will fix $M \in \mathbb{N}$ with $M \ge 2$ and functions $\psi_1, \psi_M : \mathbb{R} \to [0, +\infty)$ satisfying the coerciveness condition

$$
\lim_{|z| \to \infty} \frac{\psi_1(z)}{|z|} = +\infty.
$$
\n(2.1)

We want to study the overall behavior of functionals with competing nearest-neighbor and M-th-neighbor interactions driven by the potential ψ_1 and ψ_M , respectively, of the form

$$
\sum_{i} \psi_1 (u_{i+1} - u_i) + \sum_{i} \psi_M \Big(\frac{u_{i+M} - u_i}{M} \Big), \tag{2.2}
$$

defined on discrete functions indexed on \mathbb{Z} . In our assumptions the potential ψ_1 will be a doublewell energy density which favors oscillations through non-convexity, while ψ_M is a convex potential favoring long-range ordering.

2.1. Analysis at the bulk scaling

We preliminary analyze a scaled version, whose analysis will suggest a renormalization argument. We use a standard scaling procedure that allows us to use an analytic approach by Γ-convergence, introducing a reference interval [0, 1] and the small parameter $\varepsilon_n = \frac{1}{n}$ with $n \in \mathbb{N}$. The energies above, when we take into account the interaction involved on $n + 1$ sites, now parameterized by $\varepsilon_n i$ with $i \in \{0, \ldots, n\}$, take the form

$$
\sum_{i=0}^{n-1} \psi_1 \Big(\frac{u_{i+1} - u_i}{\varepsilon_n} \Big) + \sum_{i=0}^{n-1} \psi_M \Big(\frac{u_{i+M} - u_i}{M \varepsilon_n} \Big). \tag{2.3}
$$

In this notation, $u_i = u(\epsilon_n i)$. Note that in the last sum we also take into account the values of u_i for $i \in \{n, \ldots, n + M - 1\}$. In the sequel, in order not to have boundary effects, we will define u_i for all values of *i* using some periodic conditions.

After this parameterization, we can identify such discrete functions with the piecewise-affine interpolation on [0, 1] of the sites $(i\varepsilon_n, u_i)$. We define the space of such functions

 $\mathcal{A}_n(0, 1) = \{u : [0, 1] \to \mathbb{R} \text{ continuous, and affine on } (i\varepsilon_n, (i+1)\varepsilon_n), i \in \{0, \ldots, n-1\} \},$

and the scaled functionals

$$
E_{n,M}(u) = \sum_{i=0}^{n-1} \varepsilon_n \psi_1 \Big(\frac{u_{i+1} - u_i}{\varepsilon_n} \Big) + \sum_{i=0}^{n-1} \varepsilon_n \psi_M \Big(\frac{u_{i+M} - u_i}{M \varepsilon_n} \Big), \tag{2.4}
$$

if *u* ∈ $\mathcal{A}_n(0, 1)$, while $E_{n,M}(u) = +\infty$ if otherwise *u* ∈ $L^1(0, 1) \setminus \mathcal{A}_n(0, 1)$. Since

$$
\sum_{i=0}^{n-1} \varepsilon_n \psi_1 \Big(\frac{u_{i+1} - u_i}{\varepsilon_n} \Big) = \int_0^1 \psi_1(u') \, dt,
$$

condition [\(2.1\)](#page-3-0) ensures that functionals $E_{n,M}$ are equicoercive in $W^{1,1}(0, 1)$, namely, that if u^n is bounded
in $L^{1}(0, 1)$ and $F_{n+1}(u^n) \le C \le \pm \infty$, then up to subsequences, u^n converges weakly in $W^{1,1}(0, 1)$ in $L^1(0, 1)$ and $E_{n,M}(u^n) \leq C < +\infty$, then, up to subsequences, u^n converges weakly in $W^{1,1}(0, 1)$ and strongly in $L^1(0, 1)$. The E-limit of $F_{n,m}$ with respect to this convergence is described in the following strongly in $L^1(0, 1)$. The Γ-limit of $E_{n,M}$ with respect to this convergence is described in the following
result where we also consider periodic conditions. To that end, we fix $\ell \in \mathbb{R}$ and define result, where we also consider periodic conditions. To that end, we fix $\ell \in \mathbb{R}$ and define

$$
W_{\#,\ell}^{1,1}(0,1) = \Big\{ u \in W_{\text{loc}}^{1,1}(\mathbb{R}) : u(t) - \ell t \text{ is 1-periodic} \Big\},\
$$

whose discrete counterpart is

$$
\mathcal{A}_{n,\ell}^{\#}(0,1)=\{u\in W_{\#, \ell}^{1,1}(0,1): u|_{[0,1]}\in \mathcal{A}_n(0,1)\}.
$$

Theorem 2.1. *The functionals* $E_{n,M}$ *Γ-converge, with respect to the L*¹-topology, to the functional *defined on W*¹,¹ (0, 1) *by*

$$
\int_0^1 \psi_0^{**}(u'(t)) \, dt,\tag{2.5}
$$

where ψ_0 *is given by:*

$$
\psi_0(z) = \psi_M(z) + \frac{1}{M} \min \left\{ \sum_{k=1}^M \psi_1(z_k) : \sum_{k=1}^M z_k = Mz, z_1, \dots z_M \in \mathbb{R} \right\}.
$$
 (2.6)

Furthermore, the convergence is compatible with the addition of periodic condition; that is, with fixed $\ell \in \mathbb{R}$ *, the functionals defined by*

$$
E_{n,M}^{\ell}(u) = \begin{cases} E_{n,M}(u) & u \in \mathcal{A}_{n,\ell}^{\#}(0,1) \\ +\infty & otherwise \end{cases}
$$

Γ*-converge to*

$$
E_M^{\ell}(u) = \begin{cases} \int_0^1 \psi_0^{**}(u'(t)) dt & u \in W_{\#, \ell}^{1,1}(0,1) \\ +\infty & otherwise in L^1(0,1). \end{cases}
$$

The proof of this result can be found in [\[7\]](#page-20-1) (see also [\[5\]](#page-20-0) for the case $M = 2$).

2.2. Microscopic analysis

The main point of the analysis at the bulk scaling is the definition of ψ_0 , which will allow us to renormalize energies [\(2.2\)](#page-3-1) by subtracting the affine term r_ℓ given by the tangent to ψ_0^{**} $_{0}^{**}$ at ℓ and rewriting the sum as

$$
\sum_{i=0}^{n-1} \left(\psi_M \Big(\frac{u_{i+M} - u_i}{M} \Big) + \frac{1}{M} \sum_{k=0}^{M-1} \psi_1(u_{i+k+1} - u_{i+k}) - r_\ell \Big(\frac{u_{i+M} - u_i}{M} \Big) \right). \tag{2.7}
$$

This will be formalized as the computation of a higher-order ^Γ-limit starting from *^Eⁿ*,*^M*. We will consider periodic boundary conditions. We also make the simplifying assumption that *n* is a multiple of *M*, the general case requiring a more complex notation being stated explicitly in Section [3.2,](#page-11-0) taking into account possible mismatch at the boundary due to incommensurability. In this case, after noting that $\min E_M^{\ell} = \psi_0^{**}$
can consider the ex-^{**}(ℓ), and letting $m = m_{\ell}$ denote the slope of the straight line tangent to ψ_0^{**} i_0^* at ℓ , we can consider the energies

$$
E_{n,M}^{1}(u) = E_{n,M}^{1,\ell}(u) := \frac{E_{n,M}^{\ell}(u) - \min E_M^{\ell}}{\varepsilon_n} = \frac{E_{n,M}^{\ell}(u) - \psi_0^{**}(\ell)}{\varepsilon_n}
$$

\n
$$
= \sum_{i=0}^{n-1} \left(\psi_M \left(\frac{u_{i+M} - u_i}{M\varepsilon_n} \right) + \frac{1}{M} \sum_{k=0}^{M-1} \psi_1 \left(\frac{u_{i+k+1} - u_{i+k}}{\varepsilon_n} \right) - \psi_0^{**}(\ell) \right)
$$

\n
$$
= \sum_{i=0}^{n-1} \left(\psi_M \left(\frac{u_{i+M} - u_i}{M\varepsilon_n} \right) + \frac{1}{M} \sum_{k=0}^{M-1} \psi_1 \left(\frac{u_{i+k+1} - u_{i+k}}{\varepsilon_n} \right) - \psi_0^{**}(\ell) - m \left(\frac{u_{i+M} - u_i}{M\varepsilon_n} - \ell \right) \right)
$$

\n
$$
= \sum_{i=0}^{n-1} \left(\psi_M \left(\frac{u_{i+M} - u_i}{M\varepsilon_n} \right) + \frac{1}{M} \sum_{k=0}^{M-1} \psi_1 \left(\frac{u_{i+k+1} - u_{i+k}}{\varepsilon_n} \right) - r_\ell \left(\frac{u_{i+M} - u_i}{M\varepsilon_n} \right) \right), \tag{2.8}
$$

where we have used that $\sum_{i=0}^{n-1} (u_{i+M} - u_i) = M\ell$ thanks to the *n*-periodicity of $u_i - \ell \varepsilon_n i$.

Until now we have made no assumptions on u_i and u_i . We study a particular case

Until now we have made no assumptions on ψ_1 and ψ_M . We study a particular case in which ψ_M is a strictly convex function and ψ_1 is a double-well potential of the form

$$
\psi_1(z) = \min\{W_1(z), W_2(z)\},\
$$

where W_1 and W_2 are two smooth convex functions. Note that this is not a very restrictive hypothesis since in the determination of the Γ-limit, only the values of W_1 and W_2 close to the bottom of the wells will be taken into account, so that more general ψ_1 of the double-well type can be taken into account. We also make the assumption that W_1 and W_2 satisfy

$$
W_i(z) \geq cz^2 - \frac{1}{c},
$$

for some $c > 0$. This structure provides a useful representation of ψ_0 . Indeed, we can distinguish two sets $A_1 = \{x \in \mathbb{R} \mid \psi_1(x) = W_1(x)\}$ and $A_2 = \{x \in \mathbb{R} \mid \psi_1(x) = W_2(x)\}$. Then, we can rewrite the minimum problem in ψ_0 as follows:

$$
\min\left\{\sum_{k=1}^M \psi_1(z_k): \sum_{k=1}^M z_k = Mz\right\}
$$

$$
= \min_{0 \le j \le M} \min \left\{ \sum_{k=1}^{j} W_1(z_k) + \sum_{k=j+1}^{M} W_2(z_k) : \sum_{k=1}^{M} z_k = Mz, z_1, \dots, z_j \in A_1, z_{j+1}, \dots, z_M \in A_2 \right\}
$$

$$
= \min_{0 \le j \le M} \min \left\{ jW_1(z_1) + (M - j)W_2(z_2) : jz_1 + (M - j)z_2 = Mz, z_1 \in A_1, z_2 \in A_2 \right\},
$$

where the last equality follows from the Jensen inequality. Then, we can define $\overline{\psi}_j(z) = \psi_M(z) + \frac{1}{k}$
where $f(z)$ is the value of the inner minimum problem of above. In this way, ψ_k can be represented $\frac{1}{M}f_j(z)$, where $f_i(z)$ is the value of the inner minimum problem of above. In this way, ψ_0 can be represented as follows:

Figure 1. representation of ψ_0 .

See Figure [1](#page-6-0) for a typical form of ψ_0 .

Remark 2.2. A nontrivial result in [\[7\]](#page-20-1) (see Theorem 4.1 therein) shows that when ψ_M is a parabola, ψ_0^{**}
will alternate nondegenerate intervals \overline{z}^l , z^r1 in which $\psi^{**}(z) = \psi_0(z) - \overline{\psi_0}(z)$ and interval $\mathbf 0$ *will alternate nondegenerate intervals* $[z_j^l, z_j^r]$ *in which* ψ_0^{**}
for $i > 1$, in which $\psi_0^{**}(\tau) = r(\tau)$ is a straight line. In this $\psi_0^*(z) = \psi_0(z) = \overline{\psi}_j(z)$ and intervals $[z_{j-1}^r, z_j^l]$,
is notation $z^l = -\infty$ and $z^r = +\infty$. We will $f \circ r \neq 1$, in which ψ_0^{**}
denote $K = (z^l, z^r)$ and $\chi_0^{**}(z) = r_j(z)$ *is a straight line. In this notation,* $z_0^l = -\infty$ *and* $z_M^r = +\infty$ *. We will* denote $K_j = (z_j^l, z_j^r)$ and $J_j = [z_{j-1}^r, z_j^l]$. We note that the result holds for any strictly convex ψ_M with the same proof. Referring to (2.8), this description gives that if $\ell \in K$, then *same proof. Referring to* [\(2.8\)](#page-5-0), this description gives that if $\ell \in K_j$, then

$$
r_{\ell}(z) = \psi_0(\ell) + \psi'_0(\ell)(z - \ell) = \overline{\psi}_j(\ell) + \overline{\psi}'_j(\ell)(z - \ell),
$$

while if $\ell \in J_j$, then r_ℓ is the affine function through $(z_{j-1}^r, \overline{\psi}_{j-1}(z_{j-1}^r))$ and $(z_j^l, \overline{\psi}_j(z_j^l))$.

Note that if we consider

$$
\mathcal{E}_n^i(u) = \psi_M\left(\frac{u_{i+M}-u_i}{M\varepsilon_n}\right) + \frac{1}{M}\sum_{k=0}^{M-1}\psi_1\left(\frac{u_{i+k+1}-u_{i+k}}{\varepsilon_n}\right) - r_\ell\left(\frac{u_{i+M}-u_i}{M\varepsilon_n}\right),\tag{2.10}
$$

then these values are still positive since $\mathcal{E}_n^i(u) \geq \psi_0^{**}$
Postore stating the convergence result we need a $\int_0^{**} \left(\frac{u_{i+M}-u_i}{M\varepsilon_n} \right)$ *M*ε*n* $\int_{C} -r_{\ell} \left(\frac{u_{i+M}-u_{i}}{M\varepsilon_{n}} \right)$ *M*ε*n* $\big)\geq 0.$

Before stating the convergence result, we need some definitions.

Definition 1. We define $\mathbf{M}^{\alpha} \subset \mathbb{R}^{M}$ as the set of minimizers for the problem

$$
\min\left\{\sum_{i=1}^M\psi_1(z_i):~\sum_{i=1}^M z_i = M\alpha\right\}.
$$
 (P)

We will then set

$$
\mathbf{M}_{\alpha} = \begin{cases} \mathbf{M}^{\alpha} & \text{if } \alpha \in int(\{z \in \text{dom}\,\psi_0 \,|\, \psi_0(z) = \psi_0^{**}(z)\})\\ \bigcup_{z \in J_j \cap \{\psi_0(z) = \psi_0^{**}(z)\}} \mathbf{M}^z & \text{if } \alpha \in J_j. \end{cases}
$$

Remark 2.3. M^{α} *and, consequently also* M_{α} *, are closed under permutation, that is, if* $z = (z_1, \ldots, z_M) \in \mathbf{M}^{\alpha}$, then for any permutation σ , $(z_{\sigma(1)}, \ldots, z_{\sigma(M)})$ also belongs to \mathbf{M}^{α} .

Remark 2.4. When ψ_M is a parabola, we can use the structure of K_j and J_j from Remark [2.2](#page-6-1) to simplify the Definition 1 as follows: *the Definition [1](#page-7-0) as follows:*

$$
\mathbf{M}_{\alpha} = \begin{cases} \mathbf{M}^{\alpha} & \text{if } \alpha \in \bigcup_{j=0}^{M} K_{j} \\ \mathbf{M}^{z_{j-1}^r} \cup \mathbf{M}^{z_j^l} & \text{if } \alpha \in J_j, \ j \in \{1, \dots, M\}. \end{cases}
$$

Since $\psi_1(z) = \min\{W_1(z), W_2(z)\}\$ *then, similarly to the way we found* [\(2.9\)](#page-6-2)*, we can define the minimum problems*

$$
\min\Big\{jW_1(z_1)+(M-j)W_2(z_2): jz_1+(M-j)z_2=M\alpha, z_1\in A_1, z_2\in A_2\Big\},\tag{P_j}
$$

such that $\min P = \min\{\min P_j, j = 0, ..., M\}$ $\min P = \min\{\min P_j, j = 0, ..., M\}$ $\min P = \min\{\min P_j, j = 0, ..., M\}$ *. By strict convexity, the problem* (P_j) *admits a unique*
minimizer (e^j, e^j) assumentative to $\binom{M}{k}$ minimizers for (P) i.e. the number of possible *M* turbs such *minimizer* (*z j* j_1^j, z_2^j $\frac{1}{2}$), corresponding to $\binom{M}{j}$ *j minimizers for* (*[P](#page-7-2)*)*, i.e., the number of possible M-tuple such* that j entries are z_1^j and $M - j$ are z_2^j . Furthermore, for $\alpha \in [z_j^l, z_j^r]$, we have $\min P = \min P_j$, and as a result the set \mathbf{M}^{α} can be written as *result the set* \mathbf{M}^{α} can be written as

$$
\mathbf{M}^{\alpha} = \left\{ \sigma((x_1, ..., x_M)) : x_1 = x_2 = \cdots = x_j = z_1^j, x_{j+1} = \cdots = x_M = z_2^j, \sigma \text{ permutation} \right\}.
$$

In order to study the limit behavior of $E_{n,M}^1$, we need a notion of convergence of discrete u^n to a storial function vectorial function.

Definition 2. *Given* $u \in \mathcal{A}_{n,\ell}^*(0,1)$ *, we consider the subintervals*

$$
I_j = [(j-1)\varepsilon_n, j\varepsilon_n] \qquad \text{for } j \in \mathbb{Z}
$$

and for $i \in \mathbb{Z}$ we define the set $A_i = \bigcup_{k=1}^M I_{iM+k}$, which is the union of M such consecutive intervals. *For* $k \in \{1, \ldots, M\}$, we define u_k the k-th M-interpolation *of u as the piecewise-affine function obtained* extending the slope z^{Mi+k} where *extending the slope zMi*+*^k , where*

$$
z^j:=\frac{u_j-u_{j-1}}{\varepsilon_n},
$$

to the whole Aⁱ , that is, u^k is defined by

$$
\begin{cases} u_k(0) = u_0, \\ u'_k(t) = z^{Mi+k} & \text{if } t \in A_i \end{cases}
$$

Definition 3. We say that a sequence of discrete functions $(u^n)_n$ converges to $\overline{\mathbf{u}} = (\overline{u}_1, \dots, \overline{u}_M)$ in a functional topology (for instance $I^1(0, 1)$ or $I^\infty(0, 1)$) if for each k the k-th M-interpolation *a* functional topology (for instance, $L^1(0,1)$ or $L^\infty(0,1)$) if for each k the k-th M−interpolation u_k^n
converges to \overline{u}_k in that topology *converges to* \overline{u}_k *in that topology.*

Theorem 2.5 (Equi-coerciveness of the energies). *If a sequence* $(u^n)_{n\in\mathbb{N}}$ *satisfies* $\sup_n E^1_{n,M}(u^n) < +\infty$, then up to addition of a constant and extraction of a subsequence, the sequence converges uniformly **Theorem 2.5** (Equi-corressivently of the charges). If a sequence (a $f_{n\in\mathbb{N}}$ satisfies sup_n $L_{n,M}(a) \leq +\infty$, then, up to addition of a constant and extraction of a subsequence, the sequence converges uniformly *to some M-tuple of piecewise-affine functions* $\overline{\mathbf{u}} = (\overline{u}_1, \ldots, \overline{u}_M)$ *with* $\overline{\mathbf{u}}'(t) \in \mathbf{M}_\ell$ *for almost every t.*
Moreover there exists a finite set $S \subset (0, 1)$ such that u^n converges in $W^{1,\infty}((0,$ *Moreover, there exists a finite set* $S \subset (0, 1)$ *such that uⁿ converges in* $W^{1, \infty}_{loc}((0, 1) \setminus S)$ *to* \overline{u} *and the jump* set $S(\overline{u}')$ is contained in S set $S(\overline{\mathbf{u}}')$ is contained in S.

This compactness theorem justifies the use of the convergence in Definition [3](#page-8-0) for the Γ-limit of $E_{n,M}^1$. In order to describe it, we define the following interfacial energy.

Definition 4. Let $\ell \in \mathbb{R}$ and $\mathbf{z} = (z_1, z_2, \dots, z_M)$, $\mathbf{z}' = (z'_1, z_2, \dots, z_M)$ $\frac{1}{1}, z_2'$ $z'_{2}, \ldots z'_{l}$ M_M) \in **M**_{ℓ}. *The* transition energy *between* z *and* z ′ *is defined by*

$$
\Phi^{(\ell)}(\mathbf{z}, \mathbf{z}') := \inf_{N \in \mathbb{N}} \min_{u} \left\{ \sum_{i \in \mathbb{Z}} \left(\psi_M \left(\frac{u_{i+M} - u_i}{M} \right) + \frac{1}{M} \sum_{k=0}^{M-1} \psi_1(u_{i+k+1} - u_{i+k}) - r_\ell \left(\frac{u_{i+M} - u_i}{M} \right) \right) \right\}.
$$

$$
u : \mathbb{Z} \to \mathbb{R}, u_i = u_{\mathbf{z}}(i) \text{ for } i \le -N, u_i = u_{\mathbf{z}'}(i) \text{ for } i \ge N \},
$$
 (2.11)

where r_ℓ is the tangent line to ψ_0^{**}
affine function $\mathbb{R} \longrightarrow \mathbb{R}$ defined a ^{**} at ℓ computed at the point x and, for any $\mathbf{z} \in \mathbb{R}^M$, $u_{\mathbf{z}}$ is the piecewise
as follows: *a*ffi*ne function* R −→ R *defined as follows:*

$$
\begin{cases}\nu_{\mathbf{z}}'(t) = z_k & \text{for } t \in (k-1, k) + M\mathbb{Z} \\
u_{\mathbf{z}}(0) = 0 & \end{cases}
$$
\n(2.12)

With this definition, we can state the Γ-convergence result as follows.

Theorem 2.6 (first-order Γ-limit with periodic boundary conditions). Assume that ψ_M is a *nondegenerate convex parabola,* ψ_1 *is of class* $C^1(U)$ *, where* $U \subset \mathbb{R}$ *open is such that* $\mathbf{M}_\ell \subset U^M$ *, and* W^* *is differentiable in* ℓ *. We define the domain* ψ ∗∗ 0 *is di*ff*erentiable in* ℓ*. We define the domain*

$$
D_{\ell}^{*} = \{ \mathbf{u} : \mathbb{R} \to \mathbb{R}^{M} \mid \mathbf{u} \text{ (locally) piecewise affine, } \sum_{k=1}^{M} u_{k}(t) - M\ell t \text{ 1-periodic,}
$$

$$
\mathbf{u}' \text{ 1-periodic and } \mathbf{u}'(t) \in \mathbf{M}_{\ell} \text{ for all } t \in \mathbb{R} \setminus S(\mathbf{u}') \}.
$$

Then, $E^1_{n,M}$ Γ*-converges, with respect to the L*[∞] *topology, to*

$$
E_M^1(\mathbf{u}) = \sum_{t \in S(\mathbf{u}') \cap (0,1]} \Phi^{(\ell)}(\mathbf{u}'(t-), \mathbf{u}'(t+)),
$$
\n(2.13)

with domain $D^{\#}_{\ell}$.

In this section, for a greater generality, we consider $L > 0$ and functions parameterized on [0, *L*] instead of [0, 1]. In this case, $\varepsilon_n = \frac{L}{n}$
fixed $\ell \in \mathbb{R}$, the energies we conside $\frac{L}{n}$, and we extend all the notation introduced in the case $L = 1$. With fixed $\ell \in \mathbb{R}$, the energies we consider are directly written in the form

$$
E_{n,M}^1(u) := \sum_{i=0}^{n-1} \left(\psi_M \left(\frac{u_{i+M} - u_i}{M \varepsilon_n} \right) + \frac{1}{M} \sum_{k=0}^{M-1} \psi_1 \left(\frac{u_{i+k+1} - u_{i+k}}{\varepsilon_n} \right) - r_\ell \left(\frac{u_{i+M} - u_i}{M \varepsilon_n} \right) \right),\tag{3.1}
$$

defined on $\mathcal{A}_{n,\ell}^{\#}(0,L)$. Note that $E_{n,M}^1(u) = \sum_{i=0}^{n-1} \mathcal{E}_n^i(u)$, with \mathcal{E}_n^i be given by [\(2.10\)](#page-6-3).

3.1. Compactness

We can state the compactness result as in Theorem [2.5](#page-8-1) independently of the boundary condition as follows.

Proposition 3.1. Let \mathcal{E}_n^i be given by [\(2.10\)](#page-6-3). If

$$
\sup_n \sum_{i=0}^{n-1} \mathcal{E}_n^i(u^n) =: C < +\infty,
$$

then uⁿ satisfies the claim of Theorem [2.5](#page-8-1) with the interval [0, *^L*] *in the place of the interval* [0, 1]*.*

Proof. Let $\eta > 0$, then we define the set

$$
I_n(\eta) := \{i \in \{0, 1, \ldots n-1\} : \, \mathcal{E}_n^i(u^n) > \eta\},\,
$$

and, as a consequence of the bound on the sum, we get that

$$
\sup_n \#I_n(\eta) \le C(\eta) \sim C/\eta < +\infty.
$$

Therefore, if $i \notin I_n(\eta)$, by adding and subtracting $\psi_0\left(\frac{u_{i+M}^n - u_i^n}{Me_n}\right)$) to $\mathcal{E}_n^i(u^n)$, we obtain the two inequalities

$$
0 \leq \psi_M \left(\frac{u_{i+M}^n - u_i^n}{M \varepsilon_n} \right) + \frac{1}{M} \left(\sum_{k=0}^{M-1} \psi_1 \left(\frac{u_{i+k+1}^n - u_{i+k}^n}{\varepsilon_n} \right) \right) - \psi_0 \left(\frac{u_{i+M}^n - u_i^n}{M \varepsilon_n} \right) \leq \eta
$$

$$
0 \leq \psi_0 \left(\frac{u_{i+M}^n - u_i^n}{M \varepsilon_n} \right) - r_\ell \left(\frac{u_{i+M}^n - u_i^n}{M \varepsilon_n} \right) \leq \eta.
$$

Note that, if *z* and (z_1, \ldots, z_M) satisfy

a) $\psi_M(z) + \frac{1}{M}$ $\frac{1}{M} \left(\sum_{k=0}^{M-1} \psi_1(z_k) \right) - \psi_0(z) \le \eta$, for $\sum_{k=0}^{M-1} z_k = Mz$ b) $\psi_0(z) - r_\ell(z) \le \eta$

then (z_1, \ldots, z_M) is close to a minimizing *M*-tuple for the min in the definition of ψ_0 , while $\psi_0(z)$ is close to $r_\ell(z)$, the tangent line of ψ_0^{**} ^{**} in ℓ . This means that if $\psi_0(\ell) = \psi_0^{**}$ $\int_0^{**} (\ell)$, then *z* is close to ℓ , while

if ℓ is in some J_j , then *z* is close to either z_{j-1}^r or z_j^l . Hence, for η small enough, we can find $\varepsilon > 0$ so
that if (a) and (b) are satisfied, then that if (a) and (b) are satisfied, then

dist
$$
((z_1,\ldots,z_M),\mathbf{M}_{\ell}) \leq \varepsilon < \frac{1}{2} \min\{|\mathbf{z}'-\mathbf{z}''| : \mathbf{z}', \mathbf{z}'' \in \mathbf{M}_{\ell}\}.
$$

This entails that for each $i \notin I_n(\eta)$ there exists a unique $\mathbf{z}_i^n = (z_{i,j}^n)$ $\mathbf{x}_{i,1}^n, \ldots, \mathbf{x}_{i,M}^n \in \mathbf{M}_{\ell}$ such that

$$
\left| \left(\frac{u_{i+1}^n - u_i^n}{\varepsilon_n}, \dots, \frac{u_{i+M}^n - u_{i+M-1}^n}{\varepsilon_n} \right) - \mathbf{z}_i^n \right| \leq \varepsilon, \implies \left| \frac{u_{i+k}^n - u_{i+k-1}^n}{\varepsilon_n} - z_{i,k}^n \right| \leq \varepsilon,
$$
\n(3.2)

for all $k \in \{1, ..., M\}$. We note that if as well $i + 1 \notin I_n(\eta)$, then the unique \mathbf{z}_{i+1}^n must be a cyclic permutation of \mathbf{z}_i^n specifically permutation of \mathbf{z}_i^n , specifically,

$$
\mathbf{z}_{i+1}^n = (z_{i,2}^n, \ldots, z_{i,M}^n, z_{i,1}^n).
$$

Since $I_n(\eta)$ is a finite set, we can identify N_n pairs of indices $0 = j_0 \le i_1 < j_1 < i_2 < j_2 < \cdots < i_{N_n} < j_1 < j_2 < \cdots < j_{N_n} < j_2 < \cdots < j_1 < j_1 < j_2 < \cdots < j_{N_n} < j_1 < j_1 < j_2 < \cdots <$ $j_{N_n} \le i_{N_n+1} = n$ such that $I_n(\eta) = \{0, \dots n-1\} \setminus \bigcup_{k=1}^{N_n} \{i_k, \dots, j_k\}$, and for all indices h between i_k and j_k , we have

$$
\left|\frac{u_h^n - u_{h-1}^n}{\varepsilon_n} - z_{i_k,[h-i_k]+1}^n\right| \leq \varepsilon,
$$

where $[h - i_k]$ is the reminder of $h - i_k \text{ mod } M$.

Since $C \ge E_{n,M}^1(u^n) \ge \eta(N_n - 1)$, we must have that N_n is bounded with respect to *n*. Then, we assume up to extracting subsequences, that *N* is constantly equal to *N*. Similarly since **M**. n,M can assume, up to extracting subsequences, that N_n is constantly equal to N . Similarly, since M_i is a finite set, we can assume $\mathbf{z}_{i_k}^n = \mathbf{z}_k$. With fixed $k \in \{2, ..., N\}$, for each *n*, we chose an index $\tilde{i}_k \in \{i_k, j_{k+1}, \ldots, i_{k-1}\}$ and defined the sequence $\{\tilde{x}_i^n\}$ such that $\tilde{x}_i^n = \tilde{i}_k c$, then up t $\tilde{i}_k \in \{j_{k-1} + 1, \ldots, i_k - 1\}$ and defined the sequence $\{\tilde{x}_k^n\}$ *n*ⁿ_k</sub> such that $\tilde{x}_k^n = \tilde{i}_k \varepsilon_n$, then, up to subsequences, hounded independently of *n* and *k* since we can assume $x_k^n \to x_k$. However, $|i_k - j_{k-1}|$ must be bounded independently of *n* and *k*, since

$$
C \geq E_{n,M}^1(u^n) \geq \sum_{k=1}^{N+1} \eta |i_k - j_{k-1}|.
$$

Then, for any $i \in \{j_{k-1}+1,\ldots,i_k-1\}$, $|\tilde{x}_k^n - i\varepsilon_n| \leq \frac{C}{\eta} \varepsilon_n$. Therefore, the whole $\{j_{k-1}+1,\ldots,i_k-1\} \varepsilon_n$ is η converging to *x^k* .

Finally, we can define the sets $S = \bigcup_{k=1}^{N} \{x_k\}$ and, for a fixed small δ , $S_{\delta} = \bigcup_{k=1}^{N} (x_k - \delta, x_k + \delta)$. By [\(3.2\)](#page-10-0), we have that for *n* large enough, the *s*-th *M*-interpolation satisfies

$$
\sup_{t \in (0,1) \setminus S_{\delta}} \left| (u_s^n)'(t) - Z_s(t) \right| \le \varepsilon,\tag{3.3}
$$

where $\mathbf{Z}(t) = (Z_1(t), \ldots, Z_M(t))$ is a piecewise-constant function such that $\mathbf{Z}(t) = \mathbf{z}_k$ for $t \in (x_{k-1}, x_k)$.

Note that from the equi-coerciveness of $E_{n,M}$ and hence also of $E_{n,M}^1$, we obtain that $u_{n,s}$ is a pre-
proof sequence in $H^1(\Omega, I)$, so we can suppose that they converge uniformly. However, from (3.3) compact sequence in $H^1(0, L)$, so we can suppose that they converge uniformly. However, from [\(3.3\)](#page-10-1), the subsequence is such that $(u^n)'$ is converging to Z. In conclusion, by applying a diagonal argument. the subsequence is such that $(u_s^n)'$ is converging to Z_s . In conclusion, by applying a diagonal argument, we have proved that, up to subsequences, u^n converges in $W_{loc}^{1,\infty}((0,L) \setminus S)$ (in the sense of Definition
3) to a function **u** such that $\mathbf{u}'(t) = Z(t) \in \mathbf{M}$, and the jump set $S(\mathbf{u}') \subset S$ [3\)](#page-8-0) to a function **u** such that $\mathbf{u}'(t) = Z(t) \in \mathbf{M}_{\ell}$ and the jump set $S(\mathbf{u}') \subseteq S$.

Note that in this proof we have not used the periodicity condition. If it is taken into account that we have to note that $S(\mathbf{u}')$ can also contain the point 0.

3.2. Computation of the Gamma-limit

We now compute the Γ-limit subjected to periodic boundary conditions, without the simplifying assumption that *n* is a multiple of *M* used for presentation purposes in the previous section. We will show that the limit exists and can be characterized if more in general $n = a$ modulo M. The energy will have the same form as in the case $q = 0$, but the characterization of the domain of the Γ-limit will depend on *q*, since *M*−interpolations do not necessarily inherit the periodicity condition of *u*. Note in particular that the limit as $n \to +\infty$ does not exist.

For $n \in \mathbb{N}$, we let $q \in \{0, ..., M - 1\}$ denote its class modulus $M (n \equiv q \mod M)$, then given *u* a piecewise-affine function in $W_{\#, \ell}^{1,1}(0, L)$, for any index $Mi + q$ with $q \in \{0, 1, ..., M - 1\}$, its *M*-
interpolations *u*, will satisfy: interpolations u_k will satisfy:

$$
\frac{u_{k,Mi+q}-u_{k,Mi+q-1}}{\varepsilon_n}=\frac{u_{Mi+k}-u_{Mi+k-1}}{\varepsilon_n}=\frac{u_{n+Mi+k}-u_{n+Mi+k-1}}{\varepsilon_n}.
$$

Since $n = Mr + q$, we write

$$
\frac{u_{k,Mi+k}-u_{k,Mi+k-1}}{\varepsilon_n}=\frac{u_{M(i+r)+q+k}-u_{M(i+r)+q+k-1}}{\varepsilon_n}
$$

which is linked to the $q + k$ interpolation (mod *M*) shifted of $\left| \frac{n+k}{M} \right|$ $\frac{n+k}{M}$. Thus, we have

$$
u'_{k}(t) = u'_{k+q}(t + Mr\varepsilon_{n}) \qquad \text{if } q + k \le M
$$

$$
u'_{k}(t) = u'_{k+q-M}(t + M(r+1)\varepsilon_{n}) \qquad \text{if } q + k > M
$$
 (3.4)

 \overline{a}

Proposition 3.2. *Consider n*(*r*) = *Mr* + *q* for a fixed $q \in \{0, ..., M - 1\}$. *Consider a sequence* $(u^{n(r)})_{r \in \mathbb{N}}$
such that sup F^1 $(u^{n(r)}) \le C \le +\infty$. Then there exists a finite set $S \subset (0, L]$ for which $u^{n(r)}$ (up *such that* sup*ⁿ*(*r*) *E* 1 (*u n*(*r*)) [≤] *^C* < ⁺∞*. Then, there exists a finite set S* [⊂] (0, *^L*] *for which uⁿ*(*r*) *(up to subsequences) converges in* $W_{\text{loc}}^{1,\infty}(\mathbb{R} \setminus (S + L\mathbb{Z}))$ *to a* $\mathbf{u} = (u_1, \ldots, u_M)$ *as in Theorem [2.5,](#page-8-1) such that for* $a \mathbf{w} \cdot \mathbf{k} = 1$ *M* we have *any* $k = 1, \ldots, M$ *we have*

$$
u'_{k}(t) = u'_{q+k}(t+L) \quad \text{if } q + k \le M, \qquad u'_{k}(t) = u'_{k+q-M}(t+L) \quad \text{if } q + k > M
$$

for almost every $t \notin S(\mathbf{u}')$.

Proof. The convergence is given by Proposition [3.1.](#page-9-0) What remains to prove is the periodicity property. Suppose at first $q + k \le M$. Fix $t \notin S(\mathbf{u}')$ and suppose $t + L \notin S(\mathbf{u}')$, then there exists a $\delta > 0$ such that $L(t) = [t - \delta t + \delta] \subset \mathbb{R} \setminus S(\mathbf{u}')$ and $L(t + L) \subset \mathbb{R} \setminus S(\mathbf{u}')$. To focilitate the reading in the following $I_{\delta}(t) = [t - \delta, t + \delta] \subset \mathbb{R} \setminus S(\mathbf{u}')$ and $I_{\delta}(t + L) \subset \mathbb{R} \setminus S(\mathbf{u}')$. To facilitate the reading, in the following
computations we take $x = x(x)$. For every *k* fixed (x^n) converges uniformly on $I(t)$ and (x^n) on computations we take $n = n(r)$. For every *k* fixed, $\left(u_n^p\right)$ $\binom{n}{k}$ converges uniformly on *I*_δ(*t*) and $\left(u_k^n\right)$ $\binom{n}{k+q}$ on *I*_δ(*t* + *L*). Since $Mre_n = L\left(1 - \frac{q}{n}\right)$ $\left(\frac{q}{n}\right)$, we can rewrite [\(3.4\)](#page-11-1) as

$$
\left(u_k^n\right)'(t) = \left(u_{k+q}^n\right)' \left(t + L - \frac{Lq}{n(r)}\right)
$$

Taking the limit in r , the left-hand side is converging to u'_k $k(t)$, while for the righthand side we can notice that, since \mathbf{u}' is piecewise constant, u'_k $u'_{k+q}(t+L) = u'_{k}$ $\int_{k+q}^{t} (t+L-\frac{Lq}{n})$ $\left(\frac{Lq}{n}\right)$ for every $n = n(r)$ large enough, so that

$$
\left| \left(u_{k+q}^n \right)' \left(t + L - \frac{Lq}{n} \right) - u_{k+q}'(t + L) \right| \quad = \quad \left| \left(u_{k+q}^n \right)' \left(t + L - \frac{Lq}{n} \right) - u_{k+q}' \left(t + L - \frac{Lq}{n} \right) \right|
$$

$$
\leq \sup_{s\in I_{\delta}(t+L)} \left| (u_{k+q}^n)'(s) - u_{k+q}'(s) \right| \xrightarrow[r\to+\infty]{} 0.
$$

The case $q + k > M$ follows similarly. \square

Remark 3.3. *Note that at the limit we have the boundary conditions* $u'_k(0^+) = u'_k(0^+)$ $g'_{q+k}(L^+)$ *, where q* + *k* is *intended modulus M. This holds also if* $0 \in S(\mathbf{u}')$ *.*

Proposition 3.4. *Given* $(u^n)_{n\in\mathbb{N}}$ *such that* $\sup_n E^1_{n,M}(u^n) =: C < +\infty$ *. Consider* $0 = x_0 < x_1 < \cdots <$
 $x_n = I$ and α , $\alpha_n \in \mathbb{R}$ *such that* $\mathbf{M}^{\alpha_i} \subset \mathbf{M}$, and by *Theorem* 2.5 u^n converges to **u** sati $x_N = L$ and $\alpha_1, \ldots, \alpha_N \in \mathbb{R}$ such that $\mathbf{M}^{\alpha_j} \subseteq \mathbf{M}_{\ell/L}$ and, by Theorem [2.5,](#page-8-1) u^n converges to **u** satisfying

$$
\mathbf{u}'(t) = \mathbf{z}^{\alpha_j} \in \mathbf{M}^{\alpha_j}, \quad \text{for } t \in (x_{j-1}, x_j).
$$

Then, $\frac{\ell}{L} = \sum_{j=1}^{N} \alpha_j (x_j - x_{j-1})$ *.*

Proof. Suppose $L = 1$. By the boundary conditions, we have

$$
\ell = (u_n^n - u_{M[n/M]}^n) + \sum_{i=0}^{\lfloor n/M \rfloor} u_{M(i+1)}^n - u_{Mi}^n = (u_n^n - u_{M[n/M]}^n) + \sum_{i=0}^{\lfloor n/M \rfloor} M \varepsilon_n \frac{u_{M(i+1)}^n - u_{Mi}^n}{M \varepsilon_n}.
$$

Now, with fixed $\delta > 0$, we define $I_{\delta}^{j} = (x_{j} - \delta, x_{j} + \delta) \cap [0, 1]$, for $j = 0, ..., N$, and we call $S_{\delta} = \bigcup_{j=1}^{N}$
From Proposition 2.1, the interpolation derivative $(u^{n}Y(t))$ converges to σ^{i} on $[x_{n+1}, \delta, y_{n+1}]$ $\int_{j=0}^N I_\delta^j$. From Proposition [3.1,](#page-9-0) the interpolation derivative $(u_k^n)'(t)$ converges to $z_k^{\alpha_j}$ on $[x_{j-1} + \delta, x_j - \delta]$, then for \int_{k}^{n} (*t*) converges to $z_k^{\alpha_j}$ on $[x_{j-1} + \delta, x_j - \delta]$, then for an index *i* such that $[Mi\varepsilon_n, M(i+1)\varepsilon_n] \subset [x_{i-1} + \delta, x_i - \delta],$

$$
\frac{u_{M(i+1)}^n - u_{Mi}^n}{M\varepsilon_n} = \frac{1}{M} \sum_{m=Mi}^{M(i+1)-1} \frac{u_{m+1}^n - u_m^n}{\varepsilon_n} = \frac{1}{M} \sum_{k=1}^M \frac{u_{k,Mi+1}^n - u_{k,Mi}^n}{\varepsilon_n} \xrightarrow[n \to +\infty]{} \frac{1}{M} \sum_{k=1}^M z_k^{\alpha_j} = \alpha_j
$$

Let $k_i^$ *j_{,n}*</sub> be the smallest index multiple of *M* such that $Mk_{j,n}^{+} \varepsilon_n \ge x_j + \delta$ and similarly let $k_{j,n}^{+}$ be the truck that $Mk_{j,n}^{-} \varepsilon_n \le x_j - \delta$ so that $\lim_{M \to \infty} \varepsilon_n Mk_{j,n}^{-} = x_j - \delta$ and $\lim_{M \to \infty} \varepsilon_n Mk_{j,n}^{+} =$ largest such that $Mk_{j,n}^- \varepsilon_n \leq x_j - \delta$, so that $\lim_{n \to \infty} \varepsilon_n Mk_{j,n}^- = x_j - \delta$ and $\lim_{n \to \infty} \varepsilon_n Mk_{j,n}^+ = x_j + \delta$. We also define $k_{0,n}^- = 0$ and $k_{N,n}^+ = \lfloor \frac{n}{M} \rfloor$ $\frac{n}{M}$]. Then,

$$
\left| \sum_{i=k_{j-1,n}^+}^{k_{j,n}^--1} M \varepsilon_n \frac{u_{M(i+1)}^n - u_{Mi}^n}{M \varepsilon_n} - \alpha_j (x_j - x_{j-1} - 2\delta) \right| \leq \left| \sum_{i=k_{j-1,n}^+}^{k_{j,n}^--1} M \varepsilon_n \left(\frac{u_{M(i+1)}^n - u_{Mi}^n}{M \varepsilon_n} - \alpha_j \right) \right| + \left| \alpha_j (x_{j-1} + \delta - \varepsilon_n M k_{j-1,n}^+) \right|,
$$

which tends to 0 as *n* tends to infinity. On the other hand, since $\sup_n E^1_{n,M}(u^n) = C$, there exists a constant *C*, independent from *n* such that for every index *i* we have constant C_1 independent from *n* such that for every index *i* we have

$$
\mathcal{E}_n^i(u^n) \leq C \implies \psi_1\left(\frac{u_{i+1}^n - u_i^n}{\varepsilon_n}\right) - r_\ell\left(\frac{u_{i+1}^n - u_i^n}{\varepsilon_n}\right) \leq C_1,
$$

where we used the definition of \mathcal{E}_n^i in Eq [\(2.10\)](#page-6-3). Thus, from the superlinear growth of ψ_1 , we must
have that there exists an P_i , Q and that $\left| \psi_{i+1}^i - \psi_i^i \right| \geq P_i$. Then we are applied: have that there exists an $R > 0$ such that $u_{i+1}^n - u_i^n$ ε*n* $\begin{array}{c} \n \downarrow \\ \n \downarrow \\ \n \downarrow \n \end{array}$ $\leq R$. Then, we can conclude

$$
\left| \ell - \sum_{j=1}^N \sum_{i=k_{j-1,n}^+}^{k_{j,n}^+ - 1} Me_n \frac{u_{M(i+1)}^n - u_{Mi}^n}{Me_n} \right| = \left| u_n^n - u_{Mk_{N,n}^+}^n + \sum_{j=0}^N \sum_{i=k_{j,n}^-}^{k_{j,n}^+ - 1} Me_n \frac{u_{M(i+1)}^n - u_{Mi}^n}{Me_n} \right|
$$

$$
= \left| \sum_{i=Mk_{N,n}^+}^{n-1} \varepsilon_n \frac{u_{i+1}^n - u_i^n}{\varepsilon_n} + \sum_{j=0}^N \sum_{i=Mk_{j,n}^-}^{Mk_{j,n}^+ - 1} \varepsilon_n \frac{u_{i+1}^n - u_i^n}{\varepsilon_n} \right|
$$

$$
\leq R\varepsilon_n \bigg(M \sum_{j=0}^N (k_{j,n}^+ - k_{j,n}^-) + n - Mk_{N,n}^+ \bigg).
$$

Sending *n* to $+\infty$, we have

$$
\left| \ell - \sum_{j=1}^{N} \alpha_j (x_j - x_{j-1} - 2\delta) \right| \le 2RN\delta
$$

Finally, for arbitrariness of $\delta > 0$, we must have $\ell = \sum_{j=1}^{N} \alpha_j (x_j - x_{j-1})$. □

Remark 3.5. Let $\Phi = \Phi^{(\ell)}$ be as in Definition [4.](#page-8-2) We note that the minimum is well-defined because *of Weierstrass' Theorem. Moreover, the infimum in* $N \in \mathbb{N}$ *in* [\(2.11\)](#page-7-3) *can be replaced with the limit as* N → $+∞$ *because of the decreasing monotonicity. The terms inside the sums are* 0 *for* $i ≥ N$ *or* $i \leq -N - M$ when $\mathbf{z}, \mathbf{z}' \in M_{\ell}$. The function $\Phi \colon \mathbf{M}_{\ell} \times \mathbf{M}_{\ell} \to [0, \infty]$ *is a sub-additive function. In*
particular the functional defined by the righthand side of (2.13) is lower semicontinuous *particular the functional defined by the righthand side of* [\(2.13\)](#page-8-3) *is lower-semicontinuous.*

Remark 3.6. *Given* ξ [∈] ^R*, we can consider*

$$
\Phi(\mathbf{z}, \mathbf{z}', \xi) := \inf_{N \in \mathbb{N}} \min_{u} \left\{ \sum_{i \in \mathbb{Z}} \left(\psi_M \left(\frac{u_{i+M} - u_i}{M} \right) + \frac{1}{M} \sum_{k=0}^{M-1} \psi_1(u_{i+k+1} - u_{i+k}) - r_\ell \left(\frac{u_{i+M} - u_i}{M} \right) \right) \right\}
$$

$$
u : \mathbb{Z} \to \mathbb{R}, u = u_\mathbf{z} + \xi_1 \text{ for } i \le -N, u = u_{\mathbf{z}'} + \xi_2 \text{ for } i \ge N, \xi = \xi_2 - \xi_1 \right\} \quad (3.5)
$$

$$
= \inf_{N \in \mathbb{N}} \min_{u} \left\{ \sum_{i \in \mathbb{Z}} \left(\psi_M \left(\frac{u_{i+M} - u_i}{M} \right) + \frac{1}{M} \sum_{k=0}^{M-1} \psi_1(u_{i+k+1} - u_{i+k}) - r_\ell \left(\frac{u_{i+M} - u_i}{M} \right) \right) \right\}
$$

$$
u : \mathbb{Z} \to \mathbb{R}, u = u_\mathbf{z} \text{ for } i \le -N, u = u_{\mathbf{z}'} + \xi \text{ for } i \ge N \right\}.
$$

$$
(3.6)
$$

The two formulas are equal because the sums which are involved are invariant under vertical translations of u.

Now note that $\Phi(\mathbf{z}, \mathbf{z}', \xi) = \Phi(\mathbf{z}, \mathbf{z}')$ *for every* $\xi \in \mathbb{R}$, under the assumption that ψ_M, ψ_1 are $C^1(U)$ ctions, where $U \subset \mathbb{R}$ open is such that $\mathbf{M} \subset U^M$. Indeed, if (u^N) is a minimizing se *functions, where* $U \subset \mathbb{R}$ *open is such that* $\mathbf{M}_{\ell} \subset U^M$. Indeed, if $(u^N)_N$ is a minimizing sequence in the definition of Φ(**z**, **z'**, *ξ*), then we can consider the following new sequence:

$$
\tilde{u}^{2N} = \begin{cases} u_{\mathbf{z}'} & \text{for } i \ge 2N \\ u_{\mathbf{z}'} + 2\xi - i\frac{\xi}{N} & \text{for } N \le i \le 2N \\ u^N & \text{for } i \le N. \end{cases}
$$

Observe that for varying $N \in \mathbb{N}$, all \tilde{u}^{2N} 's are competitors in the definition of $\Phi(\mathbf{z}, \mathbf{z}')$. Let $\mathbf{z} \in \mathbf{M}^{\alpha}$ and $\mathbf{z}' \in \mathbf{M}^{\alpha'}$ with $\alpha, \alpha' \in \mathbb{R}$ such that $\mathbf{M}^{\alpha} \subset \mathbf{M}$, and $\mathbf{z}' \in \mathbf{M}^{\alpha'}$ with $\alpha, \alpha' \in \mathbb{R}$ such that $\mathbf{M}^{\alpha} \subseteq \mathbf{M}_{\ell}$ and $\mathbf{M}^{\alpha'} \subseteq \mathbf{M}_{\ell}$. We compute the difference between the impolyed sums for \tilde{u}^{2N} and the ones for u_{α} by *involved sums for* \tilde{u}^{2N} *and the ones for* u_N *by*

$$
\sum_{i=N}^{2N} \left(\psi_M \Big(\alpha' - \frac{\xi}{N} \Big) + \frac{1}{M} \sum_{k=0}^{M-1} \psi_1 \Big(z'_k - \frac{\xi}{N} \Big) - r_\ell \Big(\alpha' - \frac{\xi}{N} \Big) \right) + o\Big(\frac{1}{N} \Big).
$$
 (3.7)

Now observe that the C^1 *function* $f(\eta) = \psi_M(\alpha' - \eta) + \frac{1}{M}$ *M* $\sum_{k=0}^{M-1} \psi_1$ $\left(z'_k - \eta\right) - r_\ell(\alpha' - \eta)$ *is always nonnegative and it is equal to* ⁰ *if* η ⁼ ⁰*, so that* η ⁼ ⁰ *is a minimum point for f . Hence, by Fermat's Theorem* $f'(0) = 0$ *, and so*

$$
\lim_{N\to+\infty}\sum_{i=N}^{2N}\left(\psi_M\big(\alpha'-\frac{\xi}{N}\big)+\frac{1}{M}\sum_{k=0}^{M-1}\psi_1\big(z_k'-\frac{\xi}{N}\big)-r_\ell\big(\alpha'-\frac{\xi}{N}\big)\right)=0.
$$

In particular, we proved that $\Phi(\mathbf{z}, \mathbf{z}') \leq \Phi(\mathbf{z}, \mathbf{z}', \xi)$. Arguing in the same way, one can show the reverse inequality *inequality.*

Remark 3.7. *A last useful remark is that* $\Phi(\mathbf{z}, \mathbf{z}')$ *is stable under cyclic permutations of the entries of*
z and **z'** More precisely if we define for $a = 1$ $M = 1$ the cyclic permutation $\sigma : M \to M$, given *z* and **z'**. More precisely, if we define for $q = 1, ..., M - 1$ the cyclic permutation $\sigma_q : \mathbf{M}_{\ell} \to \mathbf{M}_{\ell}$ given h *by*

$$
\sigma_q: \mathbf{z} = (z_1, \dots, z_M) \mapsto \sigma_q(\mathbf{z}) := (z_{M+1-q}, \dots, z_M, z_1, \dots, z_{M-q}),
$$
\n(3.8)

then $\Phi(\sigma_q(\mathbf{z}), \sigma_q(\mathbf{z}')) = \Phi(\mathbf{z}, \mathbf{z}')$. Indeed, if u is a competitor for the minimum problem in $\Phi(\mathbf{z}, \mathbf{z}')$, then
the translation $(T, u) = u$, preserves the value of the objective function in the definition of $\$ *the translation* $(T_a u)_i = u_{i-a}$ *preserves the value of the objective function in the definition of* Φ *and it satisfies*

$$
T_q u = u_{\sigma_q(\mathbf{z})} \text{ for } i \le -N - q, \qquad T_q u = u_{\sigma_q(\mathbf{z}')} \text{ for } i \ge N - q.
$$

Thus, T_qu is a competitor for the minimum problem in $\Phi(\sigma_q(\mathbf{z}), \sigma_q(\mathbf{z}'))$ *. Clearly we can argue in the*
same way with the inverse translation, proving the claim *same way with the inverse translation, proving the claim.*

Theorem 3.8 (first-order Γ-limit with periodic boundary conditions). Assume that ψ_M is a *nondegenerate strictly convex function,* ψ_1 *is of class* $C^1(U)$ *, where* $U \subset \mathbb{R}$ *open is such that*
 $M_{\psi} \subset U^M$ and ψ^{**} is differentiable in $\frac{\ell}{\psi}$ Constraining $n = a \mod M$, we define the domain $\mathbf{M}_{\ell/L} \subset U^M$, and ψ_0^{**} $\frac{1}{0}$ *is differentiable in* $\frac{l}{L}$ *. Constraining n* \equiv *q mod M, we define the domain*

$$
D_q^{\#} = \{ \mathbf{u} : \mathbb{R} \to \mathbb{R}^M \mid \mathbf{u} \text{ piecewise affine}, \mathbf{u}'(t) \in \mathbf{M}_{\ell/L} \text{ for all } t \in \mathbb{R} \setminus S(\mathbf{u}'),
$$

$$
\#(S(\mathbf{u}') \cap (0, L]) < +\infty, \sum_{k=1}^M u_k(t) - M\frac{\ell}{L}t \text{ L-periodic},
$$

$$
u'_k(t) = u'_{[q+k]_{mod M}}(t + L) \text{ for } k = 0, \dots, M - 1 \}.
$$

Then $E^1_{n,M}$ Γ*-converges, with respect to L*[∞] *topology, to*

$$
E_q^1(\mathbf{u}) = \sum_{t \in S(\mathbf{u}') \cap (0,1]} \Phi^{(\ell/L)}(\mathbf{u}'(t-), \mathbf{u}'(t+)),
$$

with the domain dom $(E_q^1) = D_q^*$.

Proof. We first consider the case in which $L = 1$ and $n \equiv 0 \text{ mod } M$.

Lower bound. Let $u^n \to u$ in $L^\infty(0, 1)$ be such that $E^{1,\ell}_{n,M}(u^n) \leq C < +\infty$ for every $n \in \mathbb{N}$. Then, by position 3.2, there exists a finite set $S := \{x, y, z \in \mathbb{N} : |z| \leq (0, 1] \}$ with $0 \leq x \leq x \leq x \leq 1$ *n*,*M n* \leq is \leq \leq \leq ∞ for every *n* \leq 1, . . . *n*₀, *b*) *n* proposition [3.2,](#page-11-2) there exists a finite set *S* := {*x*₁, . . *x_{<i>N}*} ⊂ (0, 1], with 0 < *x*₁ < . . *x_N*−1 < *x_N* ≤ 1, and</sub> and there exist $\mathbf{z}_1, \ldots, \mathbf{z}_N \in \mathbf{M}_{\ell}$ such that u^n (up to subsequences) converges in $W_{\text{loc}}^{1,\infty}(\mathbb{R} \setminus (S + \mathbb{Z}))$ to a *M*-tuple $\mathbf{u} \in D^*$ such that $\mathbf{u}'(t) = \mathbf{z}_i \in \mathbf{M}^{\alpha_i}$ for $t \in (x_{i+1} + k$ *M*-tuple **u** ∈ $D_0^{\#}$ [#] such that $\mathbf{u}'(t) = \mathbf{z}_j \in \mathbf{M}^{\alpha_j}$ for $t \in (x_{j-1} + k, x_j + k)$ and for all $k \in \mathbb{Z}$ for $j \in \{1, ..., N\}$,
1 For $i \in \{1, ..., N\}$ let (k^j) be a sequence of patural numbers divisible by *M* such that with $x_0 = x_N - 1$. For $j \in \{1, ..., N\}$, let $(k_n^j)_n$ be a sequence of natural numbers divisible by *M* such that

$$
\lim_{n \to +\infty} k_n^j \varepsilon_n - x_j = 0. \tag{3.9}
$$

Moreover, let $(h_n^j)_n$ be a sequence in MN such that

$$
\lim_{n \to +\infty} \varepsilon_n h_n^j = \frac{x_j + x_{j-1}}{2}.
$$
\n(3.10)

Now, we can write

$$
E_{n,M}^1(u^n) = \sum_{j=1}^N \sum_{i=h_n^j}^{h_n^{j+1}-1} \left(\psi_M \left(\frac{u_{i+M}^n - u_i^n}{M \varepsilon_n} \right) + \frac{1}{M} \sum_{s=0}^{M-1} \psi_1 \left(\frac{u_{i+s+1}^n - u_{i+s}^n}{\varepsilon_n} \right) - r \left(\frac{u_{i+M}^n - u_i^n}{M \varepsilon_n} \right) \right),\tag{3.11}
$$

where $r = r_\ell$, and we have used the notation $h_n^{N+1} = h_n^1 + n$. By periodicity we can choose the endpoints h_n^1 and $h_n^1 + n$ without changing the sum. In order to recover Φ , we define

$$
\tilde{u}_{i}^{n} = \begin{cases}\n u_{\mathbf{z}_{j}}(i) - u_{\mathbf{z}_{j+1}}(h_{n}^{j} - k_{n}^{j}) + \frac{u_{h_{n}^{j}}^{n}}{\varepsilon_{n}} & \text{for } i \leq h_{n}^{j} - k_{n}^{j} \\
 \frac{u_{i+k_{n}^{j}}^{n}}{\varepsilon_{n}} & \text{for } h_{n}^{j} - k_{n}^{j} \leq i \leq h_{n}^{j+1} - k_{n}^{j} \\
 u_{\mathbf{z}_{j+1}}(i) - u_{\mathbf{z}_{j+1}}(h_{n}^{j+1} - k_{n}^{j}) + \frac{u_{h_{n}^{j+1}}^{n}}{\varepsilon_{n}} & \text{for } i \geq h_{n}^{j+1} - k_{n}^{j}.\n\end{cases}
$$
\n(3.12)

Since $\mathbf{z}_j \in \mathbf{M}^{\alpha_j}$, we note that for $i \geq h_n^{j+1} - k_n^j$, we have

$$
\psi_M\left(\frac{\tilde{u}_{i+M}^n - \tilde{u}_i^n}{M}\right) + \frac{1}{M} \sum_{s=0}^{M-1} \psi_1\left(\tilde{u}_{i+s+1}^n - \tilde{u}_{i+s}^n\right) = \psi_0(\alpha_{j+1}) = r(\alpha_{j+1}) = r\left(\frac{\tilde{u}_{i+M}^n - \tilde{u}_i^n}{M\varepsilon_n}\right)
$$

and similarly for $i \le h_n^j - k_n^j - M$. For $h_n^j - k_n^j \le i \le h_n^{j+1} - k_n^j - M$ instead, we have

$$
\tilde{u}_{i+1}^n - \tilde{u}_i^n = \frac{u_{i+k_n+1}^n - u_{i+k_n}^n}{\varepsilon_n} \quad \text{and} \quad \frac{\tilde{u}_{i+M}^n - \tilde{u}_i^n}{M} = \frac{u_{i+k_n+M}^n - u_{i+k_n}^n}{M\varepsilon_n}
$$

Then, defining $\xi_j^n = u_{\mathbf{z}_{j+1}}(h_n^{j+1} - k_n^j) - u_{\mathbf{z}_{j+1}}(h_n^j - k_n^j)$ *u n* $\frac{n}{h_n^{j+1}} - u_n^m$ *h j n* ε*n* , we can rewrite

$$
\sum_{i=h_n^j}^{h_n^{j+1}-1} \left(\psi_M \left(\frac{u_{i+M}^n - u_i^n}{M \varepsilon_n} \right) + \frac{1}{M} \sum_{s=0}^{M-1} \psi_1 \left(\frac{u_{i+s+1}^n - u_{i+s}^n}{\varepsilon_n} \right) - r \left(\frac{u_{i+M}^n - u_i^n}{M \varepsilon_n} \right) \right)
$$
\n
$$
= \sum_{i \in \mathbb{Z}} \left(\psi_M \left(\frac{\tilde{u}_{i+M}^n - \tilde{u}_i^n}{M} \right) + \frac{1}{M} \sum_{k=0}^{M-1} \psi_1(\tilde{u}_{i+k+1}^n - \tilde{u}_{i+k}^n) - r \left(\frac{\tilde{u}_{i+M}^n - \tilde{u}_i^n}{M} \right) \right) + \omega_n
$$
\n
$$
\geq \Phi \left(\mathbf{z}_j, \, \mathbf{z}_{j+1}, \, \xi_j^n \right) + \omega_n = \Phi \left(\mathbf{z}_j, \, \mathbf{z}_{j+1} \right) + \omega_n.
$$

The error ω_n comes from the difference in behavior between \tilde{u}_i^n and u_i^n *n*_{*i*+*k_n*}</sub> when $h_n^{j+1} - k_n^j - M < i <$ $h_n^{j+1} - k_n^j$ or $h_n^j - k_n^j - M < i < h_n^j - k_n^j$. More precisely, for $h_n^{j+1} - k_n^j - M < i < h_n^{j+1} - k_n^j$, ω_n involves terms of the kind *n n*

$$
\psi_M\bigg(\frac{u_{i+k_n^j+M}^n - u_{i+k_n^j}^n}{M\varepsilon_n}\bigg) - \psi_M\bigg(\frac{\tilde{u}_{i+M}^n - \tilde{u}_i^n}{M}\bigg),\tag{3.13}
$$

and similar terms where ψ_M is switched with ψ_1 or −*r*. Instead, for the indices $h_n^j - k_n^j - M < i < h_n^j - k_n^j$, there are terms of the following type: there are terms of the following type:

$$
r\left(\frac{\tilde{u}_{i+M}^n - \tilde{u}_i^n}{M}\right) - \psi_M\left(\frac{\tilde{u}_{i+M}^n - \tilde{u}_i^n}{M}\right) - \frac{1}{M} \sum_{k=0}^{M-1} \psi_1(\tilde{u}_{i+k+1}^n - \tilde{u}_{i+k}^n). \tag{3.14}
$$

To show that $\lim_{n} \omega_n = 0$, it is sufficient to show that

$$
\begin{cases}\n\lim_{n} \left| \frac{u_{i+k_{n}^{j}+1}^{n} - u_{i+k_{n}^{j}}^{n}}{\varepsilon_{n}} - (u_{\mathbf{z}_{j+1}}(i+1) - u_{\mathbf{z}_{j+1}}(i)) \right| = 0, & \text{for } i \in (h_{n}^{j+1} - k_{n}^{j} - M, h_{n}^{j+1} - k_{n}^{j} + M), \\
\lim_{n} \left| \frac{u_{i+k_{n}^{j}+1}^{n} - u_{i+k_{n}^{j}}^{n}}{\varepsilon_{n}} - (u_{\mathbf{z}_{j}}(i+1) - u_{\mathbf{z}_{j}}(i)) \right| = 0, & \text{for } i \in (h_{n}^{j} - k_{n}^{j} - M, h_{n}^{j} - k_{n}^{j} + M).\n\end{cases}
$$

Indeed, by the definition of \tilde{u}^n in [\(3.12\)](#page-15-0), also \tilde{u}^n satisfies analogous limits. Therefore, the differences of the kind [\(3.13\)](#page-15-1) are negligible by the continuity of ψ_M , ψ_1 , and *r*. On the other hand, the terms of the form (3.14) will tend to

$$
r(\alpha_j) - \psi_M(\alpha_j) - \frac{1}{M} \sum_{k=0}^{M-1} \psi_1(u_{\mathbf{z}_j}(i+k+1) - u_{\mathbf{z}_j}(i+k)) = 0,
$$

as a consequence of the fact that $z_j \in M^{\alpha_j}$. Let i_M denote the residual class of *i* with respect to *M*. Then, by the definition of $u_{\mathbf{z}_{j+1}}$ as in Eq [\(2.12\)](#page-8-4), we have

$$
u_{\mathbf{z}_{j+1}}(i+1)-u_{\mathbf{z}_{j+1}}(i)=(\mathbf{z}_{j+1})_{i_{M}+1}.
$$

On the other hand, since there exists a compact around the midpoint of (x_j, x_{j+1}) , which contains $c_h(t^{j+1} - M_h t^{j+1} + M)$ for all *n*, we can use the locally uniform convergence of \mathbf{u}' to \mathbf{u}' to gain. $\varepsilon_n(h_n^{j+1} - M, h_n^{j+1} + M)$ for all *n*, we can use the locally uniform convergence of \mathbf{u}'_n to \mathbf{u}' to gain

$$
\frac{u_{i+1+k_n^j}^n - u_{i+1+k_n^j}^n}{\varepsilon_n} = (\mathbf{u}^n)_{i_M+1}'(\varepsilon_n(i+k_n^j)) \longrightarrow \mathbf{u}_{i_M+1}'\left(\frac{x_{j+1}+x_j}{2}\right) = (\mathbf{z}_{j+1})_{i_M+1} \quad \text{for } n \to +\infty.
$$

The case $i \in (h_n^j - k_n^j - M, h_n^j - k_n^j + M)$ is analogous. This proves the claim and, consequently, that $\lim_{n \to \infty} (h_n^j - 0)$ In particular putting everything together we conclude $\lim_{n \omega_n}$ = 0. In particular, putting everything together, we conclude

$$
\liminf_{n} E_{n,M}^1(u^n) \geq \sum_{j=1}^N \Phi(\mathbf{z}_j, \, \mathbf{z}_{j+1}).
$$

In the case $q \neq 0$, the only thing that changes is that we can not define $h_n^{N+1} = h_n^1 + n$, because in this way it will not be divisible by *M* thus, we take h_n^{N+1} the highest index multiple of *M* below $h_n^1 + n$. Consequently, in the decomposition [\(3.11\)](#page-15-2), there will appear *q* residual terms of the kind:

$$
\psi_M\left(\frac{u_{i+M}^n - u_i^n}{M\varepsilon_n}\right) + \frac{1}{M}\sum_{s=0}^{M-1}\psi_1\left(\frac{u_{i+s+1}^n - u_{i+s}^n}{\varepsilon_n}\right) - r\left(\frac{u_{i+M}^n - u_i^n}{M\varepsilon_n}\right),
$$

but since $i\varepsilon_n$ is close to $1 + \frac{x_1 + x_0}{2}$ $\frac{+x_0}{2}$, that is, far from any critical point *x_j*, by continuity we have that they tend to 0.

Upper bound. Let **u** be such that E_0^1 $\mathbf{u}_0^1(\mathbf{u}) < \infty$ and suppose, without loss of generality, that $\mathbf{u}(0) = 0$, then by definition there exist $N \in \mathbb{N}$, $\mathbf{z}_1, \dots, \mathbf{z}_N \in \mathbf{M}_{\ell}$ and we can write $S(\mathbf{u}') \cap (0, 1] = \{x_1, \dots, x_N\}$,
with $0 \le x_i \le \dots \le x_i \le 1$, $\mathbf{u}'(t) = \mathbf{z}_i \in \mathbf{M}^{\alpha_i}$ for $t \in (x_{i+1} + k, x_i + k)$ and for all with $0 < x_1 < \dots x_{N-1} < x_N \le 1$, $\mathbf{u}'(t) = \mathbf{z}_j \in \mathbf{M}^{\alpha_j}$ for $t \in (x_{j-1} + k, x_j + k)$ and for all $k \in \mathbb{Z}$, with $x_0 = x_{j-1}$. Un to translations, which do not change the energy, we can always suppose that $1 \notin S(\mathbf{u$ $x_0 = x_N - 1$. Up to translations, which do not change the energy, we can always suppose that $1 \notin S(\mathbf{u}')$, that is, x_N < 1. Moreover, we have that

$$
E_0^1(\mathbf{u}) = \sum_{j=1}^N \Phi(\mathbf{z}_{j-1}, \mathbf{z}_j).
$$

We first consider the case $q = 0$. With fixed $\varepsilon > 0$, there exists $\tilde{N} = \tilde{N}(\varepsilon) \in \mathbb{N}$ multiple of *M* and *N* discrete functions v^j such that

$$
\Phi(\mathbf{z}_{j-1}, \mathbf{z}_j) \leq \sum_{i \in \mathbb{Z}} \psi_M \left(\frac{v_{i+M}^j - v_i^j}{M} \right) + \frac{1}{M} \sum_{k=0}^{M-1} \psi_1(v_{i+k+1}^j - v_{i+k}^j) - r_\ell \left(\frac{v_{i+M}^j - v_i^j}{M} \right)
$$
\n
$$
\leq \Phi(\mathbf{z}_{j-1}, \mathbf{z}_j) + \varepsilon
$$
\n(3.15)

and

$$
v^j = \begin{cases} u_{\mathbf{z}_{j-1}} & \text{for } i \leq -\tilde{N} \\ u_{\mathbf{z}_j} & \text{for } i \geq \tilde{N} \end{cases}
$$

for every $j \in \{1, \ldots N\}$. Consider now the sequence of functions $(u^n)_n$ defined as follows

$$
u_i^n = \begin{cases} \varepsilon_n v_{i-k_N^n+n}^1 - \varepsilon_n v_{n-k_N^n}^1 & \text{for } 0 \le i \le k_1^n - \tilde{N} \\ \varepsilon_n v_{i-k_1^n}^2 + \varepsilon_n D_2 & \text{for } k_1^n - \tilde{N} \le i \le k_2^n - \tilde{N} \\ \dots & \varepsilon_n v_{i-k_{N-1}^n}^N + \varepsilon_n D_N & \text{for } k_{N-1}^n - \tilde{N} \le i \le k_N^n - \tilde{N} \\ \varepsilon_n v_{i-k_N^n}^1 + \varepsilon_n D_1 & \text{for } k_N^n - \tilde{N} \le i \le n, \end{cases} \tag{3.16}
$$

where $k_j^n := \min\{k \in \mathbb{N} : k \ge x_jn$, and *k* is multiple of *M*} and

$$
D_2 = v^1_{k_1^n - k_N^n + n - \tilde{N}} - v^2_{-\tilde{N}} - v^1_{n - k_N^n}
$$

\n
$$
D_3 = D_2 + v^2_{k_2^n - k_1^n - \tilde{N}} - v^3_{-\tilde{N}}
$$

\n...
\n
$$
D_N = D_{N-1} + v^{N-1}_{k_{N-1}^n - k_{N-2}^n - \tilde{N}} - v^N_{-\tilde{N}}
$$

\n
$$
D_1 = D_N + v^N_{k_N^n - k_{N-1}^n - \tilde{N}} - v^1_{-\tilde{N}}.
$$

We note that $u_n^n - u_0^n = \sum_{j=1}^N \alpha_j (k_j^n - k_{j-1}^n) \varepsilon_n$, which in general is different from ℓ ; therefore, in order to adjust the periodicity conditions, we apply a linear correction term $\tilde{u}_i^n = u_i^n + \delta_n \frac{1}{n}$
 $\ell = \sum_{i=1}^N \alpha_i (h_i - h_i^n)$ Since now the the boundary condition is satisfied, we can extent $\frac{i}{n}$, where $\delta_n =$
ad \tilde{u}^n to \mathbb{R} such $\ell - \sum_{j=1}^{N} \alpha_j (k_j^n - k_{j-1}^n) \varepsilon_n$. Since now the the boundary condition is satisfied, we can extend \tilde{u}^n to R such that $\tilde{u}^n(t) - \ell t$ is 1-periodic. From Proposition 3.4 and the fact that $|uv| = k^n \le M$, we have that $\tilde{u}^n(t) - \ell t$ is 1-periodic. From Proposition [3.4](#page-12-0) and the fact that $|nx_j - k_j^n| \le M$, we have

$$
\delta_n = \sum_{j=1}^N \alpha_j (x_j - x_{j-1} - k_j^n \varepsilon_n + k_{j-1}^n \varepsilon_n) = O(\varepsilon_n) \implies \exists C > 0 : (k_j^n - k_{j-1}^n) \delta_n \le C \,\forall j, n. \tag{3.17}
$$

Since \mathbf{u}^n is converging uniformly to **u** and $\delta_n x \to 0$ uniformly in $x \in [0, 1]$, we have that $\tilde{u}^n \to \mathbf{u}$ in $I^{\infty}([0, 1])$ (in the notion of 3). As for the convergence of the energy if we let **u** in $L^{\infty}([0, 1])$ (in the notion of [3\)](#page-8-0). As for the convergence of the energy, if we let

$$
\mathcal{E}_i^n(u) = \psi_M\left(\frac{u_{i+M}-u_i}{M\varepsilon_n}\right) + \frac{1}{M}\sum_{k=0}^{M-1}\psi_1\left(\frac{u_{i+k+1}-u_{i+k}}{\varepsilon_n}\right) - r_\ell\left(\frac{u_{i+M}-u_i}{M\varepsilon_n}\right),
$$

then, by Eq (3.15) we have

$$
E_0^1(\mathbf{u}) + \varepsilon \ge E_{n,M}^1(\tilde{u}^n) + \sum_{j=1}^N \Big(R_n^j - \sum_{i=k_{j-1}^n+\tilde{N}}^{k_j^n-\tilde{N}-M} \mathcal{E}_i^n(\tilde{u}^n)\Big),
$$

where $R_n^j = \sum_{i=-\tilde{N}-M+1}^{\tilde{N}-1} \mathcal{E}_i^n(\varepsilon_n v^j) - \mathcal{E}_{i+k_{j-1}^n}^n(\tilde{u}^n)$. However, this R_n^j involves only a finite number of indices, independently from *n*; thus, since $\frac{\tilde{u}_{i+M}^n - \tilde{u}_i^n}{M \varepsilon_n} = \frac{v_{i+M}^j - v_i^j}{M} + \delta_n$ and $\frac{\tilde{u}_{i+1}^n - \tilde{u}_i^n}{\varepsilon_n}$ ε*n* $= v_{i+1}^j - v_i^j + \delta_n$, by continuity of ψ_1, ψ_M , and r_ℓ we have

$$
\lim_{n}\sum_{j=1}^{N}R_{n}^{j}=0.
$$

Instead, for $i = k_{j-1}^n - \tilde{N}, \dots, k_j^n - \tilde{N} - M$, we have v_i^j $\sum_{i=k_{j-1}^n}^{j} = u_{\mathbf{z}_j}(i - k_{j-1}^n)$ and then

$$
\mathcal{E}_i^n(\tilde{u}^n) = \psi_M\left(\alpha_j + \delta_n\right) + \frac{1}{M}\sum_{k=1}^M \psi_1\left((\mathbf{z}_j)_k + \delta_n\right) - r_\ell\left(\alpha_j + \delta_n\right) =: f_j(\delta_n).
$$

Note that we lost the dependence on i , so by (3.17) we have

$$
\sum_{i=k_{j-1}^n+\tilde{N}}^{k_j^n-\tilde{N}-M}\mathcal{E}_i^n(\tilde{u}^n)=(k_j^n-k_{j-1}^n-M)f_j(\delta_n)=(k_j^n-k_{j-1}^n-M)\delta_n\left(\frac{f_j(\delta_n)}{\delta_n}\right)\leq C\frac{f_j(\delta_n)}{\delta_n}.
$$

By Fermat's Theorem we can conclude that $\lim_{n} \frac{f_j(\delta_n)}{\delta_n}$ δ*n* $= f'(0) = 0$; in conclusion

$$
E_0^1(\mathbf{u}) + \varepsilon \ge \limsup_n E_{n,M}^1(\tilde{u}^n),
$$

and the claim is proved by the arbitrariness of ε .

When $q \neq 0$, the proof proceeds similarly, but we have to pay attention to the boundary mismatch in the cycle of slopes in \tilde{u} . This can be fixed by taking into account that, by Remark [3.7,](#page-14-0) we can write the energy as

$$
E_q^1(\mathbf{u}) = \sum_{j=1}^N \Phi(\sigma_q(\mathbf{z}_{j-1}), \sigma_q(\mathbf{z}_j)),
$$

where σ_q is defined as in Eq [\(3.8\)](#page-14-1). Then, we can find some \tilde{N} multiple of *M* and some v_j as in Eq [\(3.15\)](#page-17-0) with the condition

$$
v^j = \begin{cases} u_{\sigma_q(\mathbf{z}_{j-1})} & \text{for } i \leq -\tilde{N} \\ u_{\sigma_q(\mathbf{z}_j)} & \text{for } i \geq \tilde{N}. \end{cases}
$$

Hence, we define $k_j^n := \min\{k \in \mathbb{N} : k \ge x_j n \text{ and } k \equiv q \mod M\}$ and we choose u^n as in Eq [\(3.16\)](#page-17-2). In this way, the interpolations \mathbf{u}^n are still converging uniformly to \mathbf{u} because

$$
u_{\sigma_q(\mathbf{z}_j)}(i+k_j^n+1)-u_{\sigma_q(\mathbf{z}_j)}(i+k_j^n)=u_{\sigma_q(\mathbf{z}_j)}(i+q+1)-u_{\sigma_q(\mathbf{z}_j)}(i+q)=u_{\mathbf{z}_j}(i+1)-u_{\mathbf{z}_j}(i).
$$

Since $n - k_N^n$ is divisible by *M* and $\frac{u_n^n - u_{n-1}^n}{\epsilon_n}$ $\frac{u_{n-1}^u}{\varepsilon_n} = \sigma_q(\mathbf{z}_1)_M$, we can extend u^n by periodicity on the whole R defining a recovery sequence. \Box

Author contributions

The authors have equally contributed to the manuscript.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

Andrea Braides is an editorial board member for Networks and Heterogeneous Media and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

The research reported in the present contribution was carried out as part of the projects "A Fluid-Structure Interaction tool for the protection of Clean Energy Production sites (FSI-CEP)" funded by the MUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2022 PNRR–grant P20227CSJ5, and "Variational methods for stationary and evolution problems with singularities and interfaces" PRIN 2022J4FYNJ. AB is a member of GNAMPA of INdAM.

Conflict of interest

The authors declare there is no conflict of interest.

References

- 1. G. Alberti, S. Müller, A new approach to variational problems with multiple scales, *Comm. Pure Appl. Math.*, 54 (2001), 761–825. https://doi.org/10.1002/[cpa.1013](http://dx.doi.org/https://doi.org/10.1002/cpa.1013)
- 2. R. Alicandro, M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth, *SIAM J. Math. Anal.*, 36 (2004), 1–37. https://doi.org/10.1137/[S0036141003426471](http://dx.doi.org/https://doi.org/10.1137/S0036141003426471)
- 3. R. Alicandro, A. Braides, M. Cicalese, M. Solci, *Discrete Variational Problems with Interfaces*, vol. 40 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 2024.
- 4. A. Braides, Γ*-convergence for Beginners*, vol. 22 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2002.
- 5. A. Braides, M. Gelli, M. Sigalotti, The passage from nonconvex discrete systems to variational problems in Sobolev spaces: the one-dimensional case, *Trudy Mat. Inst. Steklova*, 236 (2002), 408–427.
- 6. A. Braides, L. Truskinovsky, Asymptotic expansions by Γ-convergence, *Continuum Mech. Thermodyn.*, 20 (2008), 21–62. https://doi.org/10.1007/[s00161-008-0072-2](http://dx.doi.org/https://doi.org/10.1007/s00161-008-0072-2)
- 7. A. Braides, A. Causin, M. Solci, L. Truskinovsky, Beyond the classical Cauchy-Born rule, *Arch Rational Mech Anal*, 247 (2023), 107. https://doi.org/10.1007/[s00205-023-01942-0](http://dx.doi.org/https://doi.org/10.1007/s00205-023-01942-0)
- 8. A. Braides, M. Cicalese, Surface energies in nonconvex discrete systems, *Math Models Methods Appl Sci*, 17 (2007), 985–1037. https://doi.org/10.1142/[S0218202507002182](http://dx.doi.org/https://doi.org/10.1142/S0218202507002182)
- 9. G. C. Brusca, D. Donati, M. Solci, *Higher-order singular perturbation models for phase transitions*, arXiv: 2402.13626, [Preprint], (2024) [cited 2024 September 26]. Available from: https://doi.org/10.48550/[arXiv.2402.13626](http://dx.doi.org/https://doi.org/10.48550/arXiv.2402.13626)
- 10. G. Buttazzo, *Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations*, vol. 207 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow, 1989.
- 11. B. Dacorogna, *Direct Methods in the Calculus of Variations*, vol. 78 of Applied Mathematical Sciences, Springer, New York, 2008.
- 12. S. Daneri, E. Runa, Exact periodic stripes for minimizers of a local/nonlocal interaction functional in general dimension, *Arch Rational Mech Anal*, 231 (2019), 519–589. https://doi.org/10.1007/[s00205-018-1285-6](http://dx.doi.org/https://doi.org/10.1007/s00205-018-1285-6)
- 13. A. Giuliani, J. L. Lebowitz, E. H. Lieb, Checkerboards, stripes, and corner energies in spin models with competing interactions, *Phys. Rev. B*, 84 (2011), 064205. https://doi.org/10.1103/[PhysRevB.84.064205](http://dx.doi.org/https://doi.org/10.1103/PhysRevB.84.064205)
- 14. S. Müller, Singular perturbations as a selection criterion for periodic minimizing sequences, *Calc*. *Var*, 1 (1993), 169–204. https://doi.org/10.1007/[BF01191616](http://dx.doi.org/https://doi.org/10.1007/BF01191616)
- 15. M. Solci, *Free-discontinuity problems generated by higher-order singular perturbations*, arXiv:2402.10656 , [Preprint], (2024) [cited 2024 September 26]. Available from: https://doi.org/10.48550/[arXiv.2402.10656](http://dx.doi.org/https://doi.org/10.48550/arXiv.2402.10656)

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://[creativecommons.org](http://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)