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Abstract: We introduce a policy model coupled with the susceptible–infected- recovered (SIR)
epidemic model to study interactions between policy-making and the dynamics of epidemics. We
considered both single-region policies as well as game-theoretic models involving interactions among
several regions and hierarchical interactions among policy-makers modeled as multi-layer games. We
assumed that the policy functions are piece-wise constant with a minimum time interval for each policy
stage, considering that policies cannot change frequently in time or be easily followed. The optimal
policy was obtained by minimizing a cost function that consists of an implementation cost, an impact
cost, and, in the case of multi-layer games, a non-compliance cost. We show, in a case study of
COVID-19 in France, that when the cost function is reduced to the impact cost and parameterized as
the final epidemic size, the solution approximates that of the optimal control in Bliman et al, (2021)
for a sufficiently small minimum policy time interval. For a larger time interval, however, the optimal
policy is a step down function, quite different from the step up structure typically deployed during
the COVID-19 pandemic. In addition, we present a counterfactual study of how the pandemic would
have evolved if herd immunity was reached during the second wave in the county of Los Angeles,
California. Finally, we study a case of three interacting counties with and without a governing state.

Keywords: SIR model policy; epidemic dynamics

1. Introduction

In the course of battling COVID-19, public health policies sought to enforce non-pharmaceutical
interventions to slow or halt the spread of the pandemic. Common policies included “safer-at-home”
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“social distancing”, and “mask wearing” mandates, which were seen as crucial during the early stages
of the pandemic prior to the availability of vaccines. The global and local timelines of COVID-19
( [7, 26]) indicate that policy evolution affected the spread of the pandemic and vice versa. For
example, in the county of Los Angeles, social distancing was first mandated [9] on March 21, 2020,
about a month after the first reported COVID-19 case in LA. Around that time, the Los Angeles
Mayor’s Office released the safer-at-home policy [1]. One week later, beaches, hiking trails, dog
parks, skate parks, and other public sites and facilities were temporarily closed. On April 15th, as
infected cases continued to increase, facial coverings were mandated in many indoor places [19]. In
hindsight, it is important to ask: Were policies enforced in an optimal way? What can we learn by
using mathematical modeling to understand the interplay between policy and disease spread? This
paper introduces a policy model coupled to a susceptible–infected–recovered (SIR) epidemic model
to study interactions between policy-making and the dynamics of epidemics. There have been several
studies on the relationship between policies and epidemics [4–6, 18, 21]. In a study analyzing data
from 16 US cities during the 1918 pandemic [5], Bootsma and Ferguson analyzed specific outcomes
related to the impact of delaying lockdown policies on the total deaths and on the occurrence of
second outbreak waves due to reopening too early. The analysis was done by fitting available data to
an SEIR model. They also considered optimal control for the simpler SIR and the end-state of the
pandemic, noting that there exists an optimal control level with fewer deaths and no second wave.
More recently, Bliman et al [3] developed a theoretical study of the optimal control of a classical SIR
outbreak. They did not consider the possibility of vaccines or pharmaceutical interventions. Rather,
focusing exclusively on non-pharmaceutical interventions, they designed an optimal policy that
achieves an end state as close to the herd immunity threshold as possible. This is the same problem
considered briefly in a section of [5]. Bliman et al proved the existence and uniqueness of their
solution and showed the optimal social distancing policy is a bang-bang controller [2], generalizing
the results of [3] by modeling without prescribing the starting date of the policy.

The substantial theoretical insights of Bliman et al’s model are limited in their practical implications
by a few assumptions. First, Bliman et al. assumed that a policy can change continuously in time,
which would imply, for example, the ability to shift in three successive instants between no restrictions,
perfect “lockdown”, and back to no restrictions. As observed during the COVID-19 pandemic, policies
that change frequently in time cannot be easily followed. Moreover, policies must be relatively easy to
interpret, with a small number of different intensity levels (see Figure 3b). A practical implementation
also requires a minimum time duration for a particular stage of the policy. These practical constraints
can be modeled together as a piece-wise constant function of time with a minimum time interval for
each well-defined policy level (i.e., not continuous). With this idea in mind, we aim to re-examine the
optimal practical policy among all possible piece-wise constant policies with minimal time duration.

Second, Bliman et al., assumed that that the only outcome to manage is the final epidemic size. This
so-called “impact cost” is clearly a central concern (see below). However, as seen during the pandemic,
there are real trade-offs between decreased infections and the negative impact of strict policies on other
aspects of society such as remote learning for young students, employment curtailment in certain job
sectors, and lack of key services provided to the public. In the present work, we modify Bliman et al’s
model to take into account these other practical “implementation costs”. Specifying a short minimal
time interval during which policies must remain constant (e.g., one week), we find that our results
resemble Bliman et al.’s bang-bang controller [3] despite the more complex cost structure that includes
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both impact and implementation costs. With a larger minimal time interval during which time policies
must remain constant (e.g., 28 days), optimal policies depart from the bang-bang solution.

Finally, Bliman et al., also assumed a pandemic spreading in an single population pool overseen by
a single policy-making entity. The reality of the COVID-19 pandemic is that there are policy makers
at several (nested) hierarchical scales that oversee different population pools. For example, within the
United States, policies may be set at Federal, State, County, and local levels, not to mention finer-
grained institutional and family scales. And populations at any one scale (e.g., counties) may interact
to varying degrees. Inspired by the work of Jia et al. [14], we introduce a hierarchical version of
Bliman et al.’s model with sequential (Stackleberg) policy-making. Specifically, levels higher in a
jurisdictional hierarchy make policy decisions, while levels lower in the hierarchy make their decisions
with full knowledge of the policy recommendations from above. We find that a hierarchical structure
can make the policies converge in all regions using the right weight for a non-compliance cost.

The remainder of this paper is organized as follows. We first introduce the work in [3] and reproduce
the results using our methods. We discuss how different optimal policies result from different parameter
choices for model constraints and costs. Next, we discuss an empirical case study of the so-called
“second wave” of the pandemic (November 6, 2020–May 12, 2021) in Los Angeles County, California.
Last, we use a simulation to study optimal control of the pandemic in three counties with and without
a governing state as an example of the multi-layer multi-regional model.

2. Policy model using optimal control

A policy function is a continuous function that has a range of [0, 1]. As the numerical value
increases, the strictness of the policy decreases. The numerical value 0 denotes a total lockdown and 1
denotes no control. We assume a policy u(t) directly influences the level of a lockdown, which affects
the rate of the population transport from compartment S to I. We use the following
policy-incorporated SIR: 

dS (t)
dt
= −u(t)β I(t)S (t)

N ,

dI(t)
dt
= u(t)β I(t)S (t)

N − γI(t),
dR(t)

dt
= γI(t),

S (0) = S 0, I(0) = I0, R(0) = R0.

(2.1)

Like the traditional SIR model, the reproduction number R0 =
β

γ
. Herd immunity occurs when a large

proportion of the population has become immune to the infection. Mathematically, it is defined as the
value of S below which the number of infected decreases and can be calculated as S herd =

N
R0

. In [3], a
policy u(t) is assumed to belong to the admissible setUαmax,T0 defined by

{u ∈ L∞([0,+∞]), αmax ≤ u(t) ≤ 1 if t ∈ [0,T0], u(t) = 1 if t > T0}.

The constant T0 characterizes the duration of the policy, and αmax characterizes its maximal intensity.
In [3], Theorem 2.1 states that no finite time intervention is able to stop the epidemics before or exactly
at the herd immunity. However, one may stop arbitrarily close to herd immunity by having a sufficiently
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long intervention of sufficient intensity. To determine the closest state S to this threshold attainable by
control of maximal intensity αmax on the interval [0,T0], one is led to consider the following optimal
control problem:

sup
u∈Uαmax ,T0

S∞(u). (2.2)

Furthermore, Bliman et al proved the existence and uniqueness of the optimal solution to problem 2.2
and that the solution is a bang-bang controller (a control that switches from one extreme to the other).
More specifically, they have the following theorem:

Theorem 2.1. (Theorem 2.1 in [3]) Let αmax ∈ [0, 1) and T0 > 0. Problem 2.2 admits a unique solution
u∗. Furthermore,
(i) the maximal value S ∗

∞,αmax,T0
B {max S∞(u) : u ∈ Uαmax,T0} is non-increasing with respect to αmax

and non-decreasing with respect to T0 .
(ii) there exists a unique T ∗0 ∈ [0,T0) such that u∗ = uT ∗0

B 1[0,T ∗0 ] + αmax1[T ∗0 ,T0] + 1[T0,+∞) (in particular,
the optimal control is bang-bang).

3. Single region case

We use the same policy-incorporated SIR model for the epidemic dynamics as in [3]. Instead of
minimizing the final epidemic size alone, we adopt a similar policy-making process as in [14] by using
a cost function that takes into account the cost of implementing the policy, the impact of the infection,
and a penalty for being non-compliant. The latter cost only applies in hierarchical models where a
lower-level unit can choose not to follow the policy recommendation of a higher-level unit.

We also consider practical implementation constraints, namely that the policy can only be
implemented using a finite number of discrete levels of control and with a minimal time interval
during which a policy must remain constant. As an example, consider the policy implementation in
France during the year 2020 and 2021 shown in Figure 1 ( [27]). Implemented policies were discrete
both in terms of the small number of intervention types and the fixed time intervals of enforcement,
the shortest of which was approximately 15 days in duration, with the longest lasting more than a
year. A discrete policy model is realistic given the empirical pattern of real-world interventions. Such
a model also simplifies the computation problem of optimal policy discovery by searching through a
discrete set of potential policies rather than a continuum of policies.

3.1. The policy-incorporated SIR model

To model the evolution of the pandemic, we discretize the system of ODE using forward Euler’s
method with a time step of 1:

S (t) = S (t − 1) − αβ I(t−1)S (t−1)
N ,

I(t) = I(t − 1) + αβ I(t−1)S (t−1)
N − γI(t − 1),

R(t) = R(t − 1) + γI(t − 1),
S (0) = S 0, I(0) = I0, R(0) = R0.

(3.1)

Where α = u(t − 1). Equation (3.1) can be seen as a first- order approximation of the system of ODE
in (2.1).
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Figure 1. Timeline of COVID-19 restrictions in France.

3.2. The policy model

Policy function Instead of assuming continuous policy functions, we consider a more realistic set
of policies with a discrete number of different stages and intensity levels. Therefore, policy functions
form a subset of the admissible setUαmax,T0 in [3].

We define the minimal policy time interval (MPTI) as the minimal duration time during which a
policy remains constant or unchanged. This notion assumes that there is a minimal duration time of
different stages of a policy. In addition to u ∈ Uαmax,T0 , we assume that every policy u has a minimal
policy time interval ∆t and, in our simulations, the duration of each stage is a multiple of the MPTI.
We denote this subset of policy functions asU∆t

αmax,T0
. In the past, many public health agencies enforced

policies for time periods that corresponded to the work week (e.g., seven days) or multiples of this (e.g.
one month). For the purpose of this paper, we assume the MPTI is an integer multiple of seven days.

We additionally assume that policy functions take values from a finite number of intensity levels A ⊂
[αmax, 1], corresponding to different stages of the policy. In the simulations, we use A = {αmax,

αmax+1
2 , 1}.

As a result, the policies we consider are piece-wise functions.

Cost function At time t, let u(t) = α. The cost at time t is defined by:

c(α) = κcimplementation(α) + ηcimpact(α) + (1 − κ − η)cnon-compliance(α) (3.2)

The cost function is a linear combination of three parts:

(i) the implementation cost, which represents the consequences of policies meant to curtail the
pandemic on individuals and the broader economic and social systems.

(ii) the impact cost, which represents the consequences of people getting sick both on individuals and
the broader economic and social systems.
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(iii) the non-compliance cost, which is a penalty imposed by a policy-maker upon an agent within its
jurisdiction for deviating from its recommendation (e.g., a fine or litigation costs).

The implementation cost is a non-increasing function of α and the impact cost function is a non-
decreasing function of α. The coefficients κ, η, κ + η ∈ [0, 1]. The cost from time t1 to t2 is defined as
the averaged integral of the cost function over a total time period T :

ct1t2(u) =
1
T

∫ t2

t1
c(α(t))dt. (3.3)

There are different ways to parameterize the cost function. In this paper, the cost function is
parameterized in the following way:

ct1t2(u) = κ

1 −
∫ t2

t1
u(t)dt

T

 + ηRt2(u) + (1 − κ − η)
1
T

∫ t2

t1
(u(t) − π(u(t)))2dt, (3.4)

where Rt2(u) is the fraction of the recovered population at time t2 if policy u is adopted during [t1, t2],
and π(u) is the policy of the agent one level above. The parameterization of the implementation cost
and the non-compliance cost are adopted from [14]. The impact cost is parameterized as the recovered
population at time t2 to approximate the impact on the medical system since a fraction of the recovered
represents the hospitalized population. If the cost function u is fixed at constant value α over time
interval [t1, t2] , the cost can be written as:

ct1t2(u) = κ
t2 − t1

T
(1 − α) + ηRt2(α) + (1 − κ − η)

t2 − t1

T
(α − π(α))2. (3.5)

An example of cost functions with different weights using the above parameterization is shown in
Figure 6. In our simulation for a single region, we use a averaged total cost over a time period T as the
following:

ctotal(u) =
1
T

∫ T

0
c(u(t))dt

= κ

1 −
∫ T

0
u(t)dt

T

 + ηRT (α) + (1 − κ − η)
∫ T

0
(u(t) − π(u(t)))2dt.

(3.6)

If at time T , the SIR model has reached the equilibrium, we can use RT (α) to approximate R∞, the
fraction of the final size of the recovered population. To find the optimal policy, we solve for the
following optimization problem:

u(t) = arg min
u′

ctotal(u′) (3.7)
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Algorithm 1 Single-region policy SIR
1: Input: Time T , initial infected population I0, initial susceptible population S 0, intensity

levels A, minimal policy time interval ∆t, policy end time T0, Tol ϵ
2: Initialize county policies, minimal cost cmin = 9999, current cost c = 0
3: N = T

∆t , n = 1
4: Initialize policy u ∈ RN , optimal policy uopt ∈ R

N

5: if n == N then
6: for intensity level α ∈ A do
7: calculate S final using the intensity level α, S N−1, IN−1, and the update rule (3.1)
8: if S final > S herd − ϵ then
9: calculate the cost ctemp = C(α) for N-th time interval

10: c += ctemp, u(N) = α
11: if c ≤ cmin then
12: cmin = c, uopt = u
13: end if
14: c −= ctemp

15: end if
16: end for
17: else
18: for intensity level α ∈ A do
19: calculate the cost ctemp = C(α) for the n-th time interval
20: calculate the susceptible S n and the infected In at time n∆t using α, S n−1, In−1 and the update

rule 3.1
21: c += ctemp, u(n) = α*

22: n+ = 1
23: repeat line 5–22 until n = N
24: n− = 1
25: c −= ctemp

26: end for
27: end if
28: return cmin, uopt

3.3. Algorithm

We discretize time by MPTI ∆t and the policy intensity into multiple levels. Let T be the total time
and A be the set of possible policy intensities (e.g., A = {0, 0.5, 1}). We search for all the policies that
lead to S final being close to S herd, i.e., S final > S herd − ϵ, for some sufficiently small ϵ using a depth-first
search algorithm [23]. The depth-first search algorithm stores the cost up to the current time interval
and reuses this result to obtain the total cost for each policy function through backtracking. Let N = T

∆t
and N denote the number of stages of a policy. In total, there are |A|N policies. We initialize the
minimal cost cmin to be 9999. Assume that the initial susceptible and infected population are S 0 and I0,

*u(i) represents the i-th entry of vector u.
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respectively. For n-th time interval (n < N), we choose a value from the set intensity levels A that has
not been used before, calculate the cost for the policy intensity, add it to the previous cost, and calculate
the susceptible and the infected at the end of n-th time interval using the chosen intensity. Then, we
move to (n + 1)-th time interval. If the end time interval is reached, we check if S final > S herd − ϵ. If
so, we calculate the cost for the final time interval and add it to the previous cost to get the current
total cost c. If the total cost c is smaller than cmin, we update cmin with the total cost c, and the optimal
policy uopt with u. Next, we go back to the previous time interval and repeat the same procedure. After
searching over all policies, the policy with the lowest cost is the optimal policy. The detailed algorithm
is presented in Algorithm 1.

3.4. Simulations

In this section, we present the results for both single-region and multiple-region cases. We first
compare the results of our discretized method of the COVID-19 in France with the results [3]. Next,
we study the second wave (November 2020–May 2021) in Los Angeles County.

3.4.1. Optimal policy in France

We compare the results from [3] to our model with the same cost function but only three possible
levels of policy intensity α. As in [3], the general cost function (3.6) reduces to the impact cost and
is parameterized as the final epidemic size R∞. Bliman et al assumed that the paths considered all
reach herd immunity. Therefore, in our search for the optimal policy, we exclude cases that do not
reach herd immunity. Note that without this exclusion, the optimal solution is to adopt and hold the
strictest possible policy starting from the beginning of the pandemic. This results in the least number
of infections. For ease of computation, we consider three levels of policy intensity: 0, 0.5, 1 and fixed
time intervals for the MPTI. We use the same set of parameters for the SIR model as in Bliman et al [3]:
N = 6.7 × 107, I0 = 103, S 0 = N − I0, R0 = 2.9. Following [3], we also choose the policy end time T0

as close as possible to 100, thus setting T0 = 98 since the time interval needs to be a multiple of the
MPTI of 7 days. We show the result our algorithm produces in Figure 2a, which we visually compare
with the result from [3], shown in Figure 2b. Note that we normalized curves by the total population.
Both solutions are bang-bang controllers. The solution using our model starts the control on day 63 (a
multiple of 7) rather than day 61.9 (continuous). Slightly more people are infected under a policy that
is forced to use seven day intervals compared with continuous time as used by Bliman et al.

Using a larger minimal policy time interval of 28 days and T0 = 112, the optimal solution is no
longer a bang-bang controller, as shown in Figure 2c with a larger S∞ = 0.32. The optimal policy
starts with a looser “intermediate” policy phase followed by a stricter phase. Interestingly, in practice,
during COVID-19 it was common for policies to begin with the most stringent restrictions followed by
partial opening [9, 27]. Thus, it is interesting to contrast the optimal policy with a policy in which the
two stages are flipped in time; see Figure 2d. The flipped policy is a sub-optimal solution—it results in
a larger pandemic size and a second wave of infections, as was often seen during the first two years of
the COVID-19 pandemic. Nevertheless, the policy in Figure 2d, while infecting more people, divides
the impacted population into two distinctive waves, which could decrease daily hospital demand over
the course of the outbreak. Our policy model does not optimize for hospital demand. Since many
public health agencies (including Los Angeles County) considered hospital demand when making
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policy decisions, it could be important to consider that in future studies.
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(a) Optimal policy with the minimal policy time interval ∆t =
7 days, S∞ = 0.296
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(b) Optimal policy in [3], S∞ = 0.31
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(c) Optimal policy with the minimal policy time interval ∆t =
28 days, S∞ = 0.32
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(d) Flipped policy from panel (c), S∞ = 0.174

Figure 2. Optimal policy and the SIR model of France from March 17 to May 11, 2020.
S herd ≈ 0.345.

Table 1. Parameters.

Figure T0 ∆t N I0 S 0 R0 S s∞

A 98 7 6.7 × 107 103 N − I0 2.9 0.296
B 100 Not applicable 6.7 × 107 103 N − I0 2.9 0.31
C 112 28 6.7 × 107 103 N − I0 2.9 0.32
D 112 28 6.7 × 107 103 N − I0 2.9 0.174

3.4.2. Case study—second wave in Los Angeles

We first present the course of infections in three counties in California and their corresponding
stay-at-home policy changes from March 2020 to September 2021. Figure 3a shows the 7-day rolling
average of the fraction of daily increased infected cases based on the data from [10] in three counties
with the largest population density in California, namely, San Francisco, Orange, and Los Angeles.
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There were three major outbreaks during the given time interval. For the first and second waves,
Orange and Los Angeles followed similar trajectories, while San Francisco stayed more contained.
Due to substantial holiday travel in winter 2020-21, the second wave was much larger than the first.
In [8], the US Centers for Disease Control and Prevention described six levels of stay-at-home policy.
The intensity of the policy decreases as the numerical value increases. The exact descriptions of the
five levels of policies and their numerical representation are shown in Table 2. Figure 3b shows the
change of the intensity of the stay-at-home policy during the same period. Policy during the first wave
was proactive, whereas for the second wave it was more reactive. This may reflect some hesitancy on
the part of policy-makers as well as lesser compliance by the population at large by the time the second
wave emerged. During the second wave, with a relatively strict policy, the regions all stayed below
herd immunity. With vaccination available in early 2021, the pandemic in all three regions tapered off.

Table 2. CDC stay-at-home policies. There are six levels of policies and we map the levels
linearly onto the interval [0, 1] for simplicity. The numerical value on the left is used to graph
actual policies over time in Figure 3b.

Numerical value Stay-at-home policy
0 Mandatory for all individuals
0.2 Mandatory only for all individuals in certain areas of the jurisdiction
0.4 Mandatory only for at-risk individuals in the jurisdiction
0.6 Mandatory only for at-risk individuals in certain areas of the jurisdiction
0.8 Advisory/Recommendation
1 No order for individuals to stay home
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rolling average.
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(b) Stay-at-home policy

Figure 3. The fraction of the infected and stay-at-home policy over time in Los Angeles, San
Francisco, and Orange County.

Now, we consider a counterfactual study of how the pandemic would have evolved had herd
immunity been reached during the second wave, controlled by our policy model, using parameters
measured from the Los Angeles data. We choose to study the period of the second wave for several
reasons. First, the data reporting scheme improved for the second wave compared to the first wave. In
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addition, with the experience and knowledge gained from the first wave, authorities were in a better
position to make optimal decisions. Given that there was no complete lockdown during the second
wave, we consider the policy intensity levels A = {0.2, 0.6, 1}, and use the minimal policy time
interval ∆t = 7. We choose 0.2 as our maximal policy intensity, because full lockdown was not
desirable during this period. We choose a second policy level of 0.6 as the midpoint between 0.2 and
1. In all simulations, we optimize for final pandemic size and compare the optimal controls found.

In Figure 4, the left column (Figures 4a, 4c, 4e) is the simulated SIR with the optimal policy
when the basic reproduction number R0 = 2.5 and the initial recovered r0 = 0.1, 0.2, 0.3. The right
column (Figures 4b, 4d, 4f) is the simulated SIR with the optimal policy when the reproduction number
R0 = 2.15 and the initial recovered r0 = 0.1, 0.2, 0.3. This value R0 = 2.5 is estimated from the early
COVID-19 infected data (Jan 22—Mar 15, 2020 [10]) and R0 = 2.15 is estimated using the infected
data from September 16 to November 15, 2021 ( [10]), prior to the second wave. All optimal policies
have a bang-bang-like shape. The policy started approximately around the peak of the infected curve,
and the resulting dynamics approach herd immunity. For larger values of r0, we expect that a shorter
period of high-intensity policy is needed to reach herd immunity; our results confirm this. Once enough
of the population is infected and recovered, a shorter control policy is needed.

4. Multi-layer multi-regional case

In this section, we present a multi-regional model with multiple policy-making layers, extending
the model proposed by Jia et al., [14] to consider a dynamic epidemic model and the control policies
discussed above (see Section 3). Specifically, we propose a game-theoretic model in which regions
are combined into layers, with the top layer corresponding to the highest-level decision maker (e.g., a
federal government), the next layer comprised of the next level of decision making (e.g., states or
provinces), and so on (see Figure 5). The top decision maker chooses the policy first, then all the
decision makers in the next layer do so simultaneously, and so on. Additionally, we consider a special
case in which there are multiple decision makers (e.g., states, counties, etc.) choosing their epidemic
control policies simultaneously in one layer. We use a form of hierarchical best response dynamics to
compute approximate equilibria in this multi-layer game [14], performing this computation
independently for each time interval (essentially assuming that the players do not reason explicitly
about future dynamics when making instantaneous policy decisions at a particular point in time).

The multi-region case naturally has a competition between regions to optimize their strategy with
respect to the choices made by other regions. For this reason, the single-region model does not directly
extend. There are two main differences between our work and that of Jia at al. [14]. First, their model is
based on Nash equilibrium, where agents make decisions with other agents’ possible actions in mind.
We use the idea of in-game learning [11]. We assume that the agents gradually evolve toward the best
decisions instead of being optimal instantly. In practice, each region in the game assumes that other
regions’ policies (at the same level) stay the same when optimizing its own cost function. Second, we
focus on the dynamics, instead of snapshot in time considered by Jia et al.

Network SIR In practice, counties can hardly be treated as independent. People travel across county
borders to work and socialize. The majority of the literature of network-style SIR models focus on the
individuals as nodes and study the effects of interpersonal network on the pandemics [16, 17, 20]. For
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(a) R0 = 2.5, r0 = 0.1.
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(b) R0 = 2.15, r0 = 0.1.

10/25/20
11/14/20

12/04/20
12/24/20

1/13/21
2/02/21

2/22/21
3/14/21

4/03/21
4/23/21

5/13/21

Time (days)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n S

I
R

0.0

0.2

0.4

0.6

0.8

1.0
Po

lic
y

policy
Sherd

(c) R0 = 2.5, r0 = 0.2
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(d) R0 = 2.15, r0 = 0.2
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(e) R0 = 2.5, r0 = 0.3
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(f) R0 = 2.15, r0 = 0.3.

Figure 4. Optimal policy in Los Angeles with the basic reproduction number R0 = 2.5, 2.15,
S herd ≈ 0.4, 0.465, and the fraction of the initial recovered population r0 = 0.1, 0.2, 0.3,
respectively.

example, B. Macdonald et al [20] empirically studied how well various centrality measures perform
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Figure 5. An example of a three-layer hierarchical structure.

at identifying which individuals in a network will be the best spreaders of disease. In [25], authors
explains why most COVID-19 infection curves are linear after the first peak in the context of the contact
network using a network SIR model. There are a few works that study the interplay between different
geographical regions rather than the interpersonal contact network. In [12], a kernel-modulated SIR
model was introduced to model the spread of COVID-19 across counties. The kernel is based on the
spatial proximity between regions. Metapopulation epidemic models are based on the spatial structure
of the environment and detailed knowledge of transportation infrastructure and movement patterns.
The metapopulation dynamics of infectious diseases has generated a wealth of models and results using
mechanistic approaches taking explicitly into account the movement of individuals ( [13, 15, 22]). For
example, in [22], the authors proposed a multi-regional compartmental model using medical geography
theory (central place theory) and studied the effect of the traveling of individuals (especially those
infected and exposed) between regions on the global spread of severe acute respiratory syndrome
(SARS). Another way to account for the interplay between regions is to use a cross excitation matrix
[28]. This scheme assumes a uniform mixing of the population across regions that and the infected
population in one region can trigger the infection in another. The entries of the matrix record the
pair-wise cross excitation from one region to another. In this paper, we assume uniform mixing in the
population and use an excitation matrix K = {Kaa′} to model the travel and infections across counties.
Our network-style SIR is the following:



dS a(t)
dt

= −αaβ
∑

a′ Kaa′
Ia′ (t)S a(t)

Na
,

dIa(t)
dt
= αaβ

∑
a′ Kaa′

Ia′ (t)S (t)
Na
− γIa(t),

dRa(t)
dt

= γIa(t),

S (0) = S 0, I(0) = I0, R(0) = R0.

(4.1)

For any county a, the rate of change from S a to Ia triggered by Ia′ depends on Kaa′ , the current fraction
of the susceptible S a in county a and the current fraction of the infected Ia′ in county a′. Note that
Kaa = 1. When K = I, the network SIR is the independent SIR.
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Figure 6. Different cost functions versus policy intensity α.

Cost function Consider the i-th time interval [i∆t, (i + 1)∆t] and u(t) = α for t ∈ [i∆t, (i + 1)∆t]. A
region a adopts the following cost function:

ca
i∆t,(i+1)∆t(α) = κa(1 − α)∆t/T + ηaRa,T (α) + (1 − κa − ηa)(α − π(α))2∆t/T,

where Ra,T (α) is the epidemic size of region a at time T . For a top-layer region f , there is no non-
compliance cost and the cost function is

c f
∆t(α) = κ f (1 − α)∆t/T + η f R f ,T (α),

where κ f + η f = 1 and R f ,T (α) is the number of the recovered of region f , which is an aggregation of
the epidemic size of its leaf nodes.

4.1. Algorithms

The single-region algorithm minimizes over all admissible piece-wise functions, while the multiple-
region algorithm only minimizes over every time interval. We assume there are up to three layers:
federal government, the states, and the counties. At n-th time interval, we first determine the optimal
policy intensity that minimizes the cost C f

n∆t,(n+1)∆t for the federal layer. After obtaining the optimal
federal policy, each state optimizes its own cost function C s

n∆t,(n+1)∆t for the period [n∆t, (n + 1)∆t]
unilaterally, i.e., assuming other states follow their previous policies. Next, we choose the optimal
policy intensity for the counties in the same manner. Note that the federal layer does not pay the non-
compliance cost as it is not subject to any higher-level policy making. The states and counties may pay
a non-compliance cost. The full details of the three-layer model is in Algorithm 2.

4.2. Simulations

In this section, we present results for a three-county example of the multiple-regions game and a
three-county example with a state. First, we discuss when one layer exists (i.e., only counties). The
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Algorithm 2 Game Policy SIR
1: Input: Time T , excitation matrix K, intensity levels A, time interval ∆t
2: Initialize state, county policies
3: Number of policy stages N = T

∆t , n = 1
4: while n ≤ N do
5: t = n∆t
6: while t < T do
7: for every state s do
8: for every county a in state s do
9: update S a, Ia,Ra according to the current policy αa and the excitation matrix K:

10: S a(t) = S a(t − 1) − αaβ
∑

a′ Kaa′
Ia′ (t−1)S a(t−1)

Na

11: Ia(t) = Ia(t − 1) + αaβ
∑

a′ Kaa′
Ia′ (t−1)S (t−1)

Na
− γIa(t − 1)

12: Ra(t) = Ra(t − 1) + γIa(t − 1)
13: end for
14: end for
15: t += 1
16: end while
17: α f = arg minα′∈A C f

n∆t,(n+1)∆t(α
′)

18: for every state s do
19: αs = arg minα′∈A C s

n∆t,(n+1)∆t(α
′)

20: for every county a in state s do
21: αa = arg minα′∈A Ca

n∆t,(n+1)∆t(α
′)

22: end for
23: end for
24: n += 1
25: end while

game between the counties is through cross excitation of infection among the counties. Next, we study
the case when a governing state is added.

We consider three interacting counties with the excitation matrix K:

K =


1 0 0

0.1 1 0
0 0.1 1


We set the reproduction number R0 = 2 and therefore, S herd = 0.5. Counties 1, 2, and 3 have initial
fractions of the infected population as i0 = 0.2, 0.1, 0.1, respectively. This implies that county 1 has
a bigger outbreak initially, and part of the infection in county 2 is excited from county 1 and part of
the infection in county 3 is excited from county 2. The cost functions for all counties consist of an
implementation cost and an impact cost with equal weights (ηa = κa = 1/2, for all a). The minimal
policy time interval ∆ is set to be 7 (days).

The left column (Figures 7a, 7c, 7e) are simulations for the counties without any intervention, and
the right column (Figures 7b, 7d, 7f) are simulations with interventions. Without intervention, we see
propagation of waves of infection from county 1 to county 2 and then to county 3. All of the counties
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reach herd immunity eventually. With interventions, policy restrictions started on day 7 and, for county
2 and 3, the infected curves decrease before reaching their peaks. With control, county 1 contained the
pandemic and the final S∞ is close to herd immunity level S herd. With a smaller infected population to
begin with, county 2 and 3 contained the pandemic before reaching herd immunity.
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(a) County 1. No intervention.
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(b) County 1.
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(c) County 2. No intervention.
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(d) County 2.
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(e) County 3. No intervention.
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(f) County 3.

Figure 7. An example of three dependent counties without and with interventions. With
intervention, for all counties, the coefficients for the implementation cost κ = 1

2 and the
coefficients for the impact cost η = 1

2 . The minimal policy time interval ∆t = 7.
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Figure 8 shows the results of adding a governing state on top of the county layer. We keep the
ratio of the weights for the implementation cost and the impact cost to be 1:1, the same as in the no-
state case in Figure 7. The state has slightly different weights, with the ratio of the weights for the
implementation cost and the impact cost being 1:2. Compared to Figure 7, by adding a state, the three
counties ended up with the same policy. In this case, the non-compliance cost results in each county
choosing the same policy as the state rather than different policies.
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(a) County 1 with a state.
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(b) County 2 with a state.
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(c) County 3 with a state.
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(d) State policy and counties’ policies.

Figure 8. An example with three counties and a governing state. For all counties, the
coefficients for the implementation cost κ = 1

6 , the coefficients for the impact cost η = 1
6 ,

and the coefficients for the non-compliance cost 1 − κ − η = 2
3 . For the state, the coefficients

for the implementation cost κ = 1
3 , the coefficients for the impact cost η = 2

3 . The minimal
policy time interval ∆t = 7.

5. Discussion and future work

We propose a policy-making model coupled with the SIR model to study a single region and
game-like interactions between multiple regions. The model demonstrates its ability to model real-life
situations with different sets of parameters in both one-region and multiple-region scenarios. One can
extend the model to a hierarchical structure by building multiple layers of the multiple regions model
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and study the cross-layer effects.
In the search for an optimal policy, we used a naive depth-first search algorithm for the one-region

model. One can speed up the algorithm by removing some of the obvious non-optimal paths.
In our model, the policy intensity α is a heuristic representation of the lockdown, social distancing,

and mask policy. It remains to be discussed how other policies, for example, vaccination policies, affect
the spreading in the different stages of the pandemic. The model ignores some important features like
the limitation of hospital capacity [24], which could be added as constraints when minimizing the cost
function. Figure 3b shows that the policy for the first wave is proactive while the one for the second
wave is reactive. One possible effect is from fatigue of following policies, which increases in time and
has a memory. So far, the model does not have the capability of modeling this fatigue. In the future, one
could consider an adaptive term in the cost function to model it. The network example considered was
rather simplistic, with just three counties within one state. One could consider more complex systems
with multiple layers. The computational method used here would likely need to be improved to address
the computational complexity of the search space. In addition, a potentially important generalization
is to capture implementation and impact costs with more refined cross-layer dependencies, but this is
potentially non-trivial from both a modeling and computational perspective.
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