
http://www.aimspress.com/journal/nhm

NHM, 19(3): 923–939.
DOI: 10.3934/nhm.2024041
Received: 15 July 2024
Revised: 26 August 2024
Accepted: 10 September 2024
Published: 14 September 2024

Research article

A modified domain decomposition spectral collocation method for parabolic
partial differential equations

Wei-Hua Luo 1,2, *, Liang Yin 3 and Jun Guo4

1 School of Mathematics and Physics, Hunan University of Arts and Science, Changde, Hunan
415000, P.R. China

2 Laboratory of Numerical Simulation of Sichuan Provincial Universities, Neijiang Normal
University, Neijiang, Sichuan, 641000, P.R. China

3 College of Mechanical Engineering, Hunan University of Arts and Science, Changde, Hunan,
415000, P.R. China

4 College of Applied Mathematics, Chengdu University of Information Technology, Chengdu,
Sichuan, 610225, P.R. China

* Correspondence: Email: huaweiluo2012@163.com.

Abstract: In this paper, utilizing Legendre polynomials as the basis functions in both space and
time, we present a modified domain decomposition spectral method for 2-dimensional parabolic partial
differential equations. For solving the obtained linear/nonlinear algebraic equations, a dimension
expanding preconditioner is applied employing the obtained saddle construction of the coefficient
matrix. Numerical examples are given to show the performance of the presented method and the
efficiency of the preconditioner.

Keywords: domain decomposition; spectral collocation method; preconditioner; parabolic PDE

1. Introduction

The parabolic partial differential equation (PDE)

∂u
∂t
= k∗1

∂2u
∂x2 + k∗2

∂2u
∂y2 + k∗3

∂2u
∂x∂y

+ k∗4
∂u
∂x
+ k∗5

∂u
∂y
+ f ∗(u, x, y, t), (x, y) ∈ Ω, t ∈ (0,T], (1.1)

equipped with the initial condition

u(x, y, 0) = φ∗(x, y), (x, y) ∈ Ω (1.2)

http://http://www.aimspress.com/journal/nhm
http://dx.doi.org/10.3934/nhm.2024041

924

and boundary condition

u(x, y, t) = ψ∗(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0,T] (1.3)

is a class of important mathematical models, where Ω = (a, b) × (ã, b̃), and k∗i , i = 1, 2, · · · , 5 are
all smooth functions of the variables x, y, t. This class of models plays important roles in many
engineering problems. For example, when k1 = k2 = 1, k3 = k4 = k5 = 0, and f ∗(u, x, y, t) =
g(x, y, t), (1.1) becomes the heat conduction equation [1]. Taking k1 = k2 = 1, k3 = k4 = k5 = 0, and
f (u, x, y, t) = au(1 − u2) + g(x, y, t), (1.1) represents the Allen-Cahn equation [2]. When describing the
Brownian motion of particles, denote by y the velocity of the particles, and let k1 be a nonzero constant,
k2 = k3 = 0, k4 = −y, k5 = βy−γx, and f (u, x, y, t) = βu. Then, (1.1) corresponds to the Fokker-Planck
equation [3]. Moreover, some reaction-diffusion models and convection-diffusion models can also be
seen as special cases of (1.1) [4, 5].

Usually, it is difficult to exactly solve Eqs (1.1)–(1.3), and hence finding its numerical solutions is
a more popular choice for many researchers. In recent decades, finite difference methods (FDM) and
finite element methods (FEM) have been increasingly developed for solving various PDEs, including
the parabolic case Eqs (1.1)–(1.3) [6–14]. The most remarkable feature of these two methods is that
they can lead to sparse linear equations when some iterative methods (such as Netwon iterative method)
are employed to deal with the nonlinear term. However, we all know that these methods are usually
inferior to spectral methods in terms of approximating precision.

Spectral methods have attracted extensive attentions since they were first proposed. As an
excellent competitor for numerically solving PDEs, they possess great approximation accuracy and
are very easy to implement [15–18]. Especially, Lui et al. [19–21] have recently presented spectral
discretization in both time and space, and this can greatly accelerate the solving of PDEs containing
both space and time factors. However, the drawback of common spectral methods is that the resultant
coefficient matrix is dense, which leads to difficulties when solving the corresponding linear
equations. This fact is very obvious when spectral methods are used for high-dimensional PDEs or
PDEs with large intervals in time and/or space. For remedying the above deficiency, some researchers
have considered the combination of domain decomposition with spectral method, and presented some
domain decomposition spectral methods [3, 22, 23].

In this paper, we study a novel domain decomposition spectral collocation method employing
Legendre polynomials as basis functions. Comparing with the existing techniques, our proposed
method enjoys an additional advantage, that is, the resultant linear system has a saddle structure, for
which a specially designed preconditioning technique is suitable. In the Sections 3 and 4, we will see
that implementing this preconditioner only requires solving the sub-problem Ax = y, with A a block
diagonal matrix. This means that a lot of CPU time can be saved.

The rest of this paper is as follows. In Section 2, the modified domain decomposition spectral
method (shortly, MDDSM) is introduced, and the difference between MDDSM and the conventional
domain decomposition spectral method (shortly, CDDSM) is discussed. Later, as an important
component, in Section 3, according to [24, 25], we apply a dimension expanding preconditioning
technique to iteratively solve the linear system obtained in Section 2. In Section 4, numerical
examples are given to show the efficiency of the proposed MDDSM and the preconditioner. Some
conclusions are finally drawn in the last section.

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

925

2. Description of MDDSM

We first divide the whole interval [0,T] × Ω into some big uniform sub-domains. For the fixed
positive integers p, p̃, p̂, let q = (b − a)/p, q̃ = (b̃ − ã)/ p̃, q̂ = T/ p̂, and we give a uniform partition
[T0,T1], [T1,T2], · · · , [T p̂−1,T p̂] in time and Ωi, j = [ai−1, ai] × [ã j−1, ã j], i = 1, 2, · · · , p, j =
1, 2, · · · , p̃ in space, where T0 = 0, T p̂ = T , Tk − Tk−1 = q̂, k = 1, 2, · · · , p̂, a0 = a, ap = b,
ã0 = ã, ãp̃ = b̃, and ai − ai−1 = q, i = 1, 2, · · · , p, ã j − ã j−1 = q̃, j = 1, 2, · · · , p̃.

Next, at the kth level [Tk−1,Tk], k = 1, 2, · · · , p̂, and in the big sub-domainsΩk
i, j = Ωi, j× [Tk−1,Tk],

we do the transformation x = q
2 x∗ + (i − 1

2)q + a, y = q̃
2y∗ + (j − 1

2)q̃ + ã, t = q̂
2 t∗ + (k − 1

2)q̂, and denote

v(x∗, y∗, t∗) = u(
q
2

x∗ + (i −
1
2

)q + a,
q̃
2

y∗ + (j −
1
2

)q̃ + ã,
q̂
2

t∗ + (k −
1
2

)q̂),

ks(x∗, y∗, t∗) =
2q̂

q2 k∗s(
q
2

x∗ + (i −
1
2

)q + a,
q̃
2

y∗ + (j −
1
2

)q̃ + ã,
q̂
2

t∗ + (k −
1
2

)q̂), s = 1, 2, 3, 4, 5,

f (v(x∗, y∗, t∗), x∗, y∗, t∗) =
q̂
2

f ∗(v(x∗, y∗, t∗),
q
2

x∗ + (i −
1
2

)q + a,
q̃
2

y∗ + (j −
1
2

)q̃ + ã,
q̂
2

t∗ + (k −
1
2

)q̂).

Then, by some computations, Eq (1.1) is transformed into an equivalent system of the form

∂v
∂t∗
= k1

∂2v
∂x∗2

+ k2
∂2v
∂y∗2

+ k3
∂2v

∂x∗∂y∗
+ k4

∂v
∂x∗
+ k5

∂v
∂y∗
+ f (v, x∗, y∗, t∗),

(x∗, y∗, t∗) ∈ (−1, 1) × (−1, 1) × (−1, 1],

(2.1)

where ki = ki(x∗, y∗, t∗), i = 1, · · · , 5. For ease of description, we uniformly replace the variables
x∗, y∗, t∗ with x, y, t, and rewrite the equivalent equation of (2.1) as

∂v
∂t
= k1

∂2v
∂x2 + k2

∂2v
∂y2 + k3

∂2v
∂x∂y

+ k4
∂v
∂x
+ k5

∂v
∂y
+ f (v, x, y, t),

(x, y, t) ∈ (−1, 1) × (−1, 1) × (−1, 1],

(2.2)

with ki = ki(x, y, t), i = 1, · · · , 5.
Similarly, the initial value (1.2) and boundary condition (1.3) can be equivalently transformed into

v(x, y,−1) = φ(x, y), (x, y) ∈ [−1, 1] × [−1, 1] (2.3)

and
v(x, y, t) = ψ(x, y, t), (x, y) ∈ ∂([−1, 1] × [−1, 1]), t ∈ (−1, 1], (2.4)

where φ(x, y), ψ(x, y, t) are known functions.
Now we start to compute the approximating solution of v(x, y, t) in Eqs (2.2)–(2.4) at the first level

[T0,T1]. In each big sub-domain Ω1
i, j, i = 1, 2, · · · , p, j = 1, 2, · · · , p̃, we choose the Legendre-

Gauss-Lobatto type points xi
0, · · · , xi

N
, y j

0, · · · , y j
Ñ
, t1

0, · · · , t1
N̂

as the nonuniform grid nodes in
x, y, t directions, respectively; this can be seen in Page 20–21 in [15]. It is easy to understand that
xi

N
= xi+1

0 , i = 1, 2, · · · , p − 1, y j
Ñ
= y j+1

0 , j = 1, 2, · · · , p̃ − 1.

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

926

For conveniently implementing the coming domain decomposition spectral collocation method, we
denote by Pall the set of all grid nodes (xi

l, y
j
m, t1

n), i = 1, · · · , p, j = 1, · · · , p̃, l = 0, · · · , N, m =
0, · · · , Ñ, n = 0, · · · , N̂, and we group this set into the following four subsets.

(g1) Pinner : interior points: (xi
l, y

j
m, t1

n), i = 1, · · · , p, j = 1, · · · , p̃, l = 1, · · · , N − 1, m =
1, · · · , Ñ − 1, n = 1, · · · , N̂.

(g2) Pinit : initial values points: (xi
l, y

j
m, t1

0), i = 1, · · · , p, j = 1, · · · , p̃, l = 0, · · · , N, m =
0, · · · , Ñ.

(g3) actual boundary points Pact (namely grid points that lie on ∂Ω):

(x1
0, y

j
m, t

1
n), j = 1, · · · , p̃, m = 0, · · · , Ñ, n = 1, · · · , N̂;

(xp
N
, y j

m, t1
n), j = 1, · · · , p̃, m = 0, · · · , Ñ, n = 1, · · · , N̂;

(xi
l, y

1
0, t

1
n), i = 1, · · · , p, l = 0, · · · , N, n = 1, · · · , N̂;

(xi
l, y

p̃
Ñ
, t1

n), i = 1, · · · , p, l = 0, · · · , N, n = 1, · · · , N̂.

(g4) ghost boundary points Pgho: the interior grid points which lie on ∂(Ω1
i, j), namely Pgho = Pall −

(Pinner ∪ Pinit ∪ Pact). Specifically, when l = 0 or l = N, (xi
l, y

j
m, t1

n), they are called a x-type ghost
boundary points (shortly, x-type gbp), alternatively, when m = 0 or m = Ñ, (xi

l, y
j
m, t1

n), they are called
a y-type ghost boundary points (shortly, y-type gbp). (Figure 1 shows an illustrative example of the
ghost boundary points Pgho, where the green line represents an x-type gbp, and the red shows a y-type
gbp.)

Figure 1. An illustration of the ghost boundary points, green: x-type gbp; red: y-type gbp.

Moreover, in order to ensure the number of unknowns is the same as that of equations, we should
employ the fact that the left-half derivative is equivalent to the right-half derivative, and consequently,
we impose the following ghost boundary conditions on each ghost boundary points:

(a) the x-type ghost boundary condition (for x-type gbp):

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

927

v(xi
N
, y j

m, t
1
n) = vgx

i,(j−1)Ñ+m,n
, v(xi+1

0 , y j
m, t

1
n) = vgx

i,(j−1)Ñ+m,n
,

dv
dx−
|(xi

N
,y j

m,t1n) =
dv

dx+
|(xi+1

0 ,y j
m,t1n),

i = 1, · · · , p − 1,
j = 1, · · · , p̃ − 1, m = 1, · · · , Ñ; or j = p̃, m = 1, · · · , Ñ − 1,

n = 1, · · · , N̂.

(2.5)

(b) the y-type ghost boundary condition (for y-type gbp):

v(xi
l, y

j
Ñ
, t1

n) = vgy
(i−1)(N−1)+l, j,n

, v(xi
l, y

j+1
0 , t1

n) = vgy
(i−1)(N−1)+l, j,n

,

dv
dy−
|(xi

l,y
j
Ñ
,t1n) =

dv
dy+
|(xi

l,y
j+1
0 ,t1n),

i = 1, · · · , p, l = 1, · · · , N − 1, j = 1, · · · , p̃ − 1, n = 1, · · · , N̂,

(2.6)

where vgx
i,(j−1)Ñ+m,n

, vgy
(i−1)(N−1)+l, j,n

are all undetermined unknowns.
Let

vh(x, y, t) =
N,Ñ,N̂∑

l=0,m=0,n=0

Ll(x)Lm(y)Ln(t)vi, j,1
l,m,n (2.7)

be the approximation of the exact solution v(x, y, t) of (2.2)-(2.4), where Ll(x), Lm(y) and Ln(t) are all
Legendre polynomials with degrees of l, m and n, respectively, and vi, j,1

l,m,n are the unknowns to be
determined. Then, in each sub space Ω1

i, j, taking x = xi
l, y = y j

m, t = t1
n as the collocation points, and

substituting (2.7) into Eqs (2.2)–(2.6), we can obtain the corresponding algebraic equations.
Concretely, MDDSM can be listed as the following algorithm.

Algorithm 1. MDDSM algorithm.

•step 1. For all the interior points P ∈ Pinner, substitute (2.7) into the Eq (2.2);
•step 2. For all the initial points P ∈ Pinit, substitute (2.7) into the Eq (2.3);
•step 3. For all the actual boundary points P ∈ Pact, substitute (2.7) into the Eqs (2.4);
•step 4. For all the ghost boundary points P ∈ Pgho, substitute (2.7) into the ghost boundary

conditions (2.5) (for x-type gbp) and (2.6) (for y-type gbp).

For describing the resultant linear equations, we define all the unknowns as vh = (va
h, v

g
h), with

va
h = (va

1,1, va
1,2, · · · , va

1,p̃, va
2,1, va

2,2, · · · , va
2,p̃, · · · , va

p,1, va
p,2, · · · , va

p,p̃),

vg
h = (vg

1,1, vg
1,2, · · · , vg

1,p̃, vg
2,1, vg

2,2, · · · , vg
2,p̃, · · · , vg

p,1, vg
p,2, · · · , vg

p,p̃−1),
(2.8)

where va
i, j is the solution vector involved in Ω1

i, j, and vg
i, j is the ghost value vector included in Eqs (2.5)

and (2.6) on ∂Ω1
i, j. That is,

va
i, j = (vi, j,1

0,0,0, vi, j,1
0,0,1, . . . , vi, j,1

0,0,N̂
, vi, j,1

0,1,0, vi, j,1
0,1,1, . . . , vi, j,1

0,1,N̂
. . . , . . . , vi, j,1

0,Ñ,0
, vi, j,1

0,Ñ,1
, . . . , vi, j,1

0,Ñ,N̂
,

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

928

vi, j,1
1,0,0, vi, j,1

1,0,1, . . . , vi, j,1
1,0,N̂

, vi, j,1
1,1,0, vi, j,1

1,1,1, . . . , vi, j,1
1,1,N̂

. . . , . . . , vi, j,1
1,Ñ,0

, vi, j,1
1,Ñ,1

, . . . , vi, j,1
1,Ñ,N̂

,

. . . , . . . , . . . , . . . , . . . , . . . ,

vi, j,1
N,0,0

, vi, j,1
N,0,1

, . . . , vi, j,1
N,0,N̂

, vi, j,1
N,1,0

, vi, j,1
N,1,1

, . . . , vi, j,1
N,1,N̂

. . . , . . . , vi, j,1
N,Ñ,0

, vi, j,1
N,Ñ,1

, . . . , vi, j,1
N,Ñ,N̂

),

i = 1, · · · , p, j = 1, · · · , p̃,

and

vg
i, j = (vgx

i,(j−1)Ñ+1,1
, vgx

i,(j−1)Ñ+1,2
, . . . , vgx

i,(j−1)Ñ+1,N̂
, vgx

i,(j−1)Ñ+2,1
, vgx

i,(j−1)Ñ+2,2
, . . . , vgx

i,(j−1)Ñ+2,N̂
,

. . . , . . . , vgx
i, jÑ,1

, vgx
i, jÑ,2

, . . . , vgx
i, jÑ,N̂

, vgy
(i−1)(N−1)+1, j,1

, vgy
(i−1)(N−1)+1, j,2

,

. . . , vgy
(i−1)(N−1)+1, j,N̂

, vgy
(i−1)(N−1)+2, j,1

, vgy
(i−1)(N−1)+2, j,2

, . . . , vgy
(i−1)(N−1)+2, j,N̂

,

. . . , . . . , vgy
i(N−1), j,1

, vgy
i(N−1), j,2

, . . . , vgy
i(N−1), j,N̂

), when i = 1, · · · , p − 1, j = 1, · · · , p̃ − 1,

vg
i, j = (vgx

i,(j−1)Ñ+1,1
, vgx

i,(j−1)Ñ+1,2
, . . . , vgx

i,(j−1)Ñ+1,N̂
, vgx

i,(j−1)Ñ+2,1
, vgx

i,(j−1)Ñ+2,2
, . . . , vgx

i,(j−1)Ñ+2,N̂
,

. . . , . . . , vgx
i, jÑ−1,1

, vgx
i, jÑ−1,2

, . . . , vgx
i, jÑ−1,N̂

), when i = 1, · · · , p − 1, j = p̃,

vg
i, j = (vgy

(i−1)(N−1)+1, j,1
, vgy

(i−1)(N−1)+1, j,2
, . . . , vgy

(i−1)(N−1)+1, j,N̂
, vgy

(i−1)(N−1)+2, j,1
, vgy

(i−1)(N−1)+2, j,2
,

. . . , vgy
(i−1)(N−1)+2, j,N̂

, . . . , . . . , vgy
i(N−1), j,1

, vgy
i(N−1), j,2

, . . . , vgy
i(N−1), j,N̂

), when i = p, j = 1, · · · , p̃ − 1.

Then, by deleting the error term caused by the approximating solution function vh(x, y, t) in (2.7),
Algorithm 1 will result in M = pp̃(N + 1)(Ñ + 1)(N̂ + 1)+ (p− 1)(p̃− 1)(ÑN̂ + (N − 1)N̂)+ (p− 1)(Ñ −
1)N̂ + (p̃ − 1)(N − 1) algebraic equations

gi(vh) = 0, i = 1, 2, · · · , M. (2.9)

When f (v, x, y, t) in Eq (2.2) is a linear term of v, it is easy to know that Eq (2.9) becomes the
following linear system

HvT
h = b, (2.10)

where the coefficient matrix H has a saddle structure of the form

H =
(

A B
C 0

)
.

Concretely, A = diag(A1,1, A2,2, · · · , AN1,N1), N1 = pp̃, size(Ai) = (N+1)(Ñ+1)(N̂+1)× (N+1)(Ñ+
1)(N̂ + 1), i = 1, 2, · · · , N1, where size(A) expresses the numbers of rows and columns of A, and B is
a full column rank matrix that has at most one entry per row equal to −1, at least two entries per column
equal to −1, and at most four entries per column equal to −1. Specifically, when ki, i = 1, · · · , 5 in
(2.2) are all constants, there is A1,1 = A2,2 = · · · = AN1,N1 . The left one in Figure 2 shows an illustration
of H taking a = ã = 0, b = b̃ = T = 12,N = Ñ = N̂ = 8, q = q̃ = q̂ = 2.

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

929

Figure 2. left: structure of H in (2.10); right: structure of Ĥ in (2.13). a = ã = 0, b = b̃ =
T = 12, N = Ñ = N̂ = 8, q = q̃ = q̂ = 2.

When f (v, x, y, t) in Eq (2.2) is a nonlinear term of v, then, after dealing with the nonlinear algebraic
equations by employing some iterative methods (for instance, the classic Newton iterative methods),
(2.9) will still result in the saddle linear system (2.10).

Considering we have computed the values of
vi, j,k−1

l,m,n , l = 0, · · · , N, m = 0, · · · , Ñ, n = 0, · · · , N̂, i = 1, · · · , p, j = 1, · · · , p̃, we now
substitute the points (xi

l, y
j
m, tk−1

N̂
), i = 1, · · · , p, j = 1, · · · , p̃, l = 0, · · · , N, m = 0, · · · , Ñ into

vh(x, y, t) =
N,Ñ,N̂∑

l=0,m=0,n=0

Ll(x)Lm(y)Ln(t)vi, j,k−1
l,m,n

to get vh(xi
l, y

j
m, tk−1

N̂
). These are also the values of vh(xi

l, y
j
m, tk

0) since (xi
l, y

j
m, tk−1

N̂
) = (xi

l, y
j
m, tk

0), i =
1, · · · , p, j = 1, · · · , p̃, l = 0, · · · , N, m = 0, · · · , Ñ. Consequently, in this way, we obtain the
initial values at the kth level [Tk−1,Tk]. By virtue of this group of initial values, we can solve

vh(x, y, t) =
N,Ñ,N̂∑

l=0,m=0,n=0

Ll(x)Lm(y)Ln(t)vi, j,k
l,m,n

using the same idea of Algorithm 1.
For investigating the difference between MDDSM and CDDSM, here we additionally give the idea

of CDDSM and the resultant algebraic equations. The actual efficiency of these two algorithms will be
shown in the numerical examples in Section 4.

In the CDDSM, the ghost boundary conditions are replaced by
(c) the x-type ghost boundary condition (for x-type gbp):

v(xi
N
, y j

m, t
1
n) = v(xi+1

0 , y j
m, t

1
n),

dv
dx−
|(xi

N
,y j

m,t1n) =
dv

dx+
|(xi+1

0 ,y j
m,t1n),

i = 1, · · · , p − 1,
j = 1, · · · , p̃ − 1, m = 1, · · · , Ñ; j = p̃, m = 1, · · · , Ñ − 1,

n = 1, · · · , N̂.

(2.11)

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

930

(d) the y-type ghost boundary condition (for y-type gbp):

v(xi
l, y

j
Ñ
, t1

n) = v(xi
l, y

j+1
0 , t1

n),
dv
dy−
|(xi

l,y
j
Ñ
,t1n) =

dv
dy+
|(xi

l,y
j+1
0 ,t1n),

i = 1, · · · , p, l = 1, · · · , N − 1, j = 1, · · · , p̃ − 1, n = 1, · · · , N̂.
(2.12)

Then, CDDSM can be expressed as follows

Algorithm 2. CDDSM algorithm.

•step 1. For all the interior points P ∈ Pinner, substitute (2.7) into the Eqs (2.2);
•step 2. For all the initial points P ∈ Pinit, substitute (2.7) into the Eqs (2.3);
•step 3. For all the actual boundary points P ∈ Pact, substitute (2.7) into the Eqs (2.4);
•step 4. For all the ghost boundary points P ∈ Pgho, substitute (2.7) into the ghost boundary

conditions (2.11) (for x-type gbp) and (2.12) (for y-type gbp).

From these two algorithms, we can clearly find the unique difference between MDDSM and
CDDSM is the ghost boundary conditions in step 4. In MDDSM, the participation of ghost unknowns
vgx

i,(j−1)Ñ+m,n
, vgy

(i−1)(N−1)+l, j,n
leads to a saddle structure of the coefficient matrix H, for which we will see

that a dimension expanding preconditioner is suitable in the next section. However, in CDDSM, the
resulting linear system is

Ĥva
h = b̂, (2.13)

where va
h is the unknown vector, and the coefficient matrix Ĥ is no longer a saddle matrix. The right

figure in Figure 2 shows an illustration of Ĥ corresponding to a = ã = 0, b = b̃ = T = 12, N = Ñ =
N̂ = 8, q = q̃ = q̂ = 2.

3. The application of dimension expanding preconditioning technique on the saddle problem of
MDDSM

In this section, we introduce a preconditioning technique for quickly solving the saddle system
(2.10). This kind of preconditioning technique was first presented by Luo et al. [24, 25]. When this
technique is used combined with some Krylov subspace method such as the GRMES method [26], an
advantage is that, in each iteration, one only needs to solve a sub problem Ax = r, where A is a block
diagonal matrix.

For ease of description, we rewrite (2.10) as(
A B
C 0

) (
u1

u2

)
=

(
r1

b
r2

b

)
, (3.1)

and suppose the size of A, B, C are respectively m × m, m × n, and n × m. Clearly, (3.1) can be
equivalently augmented as

H̃ũ = r̃b, (3.2)

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

931

where

H̃ =


I 0 I
B A 0
I C I

 , ũ =


u2

u1

u3

 , r̃b =


0
r1

b
r2

b

 ,
with I an n × n identity matrix, and u2 = −u3.

Denoting by Ã = A + α̃
α̃−1 BC, and letting α̃ be a chosen parameter, we take the preconditioner as

PDE =


I 0 α̃I
B A α̃B
0 C (1 − α̃)I

 . (3.3)

This preconditioner PDE can be implemented by

P−1
DE = Q−1

3 Q2Q1, (3.4)

where

Q1 =


I

I α̃
α̃−1 B

I

 , Q2 =


I

I
I I

 , Q3 =


I 0 α̃I
B Ã 0
I C I

 ,
and Q−1

3 can be further expressed as

Q−1
3 =


0 α̃

1−α̃C α̃
α̃−1 I

0 I 0
I 1

α̃−1C 1
1−α̃ I




I
(Ã + α̃

1−α̃BC)−1

I




1
α̃

I 0 0
1
α̃−1 B I α̃

1−α̃B
−1
α̃

I 0 I


=


0 α̃

1−α̃C α̃
α̃−1 I

0 I 0
I 1

α̃−1C 1
1−α̃ I




I
A−1

I




1
α̃

I 0 0
1
α̃−1 B I α̃

1−α̃B
−1
α̃

I 0 I

 .
(3.5)

Remark 1. From Eq (3.5) we see that when implementing the preconditioner PDE in Eq (3.3), some
parallel computations can be employed. In fact, when computing P−1

DEr, one of important step is to
solve A−1v, and this can be independently completed by multiple processors, considering the fact that
A is a block diagonal matrix.

4. Numerical results

In this section, we give some examples to investigate the actual efficiency of the presented
MDDSM and the preconditioner PDE. For reflecting the superiority, we compare MDDSM with
CDDSM from the perspectives of approximating accuracy and the costed CPU time. When dealing
with the nonlinear PDEs (Example 3), we transform the resultant nonlinear algebraic equations into
linear equations by the classical Newton iterative method, always taking an initial value vector
x = ones(N). All the obtained linear algebraic equations are solved by the popular GMRES
method [26]. In MDDSM, the GMRES method is equipped with the preconditioner PDE, and in
CDDSM, the common ILU preconditioner is used. All these examples are implemented using

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

932

MATLAB R2016(a) on a PC equipped with an Intel(R)Core(TM)i5-8265U processor
(CPU@1.60GHz).

Table 1. Numerical results of Example 1: c = 1, T = 2, q = q̃ = q̂ = 2, N = Ñ = N̂,
[a, b] = [0, 4].

MDDS M + DE(α̃ = 2, tol = 1e − 15) MDDS M + ILU(tol = 1e − 6)
N size iter error iter error
8 3148 151 6.2496e-7 * *
10 5694 177 1.9817e-9 * *
12 9328 239 4.1875e-12 * *
14 14242 260 8.1180e-13 * *
16 20628 298 2.0273e-13 * *

The following Table 1 is given only to investigate the resultant accuracy of the presented MDDSM
in both time and space, hence, the convergence tolerance for GMRES (in the left column) is taken
as 1e − 15, and the maximum number of iterations is set equal to 1000. Furthermore, in this table,
we additionally investigate the efficiency of the common ILU preconditioner (setup.type = ‘crout’;
setup.milu = ‘row’; setup.droptol = 0.1) for MDDSM with convergence tolerance 1e − 6, and the
results are reported in the right column.

Table 2. Numerical results of Example 1: c = 1, T = 2, q = q̃ = q̂ = 2, N = Ñ = N̂ = 8.

MDDS M + DE(α̃ = 2) CDDSM+ILU
[a, b] size iter time1(s) time2(s) error size iter time1(s) time2(s) error
[0, 6] 7265 89 0.4287 1.0642 2.1575e-6 6561 * 0.4643 * *
[0, 12] 29804 100 3.0688 4.8494 1.6649e-6 26244 * 2.9094 * *
[0, 18] 67625 101 13.1635 10.3642 1.5477e-6 59049 * 13.4892 * *
[0, 24] 120728 114 39.9983 22.8669 1.6715e-6 104976 * 40.0834 * *
[0, 30] 189113 117 99.6043 34.7329 1.3065e-6 164025 * 100.1375 * *

In the Tables 2–8, ‘MDDSM+DE’ means that the PDE is solved by the MDDSM method, and the
obtained linear system is solved by the GMRES method equipped with DE preconditioner,
‘CDDSM+ILU’ means that the PDE is solved by the CDDSM method, and the obtained linear system
is solved by the GMRES method equipped with ILU preconditioner (setup.type = ‘crout’; setup.milu
= ‘row’; setup.droptol = 0.1), and ‘CDDSM+direct’ means that the PDE is solved by the CDDSM
method, and the obtained linear system is solved by the direct method x = H\b. This direct method is
listed only to check the accuracy of CDDSM. In all the runs in Tables 2–8, the convergence tolerance
for GMRES is taken as 1e − 6, and the maximum number of iterations is still set equal to 1000. ‘size’
shows the number of rows of the coefficient matrix H, ‘iter’ denotes the number of iterations in the
GMRES method, ‘time1(s)’ and ‘time2(s)’ respectively denote the time for discretizing the PDE
(2.2)–(2.4) using MDDSM/ CDDSM and the time for solving the resultant linear system (2.10) (using
PDE), (2.13) (using ILU preconditioner), or (2.13) (using the direct method). ‘*’ indicates that the
GMRES method fails. ‘error’ is the error between the exact solution and the approximating solution
at all the interior mesh points, initial value mesh points, and actual boundary mesh points, and this is

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

933

computed using the infinite norm of a vector.

Table 3. Numerical results of Example 1: c = 0.001, T = 2, q = q̃ = q̂ = 2, N = Ñ = N̂ = 8.

MDDS M + DE(α̃ = 1.52) CDDSM+ILU
[a, b] size iter time1(s) time2(s) error size iter time1(s) time2(s) error
[0, 6] 7265 14 0.4258 0.1927 1.7299e-6 6561 * 0.4319 * *
[0, 12] 29804 15 3.0224 0.8419 1.8874e-6 26244 * 3.2308 * *
[0, 18] 67625 15 12.9018 1.8050 1.8976e-6 59049 * 13.3429 * *
[0, 24] 120728 15 40.2507 3.2387 1.9454e-6 104976 * 40.8738 * *
[0, 30] 189113 15 100.33545.4993 1.9519e-6 164025 * 101.0340 * *

Table 4. Numerical results of Example 1: c = 1, T = 50, [a, b] = [0, 8], q = q̃ = q̂ =
2, N = Ñ = N̂ = 8.

MDDS M + DE(α̃ = 2) CDDS M + direct
T iter time1 time2 error time1 time2 error
[0, 2] 97 0.8103 2.4002 1.6911e-6 1.0984 4.4612 6.3931e-7
[2, 4] 97 0.3053 2.1951 1.7005e-6 0.3831 4.5718 7.4927e-7
[4, 6] 97 0.2836 2.2318 2.2183e-6 0.3862 4.5986 8.2930e-7
[6, 8] 97 0.2923 2.1227 2.1574e-6 0.3332 4.5491 7.2504e-7
[8, 10] 97 0.2746 2.1236 1.7716e-6 0.3264 4.5788 6.8281e-7
[10, 12] 97 0.2747 2.1191 2.2123e-6 0.3123 4.5817 7.7594e-7
[12, 14] 97 0.2804 2.1186 2.1558e-6 0.3929 4.5264 7.1809e-7
[14, 16] 97 0.2712 2.1177 1.9980e-6 0.3880 4.5511 7.2365e-7
[16, 18] 97 0.2851 2.1917 2.0841e-6 0.3611 4.5636 7.5500e-7
[18, 20] 97 0.2968 2.3040 2.2315e-6 0.3194 4.5535 7.3403e-7
[20, 22] 97 0.2939 2.1958 2.1634e-6 0.3002 4.6308 8.0671e-7
[22, 24] 97 0.2979 2.3162 1.9259e-6 0.3416 4.6268 7.2688e-7
[24, 26] 97 0.3066 2.2550 2.3538e-6 0.3195 4.4624 7.3930e-7
[26, 28] 97 0.3100 2.2219 2.2830e-6 0.3712 4.4442 8.2556e-7
[28, 30] 97 0.3155 2.1853 1.8687e-6 0.3398 4.5492 7.2441e-7
[30, 32] 97 0.2975 2.1825 2.4293e-6 0.3175 4.5575 6.8583e-7
[32, 34] 97 0.3091 2.1738 2.3607e-6 0.3128 4.4386 7.7852e-7
[34, 36] 97 0.3007 2.1840 1.8962e-6 0.3278 4.4459 7.1699e-7
[36, 38] 97 0.2948 2.1739 2.4550e-6 0.3256 4.4715 7.2006e-7
[38, 40] 97 0.2976 2.2187 2.3881e-6 0.3252 4.5395 7.5564e-7
[40, 42] 97 0.2894 2.1785 1.9015e-6 0.3217 4.5934 7.3293e-7
[42, 44] 97 0.2967 2.1920 2.4288e-6 0.3271 4.5325 8.0508e-7
[44, 46] 97 0.3018 2.3206 2.3647e-6 0.3350 4.4296 7.2659e-7
[46, 48] 97 0.3103 2.2826 1.8804e-6 0.3272 4.5711 7.4001e-7
[48, 50] 97 0.2958 2.1941 2.3547e-6 0.3235 4.5819 8.2593e-7

Moreover, in Tables 7 and 8, ‘iter(Newton)’ is the number of iterations in the Newton iterative

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

934

method, and ‘iter(gmres)’ is the sum of all the iterations of GMRES involved in the whole Newton
iterative method.

For convenience, by taking a = ã, b = b̃ in the space domainΩ, we consider the following examples.

Table 5. Numerical results of Example 2: T = 36, [a, b] = [0, 6], q = q̃ = q̂ = 2, N = Ñ =
N̂ = 7.

MDDS M + DE(α̃ = 1.52)
T iter time1(s) time2(s) error
[0, 2] 15 4.6895 0.8031 1.5455e-6
[2, 4] 59 4.9846 1.8762 6.3147e-6
[4, 6] 70 4.8806 2.1244 8.6783e-6
[6, 8] 62 4.7776 1.8990 4.0616e-6
[8, 10] 60 4.9584 1.7632 5.8417e-6
[10, 12] 70 4.8203 2.1371 8.0284e-6
[12, 14] 54 4.7827 1.6499 3.2658e-6
[14, 16] 66 4.7457 1.9148 7.0381e-6
[16, 18] 70 4.7627 2.0677 9.9410e-6
[18, 20] 59 4.8260 1.7937 9.2254e-6
[20, 22] 67 5.0983 2.0591 1.3391e-5
[22, 24] 57 5.1899 1.8296 4.9781e-6
[24, 26] 70 5.0206 2.1269 6.8350e-6
[26, 28] 70 4.9481 2.1788 8.7829e-6
[28, 30] 59 5.0516 1.9088 3.0236e-6
[30, 32] 70 4.8576 2.1034 7.4539e-6
[32, 34] 60 5.0004 1.8663 8.2583e-6
[34, 36] 57 5.0687 1.8578 4.3468e-6

Example 1. (the heat conduction equation):

k∗1 = k∗2 = c, k∗3 = k∗4 = k∗5 = 0, f (u, x, y, t) = cos(x+y+t)+2csin(x+y+t), u(x, y, t) = sin(x+y+t)+2.

Example 2. (with variable coefficients):

k∗1 = 0.5exp(x + 2y + 5t), k∗2 = cos(x − y + 2t)/exp(x + y + 2t), k∗3 = 0.1, k∗4 = 0.2, k∗5 =
−0.1, f (u, x, y, t) = 20u + g(x, y, t), u(x, y, t) = sin(x + y + t) + 2.

Example 3. (the Allen-Cahn equation):

k∗1 = k∗2 = 1, k∗3 = k∗4 = k∗5 = 0, f (u, x, y, t) = 1
ε
u(1 − u2) + g(x, y, t), g(x, y, t) = cos(x + y + t) +

2sin(x + y + t) − 1
ε
(sin(x + y + t) + 2 − (sin(x + y + t) + 2)3), u(x, y, t) = sin(x + y + t) + 2.

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

935

Table 6. Numerical results of Example 2: T = 2, q = q̃ = q̂ = 2, N = Ñ = N̂ = 7.

MDDS M + DE(α̃ = 1.8)
[a, b] iter time1(s) time2(s) error
[0, 4] 13 1.1013 0.4274 1.6036e-6
[0, 6] 14 4.6144 0.9936 1.9553e-6
[0, 8] 15 14.3932 1.9605 2.7416e-6
[0, 10] 15 38.3138 3.6263 3.0260e-6
[0, 12] 16 100.8327 6.0296 2.9328e-6

Table 7. Numerical results of Example 3: ε = 0.1, T = 2, q = q̃ = q̂ = 2, N = Ñ = N̂ = 7.

MDDS M + DE(α̃ = 1.52)
[a, b] iter(Newton) iter(gmres) time1(s) time2(s) error
[0, 4] 14 290 0.2821 13.7961 2.0411e-6
[0, 6] 14 323 0.4920 36.8127 2.0268e-6
[0, 8] 15 421 0.9341 107.7529 2.0266e-6
[0, 10] 15 443 1.5115 278.8113 2.0266e-6
[0, 12] 15 445 2.3945 719.9104 2.0266e-6

Table 8. Numerical results of Example 3: ε = 0.1, T = 30, [a, b] = [0, 4], q = q̃ = q̂ =
2, N = Ñ = N̂ = 7.

MDDS M + DE(α̃ = 1.52)
T iter(Newton) iter(gmres) time1(s) time2(s) error
[0, 2] 14 290 0.2843 13.9283 2.0411e-6
[2, 4] 14 245 0.2936 12.6400 1.0533e-6
[4, 6] 14 258 0.2786 13.7926 1.0279e-6
[6, 8] 14 302 0.2829 14.1546 1.9625e-6
[8, 10] 14 261 0.3015 13.6505 1.0869e-6
[10, 12] 14 250 0.2782 13.4784 1.0365e-6
[12, 14] 14 298 0.2898 14.0763 1.8943e-6
[14, 16] 14 263 0.2911 13.4321 1.3047e-6
[16, 18] 14 240 0.2950 13.7441 9.9710e-7
[18, 20] 14 297 0.2817 14.5544 2.0532e-6
[20, 22] 14 273 0.2769 13.8349 1.7510e-6
[22, 24] 14 230 0.2809 13.1796 8.9217e-7
[24, 26] 14 297 0.2914 14.4809 2.0169e-6
[26, 28] 14 286 0.3102 13.2578 2.0168e-6
[28, 30] 14 225 0.3025 12.7572 8.2530e-7

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

936

From the numerical results in Tables 1–8, we can get the following observations:
1. From the left column in Table 1, we see that for a fixed interval [0,T] × Ω, as the degree of the

Legendre polynomial (also the number of collocation points) increases, the resulting error decreases
accordingly. Moreover, the results in the right column of Table 1 reflect that the common ILU
preconditioner is ineffective for MDDSM.

2. In all the tested intervals in time and space, the expected accuracy 1e − 6 can be obtained by
only taking N = Ñ = N̂ = 7 or 8 in MDDSM. This means that MDDSM does well in large time-space
interval Ω × [0,T] with little cost.

3. The results in Tables 4, 5, and 8 reflect that MDDSM is stable in time level, namely, supposing
we have obtained the values in [T0,T1], [T1,T2], · · · , [Tk−2,Tk−1], then, the initial value of the kth level
[Tk−1,Tk] can be chosen from the value of Tk−1 computed in [Tk−2,Tk−1], and the error in [Tk−1,Tk] will
be of the same order of magnitude of [Tk−2,Tk−1].

4. Tables 2–8 show that the DE preconditioner is efficient in convergence, and that it is stable,
namely, it appears to be independent of the size of interval in time/space.

5. From Tables 7 and 8, we can see that the classical Newton iterative method is suitable for the
nonlinear algebraic equations which are obtained by using MDDSM to solve the tested model.

6. In Tables 2 and 3, we find that “MDDSM+DE” is obviously superior to “CDDSM+ILU”; in fact,
in the heat equation, ILU has failed in CDDSM.

7. In all these results, we find that, for a fixed N, the number of iterations of the GMRES method
is basically independent of the time interval [0,T] and space region Ω, as reflected in Tables 2–8.
Consequently, for a given numerical experiment, we can choose the parameter α̃ by testing it in a small
region [0,T] ×Ω.

5. Conclusions

In this paper, we presented a modified domain decomposition spectral collocation method, and
explored a dimension expanding preconditioner for the obtained linear system. Numerical examples
show that this MDDSM is efficient for model (1.1) with proper boundary values and initial values in a
large time-space interval Ω × [0,T], and that the classical Newton iterative method and DE
preconditioner are suitable for the proposed MDDSM.

How to choose an optimal parameter α̃ in (3.3) is still a concern of our future work. Also, we will
focus on improving this kind of dimension expanding preconditioner for saddle problem (2.10).

Author contributions

Wei Hua Luo conceived the idea for this paper and derived the algebraic equations; Liang Yin
conducted all the numerical experiments; and Jun Guo was responsible for editing the paper.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

937

Acknowledgments

This research is supported by the Scientific Research Fund of Hunan Provincial Science and
Technology Department (2022JJ30416), the Scientific Research Fund of Hunan Provincial Education
Department (22A0483). The work of Jun Guo is supported by the Sichuan National Applied
Mathematics co-construction project (2022ZX004), CUIT (KYTD202243) and the Scientific
Research Foundation (KYTZ202184).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. W. L. Wood, R. W. Lewis, A comparison of time marching schemes for the
transient heat conduction equation, Int. J. Numer. Methods Eng, 9 (2010), 679–689.
https://doi.org/10.1002/nme.1620090314

2. P. Tsatsoulis, H. Weber, Exponential loss of memory for the 2-dimensional Allen-
Cahn equation with small noise, Probab. Theory Relat. Fields , 177(2019), 257–322.
https://doi.org/10.1007/s00440-019-00945-x

3. B. Y. Guo, T. J. Wang, Composite generalized Laguerre-Legendre spectral method with domain
decomposition and its application to Fokker-Planck equation in an infinite channel, Math. Comp.,
78 (2009), 129–151. https://doi.org/10.1090/S0025-5718-08-02152-2

4. R. Codina, A discontinuity-capturing crosswind-dissipation for the finite element solution of
the convection-diffusion equation, Comput. Methods Appl. Mech. Eng., 110 (1993), 325–342.
https://doi.org/10.1016/0045-7825(93)90213-H

5. N. Li, J. Steiner, S. Tang, Convergence and stability analysis of an explicit finite difference
method for 2-dimensional reaction-diffusion equations, The ANZIAM Journal , 36 (1994), 234–
241. https://doi.org/10.1017/S0334270000010377

6. F. J. Domı́nguez-Mota, S. M. Armenta, G. Tinoco-Guerrero, J. G. Tinoco-Ruiz, Finite difference
schemes satisfying an optimality condition for the unsteady heat equation, Math Comput Simulat,
106 (2014), 76–83. https://doi.org/10.1016/j.matcom.2014.02.007

7. N. Riane, C. David, The finite difference method for the heat equation on Sierpinski simplices, Int
J Comput Math, 96 (2019), 1477–1501. https://doi.org/10.1080/00207160.2018.1517209

8. X. He, K. Wang, Uniformly convergent novel finite difference methods for singularly perturbed
reaction-diffusion equations, Numer. Methods Partial Differ. Equ., 35 (2019), 2120–2148.
https://doi.org/10.1002/num.22405

9. C. C. Ji, R. Du, Z. Z. Sun, Stability and convergence of difference schemes for multi-dimensional
parabolic equations with variable coefficients and mixed derivatives, Int J Comput Math, 95 (2018),
255–277. https://doi.org/10.1080/00207160.2017.1381336

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

http://dx.doi.org/https://doi.org/10.1002/nme.1620090314
http://dx.doi.org/https://doi.org/10.1007/s00440-019-00945-x
http://dx.doi.org/https://doi.org/10.1090/S0025-5718-08-02152-2
http://dx.doi.org/https://doi.org/10.1016/0045-7825(93)90213-H
http://dx.doi.org/https://doi.org/10.1017/S0334270000010377
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2014.02.007
http://dx.doi.org/https://doi.org/10.1080/00207160.2018.1517209
http://dx.doi.org/https://doi.org/10.1002/num.22405
http://dx.doi.org/https://doi.org/10.1080/00207160.2017.1381336

938

10. J. Kim, D. Jeong, S. D. Yang, Y. Choi, A finite difference method for a conservative
Allen-Cahn equation on non-flat surfaces, J. Comput. Phys., (2017), 170–181.
https://doi.org/10.1016/j.jcp.2016.12.060

11. X. Feng, H. J. Wu, A posteriori error estimates and an adaptive finite element method for
the Allen-Cahn equation and the mean curvature flow, J. Sci. Comput., 24 (2005), 121–146.
https://doi.org/10.1007/s10915-004-4610-1

12. C. M. Elliott, D. A. French, A nonconforming finite-element method for the two-
dimensional Cahn-Hilliard equation, SIAM J. Numer. Anal., 26 (1989), 884–903.
https://doi.org/10.1137/0726049

13. A. Georgios, B. Li, Error estimates for fully discrete BDF finite element
approximations of the Allen-Cahn equation, IMA J. Numer. Anal., 42 (2020), 363–391.
https://doi.org/10.1093/imanum/draa065

14. A. Al-Taweel, S. Hussain, X. Wang, A stabilizer free weak Galerkin finite element
method for parabolic equation, J. Comput. Appl. Math., 392 (2021), 113373.
https://doi.org/10.1016/j.cam.2020.113373

15. J. Shen, T. Tang, Spectral and High-Order Methods with Applications, Science Press, Beijing,
2006.

16. Y. Gu, J. Shen, Accurate and efficient spectral methods for elliptic PDEs in complex domains, J
Sci Comput, 83 (2020), 42. https://doi.org/10.1007/s10915-020-01226-9

17. E. Pindza, M. K. Owolabi, K. C. Patidar, Barycentric Jacobi spectral method for numerical
solutions of the generalized Burgers-Huxley equation, Int. J. Nonlinear Sci. Numer. Simul., 18
(2017), 67–81. https://doi.org/10.1515/ijnsns-2016-0032

18. W. H. Luo, T. Z. Huang, X. M. Gu, Y. Liu, Barycentric rational collocation methods for a
class of nonlinear parabolic partial differential equations, Appl Math Lett, 68 (2017), 13–19.
https://doi.org/10.1016/j.aml.2016.12.011

19. S. H.Lui, S. Nataj, Spectral collocation in space and time for linear PDEs, J. Comput. Phys., 424
(2021), 109843. https://doi.org/10.1016/j.jcp.2020.109843

20. S. H.Lui, S. Nataj, Chebyshev spectral collocation in space and time for the heat equation, Electron
Tran Numer Ana, 52 (2020), 295–319. http://doi.org/10.1553/etna vol52s295

21. S. H.Lui, Legendre spectral collocation in space and time for PDEs, Numer. Math. , 136 (2017),
75–99. https://doi.org/10.1007/s00211-016-0834-x

22. E. Pindza, F. Youbi, E. Mare, M. Davison, Barycentric spectral domain decomposition methods
for valuing a class of infinite activity Lévy models, Discrete Cont Dyn-s, 12 (2018), 625–643.
http://hdl.handle.net/2263/70151

23. J. L. Vay, I. Haber, B. B. Godfrey, A domain decomposition method for pseudo-
spectral electromagnetic simulations of plasmas, J. Comput. Phys., 243 (2013), 260–268.
https://doi.org/10.1016/j.jcp.2013.03.010

24. W. H. Luo, X. M.Gu, B. Carpentieri, A dimension expanded preconditioning technique for saddle
point problems, Bit Numer Math, 62 (2022), 1983–2004. https://doi.org/10.1007/s10543-022-
00938-8

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

http://dx.doi.org/https://doi.org/10.1016/j.jcp.2016.12.060
http://dx.doi.org/https://doi.org/10.1007/s10915-004-4610-1
http://dx.doi.org/https://doi.org/10.1137/0726049
http://dx.doi.org/https://doi.org/10.1093/imanum/draa065
http://dx.doi.org/https://doi.org/10.1016/j.cam.2020.113373
http://dx.doi.org/ https://doi.org/10.1007/s10915-020-01226-9
http://dx.doi.org/https://doi.org/10.1515/ijnsns-2016-0032
http://dx.doi.org/https://doi.org/10.1016/j.aml.2016.12.011
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2020.109843
http://dx.doi.org/http://doi.org/10.1553/etna_vol52s295
http://dx.doi.org/https://doi.org/10.1007/s00211-016-0834-x
http://dx.doi.org/http://hdl.handle.net/2263/70151
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2013.03.010
http://dx.doi.org/https://doi.org/10.1007/s10543-022-00938-8
http://dx.doi.org/https://doi.org/10.1007/s10543-022-00938-8

939

25. W. H. Luo, B. Carpentieri, J. Guo, A dimension expanded preconditioning technique for block two-
by-two linear equations, Demonstr. Math., 56 (2023), 20230260. https://doi.org/10.1515/dema-
2023-0260

26. Y. Saad, Iterative Methods for Sparse Linear Systems (2nd ed.), Society for Industrial and Applied
Mathematics, Philadelphia, 2003.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Networks and Heterogeneous Media Volume 19, Issue 3, 923–939.

http://dx.doi.org/https://doi.org/10.1515/dema-2023-0260
http://dx.doi.org/https://doi.org/10.1515/dema-2023-0260
http://creativecommons.org/licenses/by/4.0

	Introduction
	Description of MDDSM
	The application of dimension expanding preconditioning technique on the saddle problem of MDDSM
	Numerical results
	Conclusions

